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Abstract

The stand density of trees affects stand growth and is useful for estimating other forests

structure parameters. We studied tree stand density in Jiufeng National Forest Park in Bei-

jing. The number of spectral local maxima points (NSLMP) calculated within each sample

plot was extracted by the spectral maximum filtering method using QuickBird imagery.

Regression analysis of NSLMP and the true stand density collected by ground measure-

ments using differential GPS and the total station were used to estimate stand density of the

study area. We used NSLMP as an independent variable and the actual stand density as

the dependent variable to develop separate statistical models for all stands in the coniferous

forest and broadleaf forest. By testing the different combination of Normalized Difference

Vegetation Index (NDVI) thresholds and window sizes, the optimal selection was identified.

The combination of a 3 × 3 window size and NDVI� 0.3 threshold in coniferous forest pro-

duced the best result using near-infrared band (coniferous forest R2 = 0.79, RMSE = 12.60).

The best combination for broadleaf forest was a 3 × 3 window size and NDVI� 0.1 with R2 =

0.44, RMSE = 9.02 using near-infrared band. The combination of window size and NDVI

threshold for all unclassified forest was 3 × 3 window size and NDVI� 0.3 with R2 = 0.70,

RMSE = 11.20 using near-infrared band. A stand density planning map was constructed

using the best models applied for different forest types. Different forest types require the use

of different combination strategies to best extract the stand density by using the local maxi-

mum (LM). The proposed method uses a combination of high spatial resolution imagery and

sampling plots strategy to estimate stand density.

Introduction

Stand density is an important factor that characterizes forest structure. Accurate extraction of

forestry density is critical for sustainable forest management. The true stand density can be

represented by stem density or tree density or the number of trees per unit area (NT) [1–2].

The stand density used in our study is the number of trees per unit. However, ground-based
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measurements require substantial labor and resources [3], and they can lead to repeated mea-

surements, which introduce bias and increase variability [4–5]. High spatial resolution

remotely sensed imagery is an alternative method for determining stand density because its

spatial resolution is sufficient to identify the tops of individual trees [6–8]. Remote sensing

tools have been used to estimate stand density by identification of individual trees [9]. Gou-

geon [10–11] used spectral imagery with a pixel size of 31 cm × 31 cm to identify individual

trees in plantations of red pine (Pinus resinosa), red spruce (Picea abies), white spruce (Picea
glauca), and Norway spruce (Picea abies). This method had a stand density accuracy ranging

from 11% underestimation to 5% overestimation. Gougeon also examined a 49-year-old

Douglas fir (Pseudotsuga menziesii) ranging in density from 650 to 1750 stem / ha and

achieved stand density estimates with an average error rate of 37% using 60 cm spectral imag-

ery [12]. Gougeon and Leckie used 30 cm imagery to estimate density in 3- to 10-yr-old jack

pine (Pinus banksiana) and Scots pine (Pinus sylvestris) forests and achieved an average error

rate of 21% [13]. McCombs et al. noted that previous studies using remote sensing data com-

pared field-measured stand density to derive stand density without ascertaining whether the

identified trees actually existed [14]. A number of studies have focused on species diversity

[15–16] and estimation of diameter distribution, tree size distribution, and spatial distribution

of trees [17–21]. The general approach to estimate stand density using remote sensing images

usually employs spectral values of remote sensing images and stand density to establish a linear

or non-linear relationship [22]. However, the correlation coefficients between these dimen-

sional diversity indexes and remote sensing images have not been satisfactory. For example,

Ozdemir et al. used ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiom-

eter) multispectral imagery to survey tree dimensional diversity, and the highest correlation

coefficient between Gini coefficients from pure UK pine tree stands and texture parameters

was 0.69 [23]. A second-order texture image proposed by Pasher and King was used to model

forest structure and analyze redundancy using remote sensing data, the coefficient of determi-

nation (R2) was 0.35 [24]. Multispectral images have been widely used in the modeling and

mapping of traditional forest structure parameters, such as stand volume, biomass, tree height,

leaf area index (LAI), breast-height basal area (BA) and dimensional diversity indexes [25–26].

The use of spectral signals alone to estimate stand density frequently produces low-accuracy

results. Object-based image analysis methods have been evaluated in several reports [27–28].

Additional texture information can improve the accuracy of classification, and methods for

selecting appropriate variables from textural features to establish a relationship with vegetation

variables of interest is a major goal [29–30]. For example, Chopping made use of full-color

images to extract parameters such as stand density, canopy cover and tree forest height [31].

The method of LM filters is simple when using on high spatial resolution remotely sensed

imagery without considering the accuracy problem. The tree canopy position detection

method using LM currently has some disadvantages when representing the positions of differ-

ent trees. The aim of the present study was to establish a stand density extraction method

using a regression model. The model considered the number of spectral local maxima points

(NSLMP) obtained with the LM filtering method by counting the NSLMP within a plot

extracted from a high spatial resolution remotely sensed imagery and true stand density

obtained from field observations. We explored QuickBird-2 remote sensing data (acronym for

QB in the context below) with different bands using different window sizes from LM and

NDVI threshold values to improve the estimation accuracy using an optimal window size and

NDVI threshold. The optimal strategy was confirmed by stand density estimation models. The

unit of stand density is normally given as trees per hectare, i.e. trees / ha. In this study, the

image was divided into a 20 m × 20 m grid. Thus, the standard units for stand density in some

figures were converted to trees / ha.

Estimation of tree stand density using local maxima filtering method
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Materials and methods

Materials

The study was conducted in the Jiufeng National Forest Park (39˚ 540 N, 116˚ 280 E), Haidian

District, Beijing, China (Fig 1). Jiufeng National Forest Park is managed by the Forestry Commit-

tee of Beijing Forestry University and it is owned by Beijing Foresty University. This site is avail-

able for teaching and research use by the university. This study did not involve any endangered

or protected species. No specific permits were required for the described field studies. Because

this site is an important base of Beijing Forestry University for teaching, scientific research and

practice. Teaching and scientific research service are the main tasks of the forest park.

The park covers 811.173 hectares and varies dramatically in topography, with a maximum

elevation of 1153 m and minimum elevation of 60 m [32]. Naturally regenerated trees are rare

in this forest, and most species, including Pinus tabulaeformins, Platycladus orientalis, Robinia
pseudoacacia, Quercus variabilis, and Quercus aliena were planted in the 1950s and 1960s.

Phellodendron amurense Rupr. and Larix gmelinii are distributed in clumps in the high-eleva-

tion region. The average stand density is 675 trees / ha (27 trees / 400 m2), the average tree

height is 6.6 m, and the average diameter at breast height (DBH) is 11.2 cm. The study area has

a sub-humid continental climate with cold dry winters and hot rainy summers. Forest stands

in the upland are fragmented with patches of dense shrubs, whereas forests in the lowland are

relatively uniform and continuous.

One of QuickBird images, dated on Oct. 24th 2008, was acquired. The sun elevation angle

was 37.3˚. The sun azimuth was 166.6˚. Satellite azimuth was 74.6˚. The satellite elevation

angle was 67.3˚. Another QuickBird image, dated on August 25th 2013, was collected. The sun

elevation angle was 53.4. The sun azimuth was 135.7˚. The satellite azimuth was 282.8˚. The

satellite elevation angle was 60.8˚. The QuickBird standard product consisted of one panchro-

matic image (PAN) with a wavelength interval of 450–900 nm and one multispectral image

with blue band (wavelength interval 450–520 nm), green band (wavelength interval 520–600

nm), red band (wavelength interval 630–690 nm) and near-infrared band (NIR) (wavelength

interval 780–900 nm).

Fig 1. Study area and DEM of Jiufeng National Forest Park, Beijing, China.

https://doi.org/10.1371/journal.pone.0208256.g001
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Data preprocessing

Orthorectification using ephemeris and attitude data measured on the board of a satellite with-

out ground control points (GCP) can only provide an absolute accuracy of about 20 m to 1 km

(depending on the satellite). GCP-based orthorectification can obtain more accurate precision

than RPC file-based orthorectification [33–34]. Road intersections, houses, and other obvious

features were selected as GCPs which were measured by a Handheld differential globe position

system (DGPS) in the field work. Nine GCPs were selected for multispectral imagery and 7

GCPs were selected for panchromatic imagery. The digital elevation model (DEM) was derived

from a triangulated irregular network (TIN) created by the contour lines extracted from the

topographic map shown in Fig 1. The topographical map was surveyed by the Beijing Institute

of Surveying and Mapping in October 2004.

Plot location method

Each tree was located and measured in the field using total station and DGPS. Qualitative

information were collected, such as tree species type, tree crown diameter, and DBH. The

crown of each tree in the plot was measured from two orthogonal axes using tapes. Plots were

collected in July 2011. A total of 73 square plots, each with an area of 400 m2 were selected to

represent different characteristics of stand density in the study area. They were divided into 26

coniferous plots and 45 broadleaf plots according to the percentage of the coniferous or broad-

leaf tree component in each plot. The average stand density was 675 trees / ha (27 trees / 400

m2). The minimum stand density was 100 trees / ha (4 trees / 400 m2). The maximum stand

density was 2750 trees / ha (110 trees / 400 m2) and the stand deviation (SD) of stand density

was 500 trees / ha (20 trees / 400 m2).

The average crown diameter of the coniferous plot was 2.68 m (North to South) and 2.95 m

(East to West). The minimum crown size was 1.38 m. The maximum crown was 6.61 m. Aver-

age crown size of broadleaf plot was 3.63 m (North to South) and 3.79 m (East to West). The

SD of the coniferous crown size was 0.96 m. The SD of the broadleaf crown size was 1.52

meters. A handheld differential GPS S740 manufactured by The South Surveying and Mapping

Co., LTD in Guangzhou China was used for the field work. The geolocation measurements of

single trees were performed with a Pentax R-422N, which can measure distances over 550 m

in no prism mode. Thus, precise and quick measurements results were obtained in field sur-

veys using total station surveying. A Beijing 54 coordinate system was used in the study. The

coordinate system commonly used in China include Beijing 54, Xian 80 and WGS 84 etc. Bei-

jing 54 is based on Krassovshy ellipsoid and adopts a Gauss-Kruger projection with 117˚E cen-

tral longitude and proportionality factor of 1.0.

Individual tree identification method

If the grayscale value of a pixel in the image slice is defined as elevation and the image is taken

as three dimensions, a tree crown will have a peak point, i.e. LM. The peak point is the LM

reflectance within a certain range of elevation, and the value of this point is greater than that of

other points. We used LM reflectance to represent spectral reflectance maximum points and to

identify the center of individual tree crowns. In other studies, peak extraction methods have

been used as an alternative to LM filtering, and this technique has been adopted to detect indi-

vidual trees [35]. The LM filtering method can be used in different data sources, such as Quick-

Bird panchromatic bands, or Worldview-2 panchromatic bands.

NDVI threshold and window size selection. The spectral reflectance peak maximum

points extracted by the LM algorithm were not all derived from vegetation points. Points

incorrectly located on a road were considered as pseudo crown points. Normalized difference

Estimation of tree stand density using local maxima filtering method
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vegetation index (NDVI) filtration removed these pseudo crown points. A threshold NDVI

value was set for removing the pseudo points. The tree crowns in each plot were then identified

by spatial association statistics. The number of trees in each sample plot was counted by over-

lapping the sample plot layer with canopy reflectance maxima layers, and the stand density

was calculated using a spatial statistics method combining the plot areas. The QuickBird pan-

chromatic band was analyzed by LM filtering first since the filter’s window size affects the

results. We also tested the effect of varying the window size, using 3 × 3, 5 × 5, 7 × 7, 9 × 9 and

11 × 11 window sizes. The unit of window size here is pixels. The optimal window size was

required for identification. The raster layer obtained after filtering was subtracted from the

original panchromatic layers, and the points with a value of zero represented the maximum

canopy reflectance points. We determined how different NDVI threshold values affected the

analysis. We choose five different ranges of NDVI. The first range was NDVI� 0.1. The sec-

ond range was NDVI� 0.2. The third range was NDVI� 0.3. The fourth range was

NDVI� 0.4. The fifth range was NDVI� 0.5. Points under the threshold value were removed

to refine the reflectance maximum points layer by referring to the NDVI layer. The spectral

reflectance maximum point layers were overlaid on the sample plots, and the number of can-

opy reflectance maximum points (N’) was calculated inside each plot. To identify the optimal

combination of NDVI threshold and window size, we used Pearson correlation analysis to

evaluate each effect of different NDVI threshold ranges and window sizes. A correlation analy-

sis was then performed between the NSLMP within the plot and the number of trees within

the corresponding plot. We took 73 sample plots to evaluate the stand density of all stands; 45

in broadleaf stands and 26 in coniferous stands, and the rest were removed.

Statistical analysis. Pearson’s correlation coefficient was used to analyze the linear corre-

lation between variables X and Y, which are often two continuous variables. Pearson’s correla-

tion coefficient, when applied to a sample, is commonly represented by the letter r. Two-tailed

t-tests were used to determine whether the correlation was statistically significance, and

p = 0.05 was used as the threshold.

The highest r value indicates the best combination of NDVI threshold and window sizes

and the band. After selecting the best NDVI threshold value, optimal window size and band,

considering that there is only one explanatory variable, a simple regression with one element

was used to build model. NSLMP was treated as the independent variable and the true stand

density was treated as dependent variable. A non-linear regression model and linear regression

model were both tested.

We used the Shapiro-Wilk test to verify the distribution of the residuals and a regression

model was established according to the assumption of a normal distribution of the residuals

(predicted value minus observed value). If the p-value was significantly greater than 0.05, then

the residuals were distributed normally. The produced models were evaluated for precision

using the coefficient of determination (R2) and the root mean square error (RMSE). RMSE

measures the differences between values predicted by a model and the values actually observed.

The unit of RMSE is the same to the unit of stand density. We used the leave-one-out cross-

validation approach to calculating cross-validated coefficient of determination (r2
cv) and root

mean square error (RMSEcv) to validate the models in predicting the forest stand density. The

prediction value of i-th observation was calculated using the regression equation obtained by

fitting the model leaving the i-th observation out.

Stand density mapping. According to tree species composition in each plot, all plots were

divided into three types, pure broadleaf forest, pure coniferous forest and unclassified forest.

Broadleaf forest and coniferous forest were considered separately. According to the technical

regulations of the National Forest Inventory (NFI) in China, the definition of a pure forest is

one in which a single woodland species has more than 65% of total stock volume. The

Estimation of tree stand density using local maxima filtering method
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definition of a mixed forest with coniferous and broadleaf trees is one in which no tree species

(Group) have more than 65% of the total volume. In our study, we increased the percentage to

maintain the consistency of tree species. If the percentage of broadleaf trees exceeded the sev-

enty percent, the plot was grouped as a pure broadleaf plot. And the percentage of coniferous

trees exceeded the seventy percent, this plot was grouped as a pure coniferous plot. All of the

plots are considered to be unclassified forest. Inventory data in the study area were used as ref-

erence data. The study area was divided into different compartments according to the inven-

tory map as reference data. After the estimation models were established, we used Create

Fishnet tools in ArcGIS 10.1 to create the 20m × 20m grid. The rectangles were evaluated by

using the Spatial Join tool of Analysis tool in ArcGIS 10.1 to count the number of the local

maximum in the whole study area. Then, we changed the fishnet vector layer with points

count into a raster layer. We used these models to estimate the stand density in the whole area.

Results

Image quality

The QuickBird multispectral images at 2.4-m resolution and panchromatic images at 0.6-m

resolution and topographical map were geometrically registered into the same coordinate sys-

tem. The final total correction of the multispectral images was controlled within one pixel at

0.99 RMSE. The RMSE of the panchromatic image correction was 5.86. The sample plot was

precisely located on the image after the orthorectification process.

The final total correction of the multispectral images was controlled within one pixel at 0.59

RMSE using the 2008 QuickBird multispectral band as reference imagery. The RMSE of the

PAN image correction was 2.59 using the 2008 QuickBird panchromatic imagery as reference

imagery.

NDVI threshold and windows size selection

Two plots were used as samples to evaluate the ability of individual tree identification by LM

filtering (Fig 2). Stars represent the estimated crown points from LM filtering and triangles

represent the actual tree stem positions in the plots. The spatial resolution of both imageries is

0.6 meter.

According to the results of the Shapiro-Wilk tests, residual distributions, the stand density

had a normal distribution. The mean NT was 675 trees / ha (27 trees / 400 m2); the standard

deviation was 500 trees / ha (20 trees / 400 m2); the minimum value was 100 trees / ha (4 trees /

400 m2), and the maximum value was 2750 trees / ha (110 trees / 400 m2). The 73 sample plots

represent most of the structural features of trees in the study area. The Pearson correlation

coefficient is suitable for correlation evaluation between variables, and we tested the correla-

tion coefficients between the quantity of spectral canopy maxima extracted from the Quick-

Bird panchromatic band using different window size and the NDVI threshold value and the

true NT calculated from the field data. We used the panchromatic and multispectral bands.

Figs 3–5 illustrate the correlation coefficient of different combinations using the panchro-

matic band and multispectral band respectively in 2008. One of the objects of our study was to

determine which band is best for extracting the stand density and which windows size and

NDVI are suitable for the corresponding band. We compared two QuickBird images acquired

in different periods in the same area. A 2008 multispectral band and a 2013 panchromatic and

a 2013 multispectral band were tested. A scatter diagram between the independent and depen-

dent variables showed that the forest structure parameters NT and NSLMP display a generally

linear relationship. Based on the correlation analysis results above, we selected the highest cor-

relation coefficient as optimal combination of NDVI threshold and window size applying in

Estimation of tree stand density using local maxima filtering method
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the all unclassified forest stands, coniferous forest stands and broadleaf forest stands

respectively.

The highest r value for unclassified stands was 0.79 (p< 0.01). For coniferous stand, the

highest r value was 0.89 (p< 0.01) and for broad-leaf stands, the r value was 0.67 at p< 0.01.

The results are shown in Table 1. Regression models between the NT and NSLMP derived

from PAN band determined from QuickBird imagery were built using single variable

Fig 2. Sample plots geolocation in QuickBird fusion imagery with multispectral and panchromatic band and NDVI threshold is 0.2. (A) Sample

plot B3. (B) Sample plot B11.

https://doi.org/10.1371/journal.pone.0208256.g002

Fig 3. Correlation Coefficients of unclassified stand between stand density based on different window sizes and NDVI threshold

and true stand density. (A) Correlation coefficient of the PAN. (B) Correlation coefficient of the NIR.

https://doi.org/10.1371/journal.pone.0208256.g003
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regressions to predict forest parameters. The F-statistic indicated that the p-values were less

than 0.001 and therefore, the models were highly significant. However, the non-linear regres-

sion model achieved the best results. We only present the non-linear regression model here

and the model results are shown in Table 2. The prediction abilities of these models were eval-

uated by leave-one-out cross-validation scores (r2
cv were 0.66, 0.79, and 0.35 and the RMSEs

were 13.97, 14.45, 10.97 corresponding with unclassified forest, coniferous forest and broadleaf

forest respectively).

Fig 5. Correlation Coefficients of broadleaf stand between stand density based on different window size and NDVI

threshold and true stand density. (A) Correlation coefficient of the PAN. (B) Correlation coefficient of the NIR.

https://doi.org/10.1371/journal.pone.0208256.g005

Fig 4. Correlation Coefficients of coniferous stand between stand density based on different window sizes and NDVI threshold

and true stand density. (A) Correlation coefficient of the PAN. (B) Correlation coefficient of the NIR.

https://doi.org/10.1371/journal.pone.0208256.g004
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Predicting stand density

Fig 6 presents a scatter plot of the non-linear regression model. The Y-axis is the true (actual

measured) tree density and the X-axis is tree density derived from images. As a result, the

regression models can be considered predictive models for estimating the NT in the study

area. Fig 7 illustrates stand density estimation results of the coniferous stands, broadleaf stands

and unclassified stands in the study area.

Discussion

We used a Pentax R-422N no-prism total station device in conjunction with DGPS to identify

the positions of individual trees. Each tree was located precisely in the field, and the validity

and feasibility of the survey method were demonstrated by its ability to locate each tree within

two sample plots. Exact plot geolocation was a prerequisite for extracting forest parameters

when compare field-measured stand density with stand density derived from imagery using

remote sensing techniques. However, previous results were usually lack of verification, and

those accuracies were still low in attempts to locate and classify species. The LM method used

to extract NSLMP and estimate stand density, was improved by testing different window sizes

and NDVI thresholds for different forest stand types. The proper window size selection is criti-

cal to obtain optimal results. We found that the window sizes are consistent (3 × 3) when

applied in coniferous plot models, while window sizes varied when applied in broadleaf plot

models. One reason could be that the mean crown size in broadleaf plots is larger than that in

coniferous plots. The average crown size in coniferous plot was 2.68 m (North to South) and

2.95 m (East to West). The average crown size in broadleaf plots was 3.63 m (North to South)

and 3.79 m (East to West). The standard deviation of coniferous crown size was 0.96 m. The

stand deviation of broadleaf crown size was 1.52 m.

LM filtering is an effective and simple method for extracting NT. Wulder et al. applied LM

filtering to the extraction of tree location and basal area. They also evaluated the precision of

airborne and satellite high spatial resolution data and proposed error reduction methods for

Table 2. Non-linear regression model in different forest types based on NIR band.

Forest NDVI Window size Coefficient of determination P-value F-statistic RMSE DOF

Broadleaf �0.1 3×3 window 0.4441 1.919e-05��� 14.78 9.02 2 and 37 DF

Coniferous �0.3 3×3window 0.7933 1.422e-07��� 38.38 12.60 2 and 20 DF

Unclassified �0.3 3×3window 0.7017 2.2e-16��� 79.99 11.20 2 and 68 DF

Note

��� represents that the result of fitting is significant at p = 0.001 level. �� represents that the result of fitting is significant at the p = 0.05 level. DOF represents degree of

freedom.

https://doi.org/10.1371/journal.pone.0208256.t002

Table 1. Comparison result of stand density between two QuickBird images used in different forest from the Jiufeng area.

Year Band Unclassified r Coniferous r Broadleaf r

2013 PAN 5×5, NDVI�0.1 0.69��� 3×3, NDVI�0.3 0.88��� 3×3, NDVI�0.3 0.64���

NIR 3×3, NDVI�0.2 0.71��� 3×3, NDVI�0.4 0.89��� 7×7, NDVI�0.3 0.66���

2008 PAN 5×5, NDVI�0.2 0.74��� 3×3, NDVI�0.3 0.86��� 5×5, NDVI�0.3 0.67���

NIR 3×3, NDVI�0.3 0.79��� 3×3, NDVI�0.3 0.86��� 3×3, NDVI�0.1 0.67���

Note

��� represents that the result of correlation analysis is significant at p = 0.001 level.

�� represents that the result of fitting is significant at the p = 0.05 level.

https://doi.org/10.1371/journal.pone.0208256.t001
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LM filtering of the high spatial resolution imagery used to locate trees [36]. Healthy conifers

reflect near infrared energy strongly. The reflectance of NIR radiation is high from healthy

vegetation with high exposure to sunlight. Moreover, because of differences in research con-

tent, sensor types, species and site conditions, research results are often inconsistent. Under

normal conditions, estimations of coniferous forests dominated by pure stands of the same

species usually produce satisfactory results, because of the single stand structure [37].

Our models can be used to estimate coniferous and broadleaf forest stand density because

each model explains a significant proportion of the variables. Some studies have used different

remote sensing data with different spectral and spatial resolution. These studies may have

applied LM filtering to different study areas with different levels of forest density [14]. Our

findings are consistent with those in previous studies. These include studies in which forest

structure parameters, such as crown closure (CC) were transformed by principal transforma-

tion and predicted by textural methods using pan-sharpened SPOT imagery. This approach

achieved an R2 of stepwise regression analysis of 0.79 [37]. Our results are also consistent with

the results of Kayitakire et al., who used 1 m IKONOS-2 image texture information to model

traditional forest parameters, including BA, height, circumference, density and age. They

determined that the R2 of the best models ranged from 0.35 to 0.82 [38]. Remote sensing imag-

ery with different spatial resolution may also lead to inconsistent results. Theoretically, each

conifer canopy will have one single canopy spectral maximum because coniferous trees nor-

mally have fairly conical and symmetrical crowns. Therefore, the derived stand density should

be more similar to the field-observed stand density in a coniferous forest sample plot. In addi-

tion, plots with low stand density generally have a higher predicted precision. The broadleaved

tree canopy usually has a variable and irregular shape produces more than one spectral maxi-

mum point. This is why the correlation coefficients from coniferous forests are higher than

those from broadleaf forests. In our study, the R2 in coniferous forest was 0.7415 which was

higher than the 0.4422 value in broadleaf forest. Overall, our data affirms that coniferous for-

ests provide more accurate results than broadleaf forests.

Several aspects are involved in improving the accuracy of stand density models. First, the

appropriate window size for LM filtering is critical for generating crown reflectance maximum

points. NDVI filtering is a key process that can be used to filter out non-crown points. Second,

Fig 6. Number of trees / 400 square meters–observations of stand density against number of spectral local maximum points. Note: (A) Represents the scatter plot

of stand density in coniferous sample plots. (B) Represents the scatter plot of stand density in broadleaf sample plots. (C) Represents the scatter plot of stand density in

all stand sample plots.

https://doi.org/10.1371/journal.pone.0208256.g006
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field data collection must be sufficiently precise and meticulous. Standing dead trees must be

recognized because they will have a lower near-infrared reflectance than live trees and they

would not be indicated as a tree peak in the spectral band. We obtained high accuracy because

dead trees were identified and excluded during field data collection process. The position of the

crown spectral maximum is likely to be different from the position of the tree stem, and even

when trees in the sample plot were measured precisely using the total station. There were still

omission and commission errors. The number of LM points was less than the actual stand den-

sity in most of the sample plots. Thus, we conclude that LM method is limited, especially when

the stand density is high. That is true even when the NDVI is not used to filter the results.

We found that the results of LM filtering varied significantly for different tree species. The

acquisition time of remote sensing imagery also significantly affected the LM results. For

example, the leaves of most broadleaf trees fall in winter, which would produce a lower NDVI

value for each tree. The results of extracting spectral maximum points by LM should be veri-

fied, and accuracy should increase if different tree species are considered. Results should be

verified using high spatial resolution remotely sensed imagery with different acquisition times.

Further work to refine LM techniques and more precisely extract individual tree crowns may

be required, especially when applying the LM method in different locations.

The fusion of remote sensing data like Light Detection And Ranging (LiDAR) and the mul-

tispectral band could increase the accuracy of individual tree identification [14]. Fusion of

remote sensing data should be the main research method used in future research. The results

may be useful for forest stewards, ecologists, and silviculturists as a basis for more accurate

modeling of forest structure and dynamics. Individual tree data would rarely be required after

their amalgamation into stand parameters. However, computerized management systems may

integrate the LM filtering method and models developed in this paper to achieve individual

tree canopy identification and stand density predictions in similar research areas. This

approach has significant potential and will be conductive to additional study.

Conclusions

Coniferous forests provided the best results in the statistical models that were developed for

coniferous forests, broadleaf forests and entire stands. This suggests that high accuracy estima-

tions of coniferous tree density can be achieved by combining individual tree crown extraction

from a high spatial resolution optical image and the ground measurements using both GPS

and total station. The combination of a 3 × 3 window size and NDVI� 0.3 threshold in conif-

erous forest produced the best result (coniferous forest R2 = 0.79, RMSE = 12.60). The best

combination for broadleaf forest was a 3 × 3 window size and NDVI� 0.1 with R2 = 0.44,

RMSE = 9.02. The best combination of window size and NDVI threshold for an unclassified

stand was a 3 x 3 window size and NDVI� 0.3 with R2 = 0.70, RMSE = 11.20. The proposed

methods use an advanced survey method that takes advantage of high spatial resolution imag-

ery and optimal plot sampling strategies.

Supporting information

S1 Data. The underlying data.

(RAR)

Fig 7. Number of trees / ha predicted by the non-linear regression model obtained by combining the forest

inventory sample plot data and QuickBird imagery data using local maximum filtering of the study site in Jiufeng

Park, Beijing. (A) Stand density of the coniferous stand. (B) Stand density of the broadleaf stand. (C) Stand density of

the whole forest. Note: the 20 m × 20 m pixel size was used to produce these maps.

https://doi.org/10.1371/journal.pone.0208256.g007
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