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Abstract Chronic rhinitis and rhinosinusitis are among the most common conditions world-
wide with significant morbidity and decreased quality of life. Although the pathogenesis of
these conditions is multifactorial, there has been increasing evidence for the role of environ-
mental factors such as aeroallergens and air pollutants as initiating or exacerbating factors.
This review will outline the current literature focusing on the role of aeroallergens and air
pollution in the pathogenesis of chronic sinonasal inflammatory conditions.
Copyright ª 2018 Chinese Medical Association. Production and hosting by Elsevier B.V. on
behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Chronic sinonasal inflammatory diseases including chronic
rhinosinusitis (CRS) and allergic rhinitis (AR) affect millions of
Americans annually.1 CRS-related health care costs are far-
reaching and estimated to be 22 billion USD in 2014.1,2

Although CRS is commonly diagnosed in the population, the
fundamental pathologic mechanisms of mucosal inflamma-
tion affecting CRS have been particularly challenging to
line Street, 6th Floor, USA.

du (M. Ramanathan).
Chinese Medical Association.

 Elsevier on behalf of KeAi

08.006
Medical Association. Production a
er the CC BY-NC-ND license (http
elucidate. CRS is frequently divided into CRS with nasal
polyps (CRSwNP) and CRS without nasal polyps (CRSsNP),
however, as our understanding of the disease has improved
the disease process is gradually becoming divided as a
collection of endotypes.3 While the role of aeroallergens in
CRS pathogenesis is controversial, the negative impact of air
pollutants in CRS is beginning to be more defined. Allergic
rhinitis is another highly prevalent sinonasal inflammatory
disorder and is divided based on seasonal versus perennial
and intermittent versus persistent.4 Here, we discuss the
current understanding of the impact of aeroallergens and air
pollutants on chronic sinonasal inflammatory disorders.
Aeroallergens

Aeroallergens, otherwise understood as inhalant allergens,
have long been hypothesized to play a role in the patho-
genesis and resilience of CRS to therapy. Frequently tested
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aeroallergens ranging from molds, trees, weeds, grass, ani-
mal dander are usually secondary to the house dust mite
(HDM) as the most frequent offender.5 While some studies
have purported direct associations between CRS volunteers
and allergic sensitization, there is not a definitive correlation
between the two. For instance, in a study by Gutman 2004 of
48 voluntary participants with CRS and recurrent acute rhi-
nosinusitis, 57.4% had a positive allergy test with the ma-
jority being sensitive to more than one allergen (most
commonly perennial allergens, mold and dust mites).6 Simi-
larly in a group of 200 patients with CRS who underwent
functional endoscopic sinus surgery, 84% had tested positive
for allergies.7 Larger data from the UK National Chronic
Rhinosinusitis Epidemiology Study were able to show that in
over 500 patients with CRSwNP and CRSsNP, the rates of self-
reported aeroallergen was 20.3% and 31.0% respectively.
Interesting, HDM allergy was significantly higher in CRSwNP
(16%) than in CRSsNP (9%).8 In contrast, cross sectional
studies in children have shown no significant difference be-
tween sensitization to aeroallergens and CRS when
compared to the general population.9 It is thereby clear that
our understanding of mucosal specific inflammatory path-
ways will elucidate the pathogenesis of CRS that cannot be
explained by systemic immunoregulatory dysfunction alone.
Aeroallergens e pathogenesis

Through sensitization and other innate mechanisms, aero-
allergens have been associated with mucosal inflammation in
pathology ranging from reactive airway disease to allergic
rhinitis. The current model of pathogenesis is that aero-
allergens, regardless of the extent of penetration into si-
nuses, cause a systemic allergic response. Instead of
behaving as the sole conductor, this response subsequently
contributes to the greater orchestra of factors that compose
rhinosinusitis. The specific drivers of mucosal inflammation
can thus be separated into three basic mechanisms: (1) De-
ficiencies in host defenses and transepithelial permeability;
(2) Triggers associated with Th2 pro-inflammatory cytokines;
(3) Innate immune mechanisms.

A number of cytokines and innate immune mechanisms
have been shown to be involved with mucosal inflammation
and associated with CRS pathogenesis (Fig. 1). Over the
past three decades, our understanding of these immune
mechanisms were initially derived from understanding the
association between immunodeficiency syndromes (Good
syndrome, CVID, Selective IgA deficiency) and CRS.10,11

Others have relied on murine and rabbit models of sinus-
itis to replicate the conditions of CRS and evaluate thera-
peutics on treatment arms and controls. Khalmuratova
et al12 were able to develop of a mouse model of CRSwNP
using nasally injected HDM co-administered with staphylo-
coccus aureus enterotoxin B. Tharaken et al13 were also
able to develop a murine model of eosinophilic rhinosinu-
sitis following administration of intranasal papain with
comparable Th2 cytokines and innate immune responses to
CRS. While these models are essential for testing and un-
derstanding basic fundamental mechanisms, their clinical
utility remains questionable. In a multicenter study across
several continents, CRSwNP and CRSsNP has demonstrated
a multiplicity of Th1/Th2/Th17 cytokine profiles which in
part explain the heterogeneity of immune sensitivity seen
in CRS globally.14 This diversity of cytokine profiles dem-
onstrates the need to better categorize CRS as a collection
of clinical subtypes rather than a catch-all diagnosis.

As with any epithelium, nasal mucosa membrane pene-
tration presents a key step in the translocation of aero-
allergens, microbes and foreign particles such as
pollutants. Up regulation of Th-17 cells, which serves to
maintain mucosal barriers and facilitate pathogen clear-
ance, and production of associated cytokines (IL-17, IL-22,
and IL-26) have been shown to increase mucosal perme-
ability and may contribute to the polypoid changes seen in
CRS.15,16 Via the Th2 pathway the cytokines IL-4, IL-5 and
IL-13 have been key players in the generation of a number
of alterations in host defense including changing nasal
epithelium permeability. Using air-liquid cultured nasal
epithelium of patients with HDM-induced allergic rhinitis,
Steelant et al17 were able to lower levels of occludin and
zonula occludens-1 expression, proteins involved with nasal
epithelial tight junctions, in CRS tissue. Interestingly, they
were also able to show that fluticasone could work as a
countermeasure towards increasing barrier function.17

Other cytokines such as IL-25 have been recently identi-
fied as an early signal in the Th2 inflammatory cascade.
Kohanski et al18 were able to demonstrate that IL-25, which
can function as an early signal for the type 2 response in
CRSwNP, is potentially derived from solitary chemosensory
cells in CRSwNP but not in adjacent nasal turbinate tissue.

New targets within the innate immune pathway have
become recently popularized in the CRS literature of the
past decade. For instance, as part of the IL-1 superfamily, IL-
33 is released from tissue damage/cellular stress and induces
production of Th1/Th2 cytokines and facilitates neutrophil
recruitment in patients with CRS. Treatment of allergen
induced CRS in a murine model with anti-IL-33 antibody has
showed reduced mucosa thickness, subepithelial collagen
deposition, and neutrophil, but not eosinophil, infiltration
vs. control mucosal tissue.19,20 Toll-like receptor 9, which is
present on antigen presenting cells, also been shown to play
an important role in generating a pro-inflammatory cascade
in response to PAMPs (Pathogen-associated molecular pat-
terns) in CRS. Interestingly, TLR9 expression on culture pri-
mary nasal epithelial cells from CRSwNP patients was
reduced by 50% when compared to control cells. Moreover,
exposure to Th2 inflammatory cytokines down regulated
TLR9 expression by about half.21 Other groups have shown
that HDM-derived beta-glucans were critical for TLR-2
(nasal)/TLR-4 (lung) activation as well as production of
dual oxidase-2 generated reactive oxygen species.22 This
may serve a role in increasing sinonasal epithelial barrier
dysfunction and permeability secondary to stimulants such
as HDM. Indeed, activation of a cytoprotective pathway has
been found to restore HDM-mediated disruption tight junc-
tion proteins and transepithelial resistance.23

Other new targets such as the bitter taste receptors
(specifically T2R38) have been found in mature respiratory
cilia and are thought to trigger early innate response via
stimulation from acyl-homoserine lactones, gram negative
quorum-sensing molecules and NO-dependent immune re-
sponses. Polymorphisms of these receptors are common
and have been shown to be associated with CRS.24 Inter-
estingly, phenyl thiocarbamide taste sensitivity has been



Fig. 1 Innate immunity and adaptive immunity. Innate immunity (green): Pathogen-associated molecular patterns (PAMPs),
lipopolysacharides (LPS) and bacteria act as stimuli to Toll like receptors (eg. TLR9, TLR2) resulting in increased reactive oxygen
species (ROS), inflammation, and decreased sinonasal epithelial barrier function. Damage associated molecular patterns (DAMPs)
directly stimulate the release of cytokines (IL-25, IL-33, TSLP) leading to Th2 activation. Taste receptor T2R38 has also been shown
to be stimulated by LPS and in turn creates a nitrous oxide dependent immune response. Adaptive immunity (red): Activation of the
Th2 pathway via IL-4, IL-5 and IL-13 results in increased epithelial barrier permeability in part through down regulation of tight
junction proteins. An IgE mediated immune response results in mast cell degranulation.
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associated with healthier sinuses based on symptoms than
non-tasters.25 While it is still unclear how large of a role
these receptors play in CRS, they may serve to better tailor
therapies based on these genetic polymorphisms.

In a randomized, double-blinded, placebo-controlled
study of patients with nasal polyps who received omalizu-
mab (anti-IgE ab), there were significant reductions in
airway symptoms (nasal congestion, anterior rhinorrhea,
hyposmia, dyspnea) and quality of life scores vs controls.26

Other therapeutic antibodies are in development to target
specific elements of the Th2 inflammatory pathway. Anti-
IL-5 antibodies, namely Reslizumab and Mepolizumab,
have been used in proof of concept and a phase III clinical
trial, respectively, for CRS. While these studies showed a
promising reduction in polyp rating scores and peripheral
blood eosinophil counts, there were no significant
improvement of symptoms in CRS patients.27,28 Similarly, a
phase Ⅱ study of 60 CRSwNP patients who received Dupi-
lumab, a monoclonal antibody which targets the alpha
chain of the IL-4 receptor, has shown promise in reducing
endoscopic nasal polyp burden when used in combination
with a nasal steroid spray.29,30 Unfortunately, these im-
munotherapies are expensive and have also been associ-
ated with an increased risk of nasopharyngitis and injection
site reactions. Given the roles of innate immunity and
infection on CRS, a more comprehensive strategy that en-
compasses additional targets outside of the Th2 immune
pathway alone is likely needed for comprehensive
treatment.
Additional targeting strategies against innate immune
checkpoints are now underway. Kim et al20 looked at the
effects of anti-IL-33 treatment in a mouse model of allergic
rhinitis. They found that the treatment group had signifi-
cantly reduced the number of nose-scratching events and
ameliorated skin denudation, decreased eosinophilic infil-
tration and decrease IL-4/IL-5 and IL-13 in BAL fluid. In a
murine nasal polyp model, Shin et al showed that anti-IL-25
antibody treatment reduced the number of polyps, mucosal
edema thickness, collagen deposition and infiltration of
neutrophils and eosinophils while also inhibiting expression
of IL-4/IFN-gamma.31 In addition to the anti-inflammatory
effects, these studies show great promise in not only pre-
venting, but reversing the mucosal changes inherent in CRS.
While there remains a diversity of clinical phenotypes,
which constitute the clinical diagnosis of CRS, by under-
standing the trends in immune response we can find com-
mon pharmacological targets to treat, and perhaps
prevent, the associated inflammatory response and their
sequelae.
Air pollutants and chronic sinonasal
inflammatory disorders e cigarette smoke

Air pollution has well documented negative acute and
chronic effects on human health including exacerbation of
cardiovascular and pulmonary disease, increased risk of
cancer, and premature death.32 The upper sinonasal airway
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acts as a first line of defense to inhaled environmental
pollutant exposures including cigarette smoke, traffic-
related air pollutants (TRAP) such as diesel exhaust parti-
cles, and particulate matter 2.5 (PM2.5) have been hy-
pothesized to exacerbate chronic sinonasal inflammatory
disorders (Fig. 2). Here we discuss what is known in relation
to the clinical impact, pathophysiology, and dysregulatory
function of these stimuli.

Cigarette smoke is an environmental pollutant that may
affect the sinonasal cavity through both primary- or second-
hand exposure.33 A recent meta-analysis found that 11 of the
13 studies that met inclusion criteria demonstrated an asso-
ciation between primary smoke exposure and increased
prevalence of CRS.34 For example, a recent population-based
study by Hirsch et al35 mailed a CRS questionnaire to 23,700
primary care patients and found the odds of CRS was higher in
current and former smokers compared to never smokers. A
cross-sectional study performed by interviewing 10 636 pa-
tients using a standardized questionnaire found that tobacco
smoking was associated with an increased risk of CRS and the
negative impact generally increasedwith doseanddurationof
smoking.36 Thus active and former smoking may increase the
risk of CRS and negatively impact sinonasal health.33,34 A
limitation of these studies, however, is that self-reported
symptoms without documentation of inflammation on nasal
endoscopy may lead to misclassification.37

The effect of second-hand or passive smoking exposure on
CRS or rhinitis in adults is less clear as some studies report an
increase while others report no association.34 In one
caseecontrol study, those with current or a history of
second-hand smoke (SHS) had an increased risk of CRS as
well as worse scores in nasal obstruction, nasal discharge,
and headache.38 A second caseecontrol study also found an
increased odds of CRS in patients with a five year history of
SHS at multiple independent venues including home, work,
Fig. 2 Cigarette smoke exposure (yellow) results in decreased c
presence of smoke exposure results in increased Eotaxin-1 and eosi
regeneration of the sinonasal epithelial barrier. Cigarette smoke als
transport. Traffic associated particulates (blue), such as diesel exh
have likewise been shown to increase epithelial barrier permeability
combated with ROS (reactive oxygen species) scavengers. PM2.5 (pa
increase immune cells response (E� Z eosinophils, M� Z macro
cellular oxidative stress. The cumulative effect from each pollutan
and private functions.39 In two cross-sectional surveys,
however, while CRS was found to be associated with active
smoking, no association was observed in SHS exposure.40,41

Similar contrasting results between SHS exposure and
rhinitis have been reported in adults.42 Interestingly the
impact of SHS in children may be more consistent than in
adults. One study using a combination of self-report and
serum cotinine levels identified a strong association between
second-hand smoke exposure and rhinitis in children.43 This
finding is further supported by a recent study, which found
an association between parental smoking and allergic rhinitis
in children.44 Interestingly, in teenagers with perennial
allergic rhinitis those with exposure to tobacco smoke
demonstrated increased nasal mucosa eotaxin-1 and eosin-
ophil counts compared to control.45 Thus second-hand smoke
exposure may exacerbate rhinitis in children.

The pathophysiology and mechanism whereby cigarette
smoke exposure disrupts sinonasal function is likely multi-
factorial and may include disruption of ion transport,
mucociliary clearance, vitamin D conversion, and sinonasal
epithelial barrier function as well as increased oxidative
stress and inflammatory mediators.34 The sinonasal
epithelium regulates many of these functions, indeed,
cigarette smoke extract (CSE) has been reported to impair
sinonasal epithelial cell growth and promote apoptosis of
normal nasal epithelial cells in vitro.46 One study reported
that cigarette smoke condensate inhibited transepithelial
chloride transport and ciliary beat frequency, two major
components or mucociliary clearance, in primary murine
and human sinonasal epithelial cultures in vitro.47 Consis-
tent with these results, a case series found that parameters
of decreased nasal mucociliary clearance including
saccharin nasal transit time, ciliary movement, and addi-
tional microscopic parameters were reduced in active
smokers.48 Indeed, poor mucociliary clearance is a common
onversion of 25 vitamin D3 to activated 1, 25 vitamin D3. The
nophil accumulation as well as increased apoptosis and reduced
o directly affects nasal cilia by reducing beat frequency and ion
aust particles (DEP), cause increased IL-6 and IL-8 activity and
. The resulting effect is increased oxidative stress which can be
rticular matter < 2.5 microns in size, red) have been shown to
phages, N� Z neutrophils). This likewise results in increased
t is the exacerbation of rhinosinusitis.
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finding in CRS.49 Cigarette smoke has also been reported to
decrease vitamin D3 conversion by human sinonasal
epithelial cells resulting in increased sinonasal epithelial
pro-inflammatory cytokine release which could be reversed
by administration of exogenous 1, 25-dihydroxyvitamin
D3.50 Cigarette smoke has also been demonstrated to
increased reactive oxygen species in sinonasal tissue and
CSE has been shown to disrupt sinonasal epithelial barrier
function in vitro.51,52 Thus the negative impact of cigarette
smoke on the sinonasal cavity is likely multi-factorial.
Air pollutants and chronic sinonasal
inflammatory disorders e TRAP

Traffic-related air pollution such as nitrogen dioxide (NO2)
and diesel exhaust particles (DEP) have been associated
with development of allergic asthma and exacerbation of
lower airway disease.53,54 However, the role of TRAP as a
risk factor for CRS and allergic rhinitis is less well under-
stood. One report found an increased risk of allergic rhinitis
in adults residing within 100 m of a road with a high traffic
intensity.53,54 Another study found a positive correlation
between the frequency of allergic rhinitis episodes and
pollutant concentration and higher vehicular traffic.55 In
contrast, a recent study estimated TRAP exposure based on
proximity to the nearest major road as well as the density
of major roads within 300 m from where children resided
and found no association between TRAP exposure and risk
of allergic rhinitis.56 A possible explanation for these con-
flicting results is the prevalence of genetic susceptibility in
inflammatory genes in some patients to develop allergic
rhinitis.57 Regardless, well-control prospective studies are
necessary to determine the effect of air pollutants on
clinical rhinitis symptoms.

The effect of DEP has been investigated in vivo where
mice sensitized to ragweed pollen were challenged intra-
nasally with ragweed pollen in the presence or absence of
DEP. Mice that were treated with DEP were found to have
increased frequency of sneezing, an indication of aggrava-
tion of allergic rhinitis.58 This group also found that DEP
disrupted tight junction integrity, thereby disrupting the
sinonasal epithelial barrier.58 Interestingly, these negative
effects of DEP were suppressed by treatment with a reac-
tive oxygen species scavenger.58,59 A second possible
mechanism of sinonasal inflammatory disease aggravation is
through DEP-mediated induction of pro-inflammatory cy-
tokines. Kim et al60 stimulated nasal fibroblasts with DEP
and performed a cytokine and chemokine array where they
found increased levels of interleukin-6 (IL-6) and
interleukin-8 (IL-8). The effect of DEP on IL-6 and IL-8
expression was further confirmed by this group using infe-
rior turbinate organ cultures ex vivo.
Air pollutants and chronic sinonasal
inflammatory disorders e PM2.5

Particulate matter is an air pollutant with well described
negative health consequences throughout the human body.
Thedamaging effects of PMdepend on the size of the particle,
composition, and induction of oxidative stress.61 Multiple
recent studies have begun todemonstrate the negative health
consequences of PM2.5 exposure as it relates to chronic sino-
nasal inflammation. One group found this to be particularly
applicable to CRSsNP patients where for each unit increase in
PM2.5 exposure, there was a 1.89-fold increase in the propor-
tion of CRSsNPwho required further surgery.62 Another recent
study found that an increase of 10 mg/m3 of the annual PM2.5

exposure was associated with an increased prevalence of
allergic rhinitis in preschool children (odd ratio 1.20).63 These
results have been corroborated by another study in Peruvian
children where each 10 mg/m3 in PM2.5 exposure was associ-
ated with an increased odds of worsened rhinoconjunctivitis
quality of life (odds ratio 1.83).64 In contrast, no association
was reported in two European cohorts between an increase of
5 mg/m3 in PM2.5 exposure and rhinitis.65

The effects of chronic airborne PM2.5 exposure has
recently been reported in mice. In the study by Ram-
anathan et al, mice were subjected to inhalation of
concentrated PM2.5 at a mean concentration of 60.92 mg/m3

for 6 h a day, 5 days a week, for 16 weeks.66 An induction of
sinonasal inflammatory cells including macrophages, neu-
trophils, and eosinophils was observed along with sinonasal
epithelial barrier dysfunction, and an increase in expression
of pro-inflammatory cytokines and chemokines including
interleukin-1b, interleukin-13, and eotaxin-1.66 This results
are supported by another study in which PM2.5 was instilled
intranasally in rats exacerbated allergen-induced allergic
rhinitis symptoms, eosinophil accumulation, and inflam-
matory cytokine expression.67 Several studies in vitro have
demonstrated that PM2.5 exposure disrupts sinonasal
epithelial barrier function and tight junction integrity.68,69

Furthermore, these barrier destabilization effects were
reduced through treatment with strategies aimed at
reducing oxidative stress, which may represent a potential
therapeutic approach for treating sinonasal inflammatory
disease exacerbated by particulate matter exposure.68,69

However, further pre-clinical testing in animal models will
help to assess the potential applicability.
Conclusion

Chronic sinonasal inflammatory diseases including CRS and
AR are highly prevalent and have far-reaching health care
costs and decreased quality of life. Although the patho-
genesis of these conditions is multifactorial, there has been
increasing evidence for the role of environmental factors
such as aeroallergens and air pollutants as initiating or
exacerbating factors. Future studies may help to further
elucidate disease mechanisms, contributing factors, and
identify additional therapeutic options.
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