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Abstract

It is now well accepted that multipotent Bone-Marrow Mesenchymal Stem Cells (BM-MSC) contribute to cancer progression
through several mechanisms including angiogenesis. However, their involvement during the lymphangiogenic process is
poorly described. Using BM-MSC isolated from mice of two different backgrounds, we demonstrate a paracrine
lymphangiogenic action of BM-MSC both in vivo and in vitro. Co-injection of BM-MSC and tumor cells in mice increased the
in vivo tumor growth and intratumoral lymphatic vessel density. In addition, BM-MSC or their conditioned medium
stimulated the recruitment of lymphatic vessels in vivo in an ear sponge assay, and ex vivo in the lymphatic ring assay (LRA).
In vitro, MSC conditioned medium also increased the proliferation rate and the migration of both primary lymphatic
endothelial cells (LEC) and an immortalized lymphatic endothelial cell line. Mechanistically, these pro-lymphangiogenic
effects relied on the secretion of Vascular Endothelial Growth Factor (VEGF)-A by BM-MSC that activates VEGF Receptor
(VEGFR)-2 pathway on LEC. Indeed, the trapping of VEGF-A in MSC conditioned medium by soluble VEGF Receptors
(sVEGFR)-1, -2 or the inhibition of VEGFR-2 activity by a specific inhibitor (ZM 323881) both decreased LEC proliferation,
migration and the phosphorylation of their main downstream target ERK1/2. This study provides direct unprecedented
evidence for a paracrine lymphangiogenic action of BM-MSC via the production of VEGF-A which acts on LEC VEGFR-2.
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Introduction

Mesenchymal Stem Cells (MSC) originating from different

tissues or organs are multipotent progenitor cells that have the

capacity of self-renewal and differentiation into different cell types

of the mesenchymal lineage such as chondrocytes, osteoblasts,

adipocytes, fibroblasts and endothelial cells [1–3]. Although bone

marrow (BM)-derived MSC (BM-MSC) reside predominantly in

the BM, these cells migrate to distant sites with a tropism for

inflamed or injured tissues [4,5], primary tumors and pre-

metastatic niches [6,7].

Co-injection experiments of MSC and tumor cells already

provided evidence that BM-MSC promote tumor growth [8,9]

and drive cancer cell invasion [10,11]. Although the precise

molecular mechanisms are not fully elucidated, different features

and properties of these multipotent plastic cells are likely

contributing to their tumor promoting effect. MSC have been

reported to promote cancer cell proliferation, survival and

invasion by releasing, at least, trophic factors, cytokines and

remodeling enzymes (matrix metalloproteinases, serine proteases)

[10–13]. They can differentiate into fibroblast-like cells and

thereby contribute to the generation of carcinoma-associated

fibroblasts, which emerged as key contributors of the tumor

microenvironment permissive for tumor progression and meta-

static dissemination [14–16]. In a murine skin carcinoma model,

we recently demonstrated that alpha-smooth muscle actin positive

cells issued from BM-MSC are the unique source of matrix

metalloproteinase-13, a stromal mediator of cancer cell invasion

[11]. These data support the concept of fibroblast subset

specialization depending upon their cellular origin. Accumulating

evidences also demonstrate that BM-MSC promote angiogenesis

through the recruitment of endothelial progenitor cells [17], the

differentiation into endothelial cells and pericyte-like cells [18,19],

the secretion of soluble angiogenic factors such as Vascular

Endothelial Growth Factor(VEGF)-A or basic Fibroblast Growth

Factor (bFGF), and the release of exosomes as well [20–23].

In addition to blood vessels, the lymphatic vascular system plays

an essential role in physiological fluid homeostasis, inflammation

and cancer metastasis [24–26]. VEGF-C is viewed as the more

potent lymphangiogenic factors, mainly by activating the VEGF
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Receptor (VEGFR)-3 a tyrosine kinase receptor expressed on

lymphatic endothelial cells (LEC) [27,28]. VEGFR-2 has been also

detected on LEC, supporting the role of VEGF-A/VEGFR-2 axis

in lymphangiogenesis [29,30]. Additional growth factors regulat-

ing the lymphangiogenic process include VEGF-D, FGF, platelet-

derived growth factor, epidermal growth factor [31], angiopoietins

[32] and transforming growth factor beta family members [33,34].

By analogy with angiogenesis, the contribution of BM-MSC in

lymphangiogenesis is anticipated [21,35,36], but poorly docu-

mented.

This study aimed at investigating the heterotypic interactions

between BM-MSC and the lymphatic network. We are providing

evidence that BM-MSC stimulate lymphangiogenesis in physio-

logical and pathological (malignant tumor) conditions primarily by

secreting VEGF-A and activating VEGFR-2 pathway.

Materials and Methods

Cells and reagents
Luciferase-expressing Lewis Lung Carcinoma (LLC-Luc) cell

line of C57BL/6 mouse origin was purchased from Caliper

Lifesciences. LLC-Luc cells were cultured in DMEM (Gibco,

Gent, Belgium) supplemented with 10% heat-inactivated fetal

bovine serum (FBS) (Gibco, Gent, Belgium), 2 mM glutamine

(Gibco, Gent, Belgium), 100 UI/ml penicilline/streptomycin

(Gibco, Gent, Belgium), 1 mg/ml geneticin (Serva, Heidelberg,

Germany) and maintained in a humidified incubator at 37uC and

in a 5% CO2 atmosphere. Two type of LEC were used in this

study: HMVEC-dLy (Lonza, Braine-l’Alleud, Belgium) and

Human telomerase-transfected dermal LECs (hTERT-HDLECs)

[37]. LEC were cultured in EGM2-MV medium (Lonza, Braine-

l’Alleud, Belgium) until confluence was reached.

Mice
Six weeks old female C57BL/6 mice purchased from Janvier

(Saint Berthevin, France) and transgenic mice heterozygous for the

enhanced green fluorescent protein under the control of ß-actin

promoter C57BL/6-Tg(ACTbEGFP)10sb (Jackson Laboratories,

Bar Harbor, ME) were used throughout this study. The animals

were maintained with a 12-hour light-dark cycle and had free

access to food and water. Experimental procedures were approved

by the Animal Ethical Committee of the University of Liège

(Liège, Belgium) and all animal experiments were performed in

compliance with the Animal Ethical Committee of the University

of Liège (Liège, Belgium).

BM-MSC isolation and characterization
Two independent BM-MSC populations were isolated from the

bone marrow and compact bones of either C57 BL/6J or C57BL/

6-Tg(ACTbEGFP)10sb mice (8–10 week old). The mouse femurs

and tibias were crushed with mortar and pestle in phosphate buffer

containing 2% FBS and 1 mM EDTA (Merck, Overijse, Belgium).

Cell suspension was collected and the remaining bone fragments

were incubated at 37uC in 0.25% collagenase 1A (Sigma-Aldrich,

St-Louis, MO) in Phosphate Buffer Saline (PBS) containing 20%

FBS. After 45 minutes (min) of incubation, cells were harvested,

pooled with the initial cell suspension. Mononuclear cells were

isolated by using 1,073 mg/ml Ficoll, (GE Healthcare Bioscience,

Diegem, Belgium) by centrifugation at 3526g for 45 min at 4uC.

Cells were rinsed twice with PBS and then seeded in complete

Mesencult medium (Stem Cells, Technologies, Grenoble, France).

After 3 days of culture at 37uC under mild hypoxic condition (5%

O2, 5% CO2, 90% N2), non adherent cells (hematopoietic cells)

were removed and the adherent layer was cultured until it reached

70–80% confluence. Mesenchymal cell population was further

purified by negative selection with ‘‘mouse hematopoietic progenitor
Stem Cell enrichment set’’ (BD Falcon, San Jose, California).

Unwanted cells were targeted for removal with biotinylated

antibodies directed against markers of non-MSC cells (CD3e,

CD11b, CD45, Ly-6G, Ly-6C and ly-76). Those labeled cells were

recognized by streptavidin particles and separated by using a

magnet (Adem-Mag MSV, Ademtech, Pessac, France), while

desired unlabeled cells were collected. Cells were checked for BM-

MSC marker expression (CD106+, Sca1+, CD342, CD452,

CD11b2) by flow cytometry and for their capacity to differentiate

into adipocytes, osteocytes and chondrocytes, as previously

described [38]. BM-MSC were used between passages 5 and 10.

BM-MSC conditioned medium
BM-MSC were seeded and cultured in mouse MesenCult

medium (STEMCELL Technologies, Grenoble, France) until

90% confluence under mild hypoxic condition (5% O2, 5% CO2,

90% N2). Then, culture media were replaced by serum-free EBM-

2 (Lonza, Braine-l’Alleud, Belgium) and cells were placed under

normoxic condition. The supernatant of 24 h incubation was

collected, centrifuged at 1,000 g for 10 min and concentred with

Amicon Ultra Centrifugal Filters (Millipore, Carrigtwohill, Ire-

land) and aliquots of the conditioned medium were stored at

280uC until use.

Tumor transplantation model
Mice were anesthetized by intraperitoneal injection of ketamine

hydrochloride (75 mg/kg body weight; CEVA, Bruxelles, Bel-

gium) and xylazine (10 mg/kg body weight; VMD, Arendonk,

Belgium) and LLC-Luc cells (56104 cells) were inoculated alone

(n = 30) or mixed with BM-MSC (2,56105 cells) (n = 25). Cells

were injected between the skin and cartilage on the dorsal side of

each mice ear in a final volume of 20 ml of serum-free DMEM.

After 21 days, mice were checked by in vivo bioluminescence

imaging before being sacrificed. Twelve min before imaging,

luciferin (3 mg/100 ml) (Promega, Madison, WI) was intraperito-

nealy injected into mice. Mice were anesthetized with isoflurane/

oxygen (Abbott, Wavre, Belgium) and ventral images were

collected for 10 sec to 1 min using the IVIS imaging system

(Caliper Lifesciences, Hopkinton, MO). Photons emitted from the

tumor were quantified using LivingImage software (Caliper

Lifesciences, Hopkinton, MO). Tumor tissue samples embedded

in paraffin were cut at 5 mm thick using a microtome (Leica,

Diegem, Belgium). Deparaffinized and rehydrated sections were

treated by autoclave to ensure epitope exposition and incubated

20 min, at room temperature with H2O2 3% (Merck, Overijse,

Belgium) to block endogenous peroxydases. After brief H2O

washes, slides were blocked with 10% BSA during 1 h at room

temperature. Antibodies raised against podoplanin (1/750; R&D

Systems, Abingdon, UK) were incubated for 1 h at room

temperature. After washes in PBS, sections were incubated for

30 min with rabbit anti-goat/biotin (1/400; E0466, Dako,

Glostrup, Denmark) followed by washes and 30 min incubation

with Streptavidin/HRP (1/500; P0397, Dako, Glostrup, Den-

mark). After brief PBS wash, the antibody-antigen complex was

visualized by treatment with 3, 39-diaminobenzidine (DAB, Dako,

Glostrup, Denmark) at room temperature and sections were rinsed

in H2O. Sections were counterstained with Hematoxylin/eosin,

dehydrated by successive washes in alcohol 70%, 90%, 100%,

xylol an mounted in Q Path Coverquick 3000 (Labonord,

Templemars, France). Lymphatic vessels and the contour of the

tumor were drawn manually for each section. Then, the total area

occupied by vessels as well as the area of the tumor sections was
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measured automatically. Finally, lymphatic vessel density, defined

as the ratio between the area occupied by lymphatic vessels and

the area of the tumor section, was determined. Image measure-

ments were conducting using the image analysis toolbox of the

Matlab 7.9 software.

Ear sponge assay
Gelatin sponges (Pfizer, Ixelles, Belgium) were cut in small

pieces (3 mm3), incubated with serum-free EBM-2 or with MSC

conditioned medium 206 concentrated with Amicon Ultra

Centrifugal Filters (Millipore, Carrigtwohill, Ireland) and embed-

ded in interstitial type I collagen gel (1.5 mg/ml, Serva,

Heidelberg, Germany). Small incisions were made on the upper

side of the ear and sponges were inserted for 21 days. For

sectioning, ears were embedded into Tissu-Teck (Labonord,

Templemars, France). Sections were dried at RT for 5 min and

incubated successively 2 min in acetone at 220uC and 5 min in

methanol 80% at 4uC. After 3 PBS washes, sections were blocked

in 1,5% Gloria milk during 30 min and immunostained with

polyclonal goat anti mouse lymphatic vessel endothelial receptor-1

(LYVE-1; 1/200; R&D Systems, Abingdon, UK) and Alexa Fluor

488–coupled rabbit anti goat antibody (1/200; Molecular Probes,

Gent, Belgium). At least 30 images per experimental conditions

were used for computerized quantification. Micrographs of tissue

section were digitized in the RGB space from microscope images.

In order to quantify lymphatic vessels (in green), RGB images

where decomposed into their red (R), green (G) and bleu (B)

components. Binary images were obtained in which vessels were

represented by white pixels (intensity equal to 1) and the

background by black pixels (intensity equal to 0) [39]. On these

binary images, we determined the spatial vessel distribution

measured from the border of the sponge as previously described

[40]. For this purpose, the sponge border was manually delineated

and a grid was automatically constructed with the successive

dilations (n.1, 2, 3y) of this boundary. The vessel density was then

determined on each interval of the grid. Results are expressed (i) in

function of the distance to the sponge boundary and (ii) as the

number of vessels at a distance of 0.3 mm from the border.

LRA
Lymphatic ring cultures were performed as described previously

[41,42]. Thoracic duct dissected from C57BL/6 mice was cut into

small fragments. The explants were embedded in interstitial type I

collagen gel (1.5 mg/mL, Serva, Heidelberg, Germany) and

cultured under hypoxic conditions (5% O2, 5% CO2 and 90%

N2), in MCDB 131 medium (Invitrogen, Merelbeke, Belgium)

supplemented with 4% Ultroser G (BioSepra, Cergy Saint

Christophe, France). In some assays, lymphatic rings were

confronted to BM-MSC spheroids embedded in the upper layer

of collagen gel. To generate multicellular spheroids, BM-MSC

were seeded in DMEM medium containing 0.24% high viscosity

methyl cellulose (Sigma Aldrich, Saint Louis, MO) (26103 cells per

well) [43]. After 24 h of culture, 4 spheroids were collected and

embedded in collagen gels. To test the impact of MSC conditioned

medium on lymphatic outgrowth, the culture medium was

replaced by 30% MSC conditioned medium supplemented with

70% fresh MCDB-131 medium. As a control, we used a mixture

of serum-free EBM-2 and MCDB 131 media (30% and 70%,

respectively). Pictures were taken at the indicated times (5–10 days)

and computerized quantifications were performed on binary

images as described previously [41,44]. Briefly, a grid composed of

concentric rings was generated by successive increments at fixed

intervals of explant boundary. Then, the number of microvessel–

grid intersections was counted and plotted versus the distance from

the ring to determine microvessel distribution around the explant.

At least 5 images per experimental condition (in duplicate) were

used.

LEC proliferation assay
LEC were seeded in 96-well plates in EGM 2-MV medium at a

density of 46103cells/well. On day 2, medium was replaced with

serum-free medium for 4 hours. Wells were washed with PBS and

100 ml/well of EMB-2 control medium or MSC conditioned

medium was added in the presence of BrdU (10 ml/ml; Cell

Proliferation ELISA, BrdU, Roche, Mannheim, Germany) and

1% FBS. Cells were fixed and stained after 48 h according to

manufacturer’s instructions (Cell Proliferation ELISA, BrdU,

Roche, Mannheim, Germany). For WST-1 assay (Roche, Mann-

heim, Germany), the same protocol was used. Control medium

and MSC conditioned medium were pre-incubated for 1 h at

37uC with 1 mg/ml soluble VEGF Receptor-1, -2 (sVEGFR-1 or -

2) (R&D Systems, Abingdon, UK) or ZM 323881 (Tocris

Bioscience, Bristol, UK) at a concentration of 10 nM. After a

2 h incubation with WST-1 reagent, sample absorbance was

measured according to manufacturer’s instructions. Colorimetric

analysis was performed with an ELISA reader (Multiskan FC,

Thermoscientific, Waltham, MA).

LEC migration assay
Boyden chamber assay was used for cell migration analysis.

Sterile 8-mm pore size polycarbonate filters (Corning Incorporated,

New York City, NY) were coated with 100 ml of 0.2% gelatin

(Sigma Aldrich, Saint Louis, MO), incubated overnight at room

temperature. Filters were hydrated with distilled water 1 h before

adding cells. The lower compartment of a 24-well plate was filled

with 300 ml of EGM2-MV 2% FBS and 300 ml of control medium

or MSC conditioned medium (EGM2-MV 1% FBS final

concentration). LEC (56104) were seeded in the upper compart-

ment in 300 ml of EGM2-MV 0.5% FBS medium. The plate was

incubated at 37uC in a humidified atmosphere of 5% CO2 and

95% air for 24 h. In some assays, control medium and MSC

conditioned medium were pre-incubated for 1 h at 37uC with

1 mg/ml sVEGFR-1 or -2 (R&D Systems, Abingdon, UK). Cells

were fixed with methanol for 30 min at 220uC before coloration

with Giemsa’s Azure Eosin Methylene Blue solution (Merck,

Overijse, Belgium) diluted 1/25 in distilled water. The filters were

removed and cells on the upper side of the filter were removed

gently with a cotton swab. Cell numbers were counted in at least 6

separate fields under a light microscopy (AH3-RFCA, Olympus,

Hamburg, Germany) at a 406magnification.

Western blotting
LEC were stimulated as described above. In some assays, MSC

conditioned medium was pre-incubated for 1 h at 37uC with

1 mg/ml sVEGFR-1 or -2 to trap VEGF-A. To specifically inhibit

VEGFR-2, LEC and MSC-conditioned medium were pre-

incubated with ZM 323881 (Tocris Bioscience, Bristol, UK) at a

concentration of 10 nM for 1 h at 37uC. Cells were rinsed with

ice-cold PBS and lysed with RIPA buffer containing phosphatase

and protease inhibitors (Roche, Mannheim, Germany). Samples

were dissolved in SDS buffer and migrated on 10% SDS-PAGE

gel before being transferred onto a PVDF membrane. After 1 h

blocking in 1% casein, phosphorylated and total proteins were

detected by 4uC overnight incubation with the appropriate

antibodies, followed by 1 h incubation in HRP (Horseradish

peroxidase)-coupled secondary antibody (Cell Signaling, San

Diego, CA) and ECL revelation in LAS4000 imager (Fujifilm,

Tokyo, Japan). The following antibodies were used: rabbit
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monoclonal phospho-ERK1/2, ERK1/2, phospho-VEGFR-2

and VEGFR-2 (Cell Signaling, San Diego, CA). For VEGF-A

and -C detection a rabbit polyclonal anti VEGF-A antibody (A-20;

Santa Cruz Biotechnology, Dallas, TX) and a rabbit polyclonal

anti VEGF-C antibody (104-PA10; ReliaTech, Wolfenbüttel,

Germany) were used.

Immunoprecipitation
After 10 min of stimulation with recombinant human VEGF-A

(10 ng/ml), recombinant human VEGF-C (400 ng/ml) (R&D

Systems, Abingdon, UK) or MSC conditioned medium, cells were

rinsed with ice-cold PBS and lysed with RIPA (Radio-Immuno-

precipitation Assay) buffer containing phosphatase and protease

inhibitors (Roche, Mannheim, Germany). VEGFR-3 phosphory-

lated proteins were isolated by binding to antibody directed

against phosphotyrosine (1/100; mouse monoclonal anti-phos-

photyrosine, Becton Dikinson, Franklin Lakes, NJ), overnight at

4uC. After 4 h precipitation using protein A sepharose beads (GE

Healthcare, Diegem, Belgium), proteins were released from the

beads by heating 5 min at 95uC in sample buffer (50 mM TrisHCl

pH6.8, 4% SDS, 1% beta-mercaptoethanol, 20% glycerol, 0,05%

bromophenol blue) and were subjected to VEGFR-2 and -3

Western-Blotting experiments (1/1000; rabbit monoclonal anti-

VEGFR-2, Cell Signaling, San Diego, CA and 1/1000; mouse

monoclonal anti-VEGFR-3, Millipore, Carrigtwohill, Ireland).

Statistical analysis
We assessed statistical differences between different experimen-

tal groups using Mann-Whitney test, one way ANOVA test or

Wilcoxon test for LRA. A p-value ,0.05 was considered as

significant. Statistical analyses were carried out using the Prism 5.0

software (GraphPad, San Diego, CA).

Results

BM-MSC promote lymphangiogenesis in vivo
Murine BM-MSC isolated from C57Bl/6J or C57BL/6-

Tg(ACTbEGFP)10sb mice were characterized by flow cytometry

and differentiation assays to assess their MSC phenotype as

previously described [38]. Their pro-tumorigenic effects were

evaluated in vivo by co-injecting luciferase expressing LLC tumor

cells with MSC (1:5 ratio) in mice ears. At day 21, primary tumor

growth was monitored in vivo by LLC cells-associated lumines-

cence signal quantification using an imaging system IVIS 200

(Figure 1A). Interestingly, the tumor growth was strongly en-

hanced when tumor cells were mixed with BM-MSC (Figure 1A).

As assessed by podoplanin immunodetection on tumor sections

and its quantification through a computerized method (Figure 1B),

the intratumoral lymphatic vessel density was increased in the

presence of BM-MSC (Figure 1B). Next, to determine whether

soluble factors secreted by BM-MSC could similarly promote in
vivo lymphangiogenesis, we implanted a fragment of gelatin

sponge soaked with MSC conditioned medium (MSC CM) or

control medium (CTR) in mice ear. After 21 days, the

development of lymphatic vessels in sponges was releaved by

LYVE-1 immunolabeling (Figure 1C). Computer-assisted quanti-

fication clearly showed that, when MSC conditioned medium was

added, lymphatic vessels infiltrated deeper into the sponge and the

number of vessels was significantly higher at a distance of 0.3 mm

from the edge of the sponge (Figure 1D).

BM-MSC promote lymphangiogenesis ex vivo and in
vitro

The impact of BM-MSC on lymphangiogenesis was then

evaluated in several ex vivo and in vitro models reproducing

different biological processes associated with lymphangiogenesis

[45]. In the lymphatic ring assay, the lymphangiogenesis response

was strongly increased when BM-MSC spheroids were embedded

in the collagen gel (Figure 2A). Similarly, the addition of MSC

conditioned medium resulted in increased lymphangiogenesis

compared to control condition (Figure 2A). In 2D LEC cultures,

MSC conditioned medium stimulated the proliferation rate of

primary LEC (HMVEC-dly cells), as assessed in WST-1 and BrdU

incorporation assays (Figure 2B). Finally, MSC conditioned

medium enhanced also LEC migration in the Boyden chamber

migration assay (Figure 2C). Similar results were obtained with an

immortalized lymphatic endothelial cell line (data not shown).

BM-MSC affect lymphangiogenesis through the release
of pro-lymphangiogenic factors

VEGF-A and VEGF-C, recognized as the main pro-lymphan-

giogenic factors are produced by BM-MSC as revealed by western

blot performed on their conditioned medium (Figure 3A). Active

VEGF-A was detected as a dimer, whereas VEGF-C was mainly

secreted as a pro-form with only a very small amount of active

VEGF-C. To study the phosphorylation level of their receptors

(VEGFR-2 and -3), immunoprecipitation of phosphorylated

tyrosine-containing proteins were conducted and VEGFR-2 or

VEGFR-3 was detected by western blot. VEGFR-2 phosphory-

lation was detected upon LEC stimulation with VEGF-A or with

MSC conditioned medium (Figure 3B). In sharp contrast, the

medium conditioned by MSC did not induce VEGFR-3

phosphorylation. This result is in line with the secretion of

VEGF-C mainly in its pro-form, which is unable to activate

VEGFR-3 phosphorylation and downstream signaling pathway.

These data exclude a key contribution of VEGF-C/VEGFR-3

pathway in our in vitro models. Different approaches were used to

inhibit VEGF-A in order to assess its functional implication in the

BM-MSC-mediated stimulatory effects. The addition of soluble

sVEGFR-1 or -2 significantly decreased LEC proliferation rate as

well as LEC migration (Figure 4A, B). Incubation of MSC

conditioned medium with ZM 323881, which specifically inhibits

the transphosphorylation of VEGFR-2, also significantly de-

creased the LEC proliferation rate (Figure 4C). These data

support the concept that VEGF-A/VEGFR-2 pathway is involved

in the LEC response to BM-MSC. Notably, MSC conditioned

medium triggered the transphosphorylation of VEGFR-2 and

increased the phosphorylation of ERK1/2 on LEC (Figure 4D).

Incubation of MSC conditioned medium with both sVEGFR-1

and -2 decreased VEGFR-2 and ERK1/2 phosphorylation. In the

presence of ZM 323881, the phosphorylation of ERK1/2 was

almost inhibited, confirming that VEGF-A/VEGFR-2 axis is the

main activator of ERK1/2 pathway on the LEC response

observed upon BM-MSC stimulation. All together, these data

demonstrate that the pro-lymphangiogenic effect induced by BM-

MSC rely on the activation of VEGFR-2 through the VEGF-A

secreted by these cells.

Discussion

Although it is now well accepted that multipotent BM-MSC

contribute to cancer progression through different mechanisms,

their involvement during lymphangiogenesis is poorly described.
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Figure 1. BM-MSC enhance tumor growth and stimulate lymphangiogenesis in vivo. (A) In vivo bioluminescent signal of tumors developed
following injection of 56104 LLC-Luc cells alone (n = 30) or mixed with 2,56105 MSC (LLC+MSC) at day 21 (n = 21). The graph corresponds to the
quantification of luciferase activity revealing a strong increase of the signal in the LLC+MSC group. (B) BM-MSC enhance lymphatic vessel density in
tumors. Sections of tumors induced by injection of LLC-Luc alone (LLC) or with MSC (LLC+MSC) were immunostained with an anti-podoplanin
antibody. A computer-assisted quantification of lymphatic vessel density in LLC-Luc tumors (LLC) or in LLC-Luc tumors mixed with BM-MSC (LLC+
MSC) is provided on the right. Bar: 100 mm (C) BM-MSC enhance in vivo lymphatic vessel recruitment in sponge implanted in mice ear. Sponges
soaked with control medium (CTR; n = 8) or with MSC conditioned medium (MSC CM; n = 7) were implanted in mice ear between skin and cartilage.
Lymphatic vessels were identified by LYVE-1 immunolabeling (green) and nuclei were evidenced with Dapi (blue). Bars: 5 mm and 1,5 mm on
magnification. * P,0.05. (D). The graphs correspond to LYVE-1 positive lymphatic vessel quantification expressed as (1) the number of vessels plotted
as a function of distance to the sponge edge (top graph), and (2) the number of vessels at a distance of 0.3 mm from the edge of the sponge (bottom
graph). * P,0.05.
doi:10.1371/journal.pone.0106976.g001
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In a murine model of LLC-Luc cells injection, we herein

demonstrate that the co-inoculation of BM-MSC with LLC-Luc

cells increased tumor growth and intratumoral lymphatic vessel

density. The MSC-mediated pro-lymphangiogenic effects are

further supported by the increased lymphatic vessel formation

observed in vivo (ear sponge assay) and ex vivo (LRA), and by the

enhanced proliferation and migration rates of LEC in vitro
induced by BM-MSC or their conditioned medium. The

mechanism was mediated at least through the secretion of

VEGF-A by BM-MSC acting on VEGFR-2 expressed by LEC.

The capacity of medium conditioned by BM-MSC to reproduce

the effect observed with cells suggested that BM-MSC secreted

pro-lymphangiogenic factors, which could act directly on LEC.

Surprisingly, despite the presence of the most potent lymphangio-

genic factors VEGF-C and -D in the MSC conditioned medium,

they do not seem to be implicated in the pro-lymphangiogenic

effect observed [22] However, we provide evidence that BM-MSC

stimulate lymphangiogenesis through a direct impact on LEC via

the secretion of VEGF-A. This concept is supported by the

inhibition of LEC proliferation and migration by VEGF-A

trapping with sVEGFR-1 or -2. In addition, the key contribution

of VEGFR-2 is demonstrated by the use of a specific inhibitor (ZM

323881) of VEGFR-2 phosphorylation, which blocked MSC

conditioned medium mediated phosphorylation of VEGFR-2 and

of its downstream target ERK1/2. These findings are in line with

previous reports showing that VEGF-A stimulates LEC prolifer-

ation and migration through the activation of VEGFR-2 [29,46].

We here demonstrate the functional implication of VEGF-A/

VEGFR-2 pathway during BM-MSC mediated lymphangiogenic

response. However we cannot exclude a synergistic effect of

Figure 2. BM-MSC stimulate lymphangiogenesis in vitro. (A) Lymphatic rings were cultured during 5 days alone (CTR) or in presence of BM-
MSC spheroids (+MSC spheroids), and during 10 days with control medium (CTR2) or with MSC conditioned medium (MSC CM) prepared as described
in material and methods section. For quantification, a grid corresponding to successive increments at fixed intervals of explant boundary was used on
binarized images and the number of microvessel–grid intersections (Ni) was quantified on binarized images. Quantification was performed at a
distance of 0.5 mm and results are expressed as the number of intersections (Ni) plotted as a function of distance (mm) to the lymphatic ring. Bar:
500 mm. * P,0.05. (B, C) MSC conditioned medium significantly stimulates the proliferation and migration of LEC in vitro as compared to control
medium. (B) Proliferation rate was measured by a WST-1 and BrdU incorporation assays. ** P,0.01, *** P,0.001. (C) Migration was measured in a
Boyden chamber assay. *** P,0.001.
doi:10.1371/journal.pone.0106976.g002
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VEGF-C produced by BM-MSC in vivo. Indeed, as assessed by

Western blotting, BM-MSC produce mainly pro-VEGF-C, which

could be processed into mature VEGF-C in vivo. Interestingly, a

recent report has identified A disintegrin and metalloprotease with

thrombospondin motifs-3 (ADAM-TS3) as a key protease involved

in pro-VEGF-C processing [47]. Despite the production of

ADAM-TS3 by BM-MSC as assessed by RT-PCR (data not

shown), VEGF-C is found in its pro-form. This might be ascribed

to the localization of ADAM-TS3 at the cell surface while pro-

VEGF-C is secreted in the medium. The observed low amount of

active VEGF-C in the medium is in line with the findings of Jeltsch

et al [47] on different cell lines.

A pro-angiogenic phenotype of MSC is now well accepted and

relies on a putative combination of direct and indirect effects on

blood endothelial cells. In addition to acquire a lymphatic

phenotype in vitro and induce lymphatic regeneration in vivo
[48], MSC can directly take part to vessel formation by

transdifferentiation into endothelial cells and incorporation into

the vessel wall [4,49]. Furthermore, they can secrete several factors

implicated in angiogenesis such as VEGF-A, angiopoietin-1 and

bFGF [20,50]. The indirect pro-angiogenic effects are for instance

related to the secretion of interleukin-6 by MSC that induces

endothelin-1 production by cancer cells and thereby enhances

endothelial cell recruitment and activation [51]. We provide

herein evidence for a pro-lymphangiogenic effect of MSC through

the secretion of soluble factors among which VEGF-A plays a key

role. However, we cannot exclude the contribution of inflamma-

tory cells in vivo. Indeed, in mice, the inoculation of tumor cells or

of the gelatin sponge induces an inflammatory response, which

could contribute to or reinforce the lymphangiogenic effect of

MSC. In line with this concept, we previously reported, in a

corneal lymphangiogenic model, that infiltrating macrophages are

key actors of lymphangiogenesis by secreting VEGF-A [46].

Interestingly, Cursiefen et al [52] have shown that VEGF-A-

activated macrophages release VEGF-C/-D that contributes to

lymphangiogenesis. Therefore, it is conceivable that MSC and

macrophages exert synergistic effects on in vivo lymphangiogen-

esis by representing important cellular sources of VEGF-A, which

likely participates to a cascade of cell activation. These data

underline the implication of a complex network of inflammatory

cells and fibroblastic-like cells such as MSC during lymphangio-

genic process most often associated with inflammation in

pathological conditions such as for instances ocular disease [46]

and in cancer [11,53].

In addition to BM, MSC can originate from other tissues.

Recent data indicate that adipose-derived stem cells (Ad-MSC)

could also contribute to angiogenesis [22] and lymphangiogenesis

[35] via several secreted factors whose individual contribution is

not yet well established. Hypoxia appears as a powerful stimulus of

VEGF-A production and angiogenic activity of Ad-MSC [54].

Surprisingly, hypoxic Ad-MSC did not regulate lymphangiogen-

esis in a subcutaneous sponge assay [54]. The present study

reporting the production of basal active levels of VEGF-A by BM-

MSC under normoxia is consistent with previous works [21,55]. It

extends the multiple functions of BM-MSC to the regulation of

lymphangiogenesis. These findings suggest that MSC originating

from BM or adipose tissue likely display different properties [1].

Figure 3. VEGF-A secreted by BM-MSC activate LEC. (A) Western blot analyses of VEGF-A and VEGF-C production on serum-free EBM-2 (CTR)
and MSC conditioned medium (MSC CM). (B) VEGFR-2 (top) and VEGFR-3 (bottom) proteins were detected following a phosphorylated tyrosine-
containing protein (pY) immunoprecipation (IP) of LEC lysates after cell stimulation with control medium (CTR) or with MSC conditioned medium
(MSC CM). Cells treated with VEGF-A (10 ng/ml) or VEGF-C (400 ng/ml) were used as negative and positive controls, respectively. GAPDH western blot
was performed on the flowthrough of each sample.
doi:10.1371/journal.pone.0106976.g003
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Conclusions

In conclusion, this study provides direct unprecedented

evidence for a paracrine lymphangiogenic action of BM-MSC

and identifies these cells as an important source of pro-

lymphangiogenic VEGF-A which acts on LEC VEGFR-2.
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