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Hexavalent chromium (Cr(VI)) is toxic, carcinogenic, and mutagenic substances. Oral exposure to Cr(VI) is thought to be 
primarily from drinking water. However, under the certain reporting limit (~0.1 µg/L), percentage of Cr(VI) concentration 
in mineral water products under the reporting limit were estimated higher than 50%. Data whose values are below certain 
limits and thus cannot be accurately determined are known as left-censored. The high censored percentage leads to estima-
tion of Cr(VI) exposure uncertain. It is well known that conventional substitution method often used in food analytical 
science cause severe bias. To estimate appropriate summary statistics on Cr(VI) concentration in mineral water products, 
parameter estimation using the Markov chain Monte Carlo (MCMC) method under assumption of a lognormal distribution 
was performed. Stan, a probabilistic programming language, was used for MCMC. We evaluated the accuracy, coverage 
probability, and reliability of estimates with MCMC by comparison with other estimation methods (discard nondetects, 
substituting half of reporting limit, Kaplan-Meier, regression on order statistics, and maximum likelihood estimation) using 
1000 randomly generated data subsets (n = 150) with the obtained parameters. The evaluation shows that MCMC is the best 
estimation method in this context with greater accuracy, coverage probability, and reliability over a censored percentage of 
10-90%. The mean concentration, which was estimated with MCMC, was 0.289×10−3 mg/L and this value was sufficiently 
lower than the regulated value of 0.05 mg/L stipulated by the Food Sanitation Act.
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1. Introduction

Chromium (Cr) is a metal widely distributed in the envi-
ronment. Chromium has various oxidation states from −2 to 
+6, but the most predominant forms are +3 and +61). Triva-
lent Cr (Cr(III)) is an essential nutrient for cholesterol, fat 
and glucose metabolism in human bodies, while hexavalent 
Cr (Cr(VI)) is toxic, carcinogenic, mutagenic, and mobile in 
nature2). Continuous exposure to Cr(VI) may cause pulmo-
nary congestions, liver damage, skin irritation, and kidney 
failure3). Once Cr(VI) enters inside the cell, it undergoes 
a rapid metabolic reduction and is converted ultimately to 
Cr(III)4). Thus, the Food Safety Commission of Japan esti-
mated daily intake of Cr(VI) from consumption of mineral 
water and tap water5). According to the reports on Cr(VI) 
concentration in mineral water (MW) products6–8), detected 
concentrations ranged from 0.1 to 3.4 µg/L, and the data 
contained many non-detected values with censored percent-
age from 50 to 75% under the certain reporting limit (~0.1 
µg/L). When nondetects are present in data, they lead to 
difficulties in computing statistical metrics. Estimates from 
the data with nondetects could vary widely depends upon 
not only the censored proportion due to the properties of the 
measured substance and the performance of the analytical 
instrument, but also the performance and the assumption of 
the statistical analysis methods. In other words, estimation of 
Cr(VI) exposure via MW products becomes uncertain.

Since foods are major exposure source to chemicals, as-
sessment of chemical exposure via foods is important for 
health protection. Non-detected values often occur for chem-
ical concentrations in foods because the analytical methods 
for chemicals in foods always have the limit of detection 
(LOD) and the limit of quantification (LOQ)9–13). Data lack-
ing certain values which are lower   than LOD and LOQ, are 
known as left-censored. In the field of food analytical sci-
ence, many studies used substitution (010,11), LOD/210,13), or 
LOD9,12)) for left-censored data on the exposure estimation. 
The estimation of chemical exposure via foods is likely to 
be evaluated by the conservative method using substitution 
of LOD or LOQ for left-censored data on the safety side. 
Therefore, such conservative assessment using those meth-
ods may cause a severe overestimation that is meaningless 
and impractical from the viewpoint of health risk and food 
distribution. False concerns and excessive regulations lead 
to strict rules onto the society and the food community. 
In 2006, EPA guidance supported the use of 0, LOD/2, or 
LOD substitution in data with less than 15% nondetects14). 
However, in 2015 the EPA revised its guidelines stating that 
substitution by LOD/2 should be used only if the percentage 
of censored data is less than 5% and if the data are mildly 

skewed15). Helsel16) advocates that academic journals should 
consider substitution as flawed and reject the papers that 
such methods are implemented. Helsel recommended three 
methods—Kaplan-Meier (KM), maximum likelihood esti-
mation (MLE), and regression on order statistics (ROS)—as 
more accurate alternatives for computing statistics on data 
with nondetects17,18). Helsel18) gave recommendations of 
usage of KM, MLE, and ROS methods as follows: 1: KM 
should be used for data with censored percentage of <50%; 
2: ROS should be used for small sample size (<50) and 50-
80% censored percentage; 3: MLE should be used for large 
sample size (≥50) and 50-80% censored percentage. It can 
be expected that the MLE shows good performance for large 
sample size, however it is also reported that MLE shows poor 
performance for high-skewed data19). On the contrary, it is 
well known that incorporating prior information in Bayesian 
framework result in a reduced sample size, and Bayesian 
method allows for great flexibility in dealing with missing 
data20). Thus, we expect that Bayesian framework may give a 
unified solution for different situations of left-censored data.

In singular models with many hidden parameters, such 
as multinomial mixture model, change-point model, neural 
networks, hidden Markov models, and so on, it was reported 
that Bayesian estimation make the generalization error 
smaller21). Since left-censored data have many hidden values 
as nondetects, Bayesian estimation is expected to provide 
appropriate estimates. Thus, the estimation method based 
on Bayesian modeling using the Markov chain Monte Carlo 
(MCMC) method has recently been applied in left-censored 
data. To compute Bayesian models, probabilistic program-
ing languages such as BUGS and JAGS have been used. For 
example, Bayesian modeling using BUGS and JAGS has 
been applied to left-censored data for microbiological con-
tamination data22), hexabromocyclododecane diastereomer 
compositions in water23), fluoride in drinking water24), and 
so on.

While there are various reports on comparisons among 
non-Bayesian methods (substitution, non-parametric, semi-
parametric, and parametric) in the context of left-censored 
data analysis25–30), the reports comparing the performance 
of Bayesian estimation with other estimation methods are 
limited. Huynh et al31) evaluated the estimation performance 
of a Bayesian method and substitution by simulation with 
real data in the specific area except for food safety science. 
Nie et al32), Hady and Rain33), and Feroze and Aslam34) 
also evaluated by comparison of Bayesian and likelihood-
based estimation for left-censored data using simulations. 
Although Nie el al32) adopted Bayesian approach to the real 
data in the specific area except for food safety science, Hady 
and Rain33), and Feroze and Aslam34) performed a simulation 
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study without real data. They revealed that Bayesian method 
resulted in less bias. Although Bayesian estimation has been 
reported to have satisfactory coverage probability, as well as 
less bias, the comparable performance and relative reliability 
(i.e., the stability of results given alternative datasets) of the 
Bayesian method approach in food safety science have been 
never evaluated. A method with less reliability may fail to fit 
additional data or predict future observations. We consider 
that it is important to validate the Bayesian method approach 
for the standardization in food safety science.

In this study, in order to elaborate exposure assessment, 
we applied Bayesian modeling using MCMC, in addition to 
non-Bayesian methods, to obtain less biased summary statis-
tics on Cr(VI) concentrations in MW products from Kataoka 
et al (2017)8), which has over 50% nondetects and no speci-
fied criterion concerning nondetects. Since the true values 
of probability density distribution parameter are unknown, 
we have conducted a simulation study. In addition, we 
validated the proposed MCMC method on the left-censored 
data analysis by comparison of several estimation methods 
to explore the accuracy, coverage probability, and reliability 
of the proposed MCMC method in food safety science. The 
process was divided into two stages as follows: 1: Estimate 
the concentration distribution from the original data using 
MCMC and other methods; 2: Evaluate MCMC performance 
compared with other statistical methods from simulation 
study. Finally, this study can contribute to the reliability of 
food safety evaluation by indicating the possibility of evalu-
ating more accurate concentration in a similar situation to 
Cr(VI).

2. Methods

2.1 Data
Data on Cr(VI) concentrations in MW products reported 

by Kataoka et al8) were used. One hundred and fifty MW 
products were purchased in 2016. Among them, 110 products 
are domestic, and 40 products are imported. The number of 
purchases was assigned according to the number of products 
for each prefecture and country in the Japanese market. The 
lower LOQ was calculated and data below LOQ are marked 
as “Tr.”. However, no description about the value of LOQ 
can be found in the text. Although summary statistics for the 
observed data are reported in the paper, appropriate analysis 
for data containing nondetects has not been performed. 
Herein, unless otherwise specified, the censoring criterion is 
described as reporting limit (RL).

2.2 Inferential Analysis
Statistical analysis was performed using R (ver. 3.4.0). R 

packages EnvStat (ver. 2.3.1) and rstan (ver. 2.16.2) were used 
to estimate parameters from left-censored data.

2.3 Parameter Estimation
To compare parameters estimated from left-censored data 

with MCMC, we used 5 other methods (1: Discard nondetects 
(DN); 2: Substitution of one half of RL (RL/2); 3: KM; 4: 
MLE; 5: ROS). ROS is a method corresponding to a normal 
or lognormal distribution. We performed statistical analysis 
under assumption that the original data follows lognormal 
distribution (see Supporting Information S4. for further 
detail). KM, MLE, and ROS methods were implemented 
using the EnvStats package. The minimum value of detected 
data was used as a censoring point for convenience. Then a 
location parameter (geometric mean, m̂ ), a shape parameter 
(geometric standard deviation, ŝ ), a mean ( µ̂ ), a standard 

deviation ( σ̂ ), and lower (LCI, L̂ ) and upper (UCI, Û ) 95% 
confidence intervals of mean Cr(VI) concentration were 
estimated for data reported by Kataoka et al8) using the 6 
methods.

2.3.1 Discard nondetects
Entries with non-detected values are eliminated and only 

detected values are used for further calculation. This ap-
proach is attractive because of its simplicity but the data may 
be distorted.

2.3.2 Substitution of one half of reporting limit
Non-detected values are replaced with one half of RL 

and both detected and replaced values are used for further 
calculation. Substitution is still widely used in various fields 
because of its tractability, and it is perhaps acceptable under 
certain conditions.

2.3.3 Kaplan-Meier
Kaplan-Meier is a nonparametric estimator since it does 

not make distributional assumptions. More specifically, 
KM is a non-parametric version of maximum likelihood 
estimation, and this method estimates the percentiles, or cu-
mulative distribution function (CDF), for the data, where the 
mean equals the area beneath the CDF35). It is widely used 
in survival analysis to estimate survival functions, which 
are then used to estimate different summary statistics35) (see 
Supporting Information S6.1 for the detailed algorithm). 
The KM method can provide useful estimates when sample 
sizes are small; however, it does not perform well if more 
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than 50% of data are nondetects or if fewer than eight detec-
tions are available for evaluation18).

2.3.4 Regression on order statistics
Regression on order statistics is a semi-parametric, simple 

imputation method that transforms nondetects on the basis of 
a probability plot of detects17,18,36,37). ROS is also known as 
“Imputation Using Quantile-Quantile Regression” (see Sup-
porting Information S6.2 for the detailed algorithm). ROS 
performs better than MLE and some substitution methods 
when the sample size is small (less than 50) and where data 
do not fit a distribution38).

2.3.5 Maximum likelihood estimation
Maximum likelihood estimation solves a likelihood 

equation to estimate the parameter(s) using both detected 
observations and the proportion of data falling below RL17). 
The observed data (x) enter the likelihood function through 
the probability density function (PDF, f(x|m, s)) of lognormal 
distribution and the censored observations can be accounted 
for by the CDF (F(RL|m,s) = P(x ≤ RL|m,s)) of lognormal 
distribution as follows:

 
( ) ( ) ( )1 2, | , , , | , RL| ,  ,  n

x D x C

L m s x x x f x m s F m s
∈ ∈

= ⋅∏ ∏

 

  
Equation 1

where D is the set of all observed values and C is the set of 
all left-censored values. MLE finds the parameter values (m, 
s) that maximize the likelihood function against the observa-
tions (see Supporting Information S6.3 for the detailed 
algorithm).

2.3.6 Markov chain Monte Carlo
Among probabilistic programing languages, Stan which 

was developed by Gelman et al39) was used in this study. 
A key feature of Stan is that NUTS (No-U-Turn Sampler), 
which is an implementation of Hamiltonian Monte Carlo, one 
of the algorithms of the MCMC method, is adopted. Various 
Bayesian modeling sources using Stan have been published 
and documentation is abundantly available online40).

In addition to two parameters of distribution (GM and 
GSD), we estimated RL with using MCMC (see Supporting 
Information S1. for furter details). Four parallel Markov 
chains are calculated using MCMC to check convergence. 
The numbers of iterations, warm-up, and thinning were set 
to 2×103, 1×103, and 2, respectively (see Supporting Infor-
mation S2. for further details). For parameters estimated 
by MCMC, we used an expected a posteriori (EAP), which 
is mean of the posterior predictive distribution, as a point 

estimate. The reason is that an EAP reflect the information 
of entire distribution, while maximum a posteriori can be 
significantly affected by a small number of outliers. Then 
EAP was used for further calculation. After execution of the 
Stan model, we calculated the widely applicable information 
criterion (WAIC)21) (see Supporting Information S3. for 
further details).

2.4 Monte Carlo Simulations
We generated 105 random numbers according to the log-

normal distribution with the parameters estimated in section 
2.3. Using MCMC, estimated parameter(s) can be obtained 
as posterior predictive distribution(s). Since we obtained a 
set of 2×103 estimates for each parameter, 50 random num-
bers are generated against posterior predictive distributions, 
and a total of 105 random numbers are obtained (see line 42 
of Fig. S1).

2.5 Simulation and Comparison of Various 
Methods

To explore the accuracy, coverage probability, and reli-
ability of parameter estimation from left-censored data by 
MCMC, simulation and comparison with other methods 
(DN, RL/2, KM, ROS, and MLE) was carried out. To rank 
the 6 methods for estimating left-censored data, simulations 
were performed with the following algorithm:

1. Generate a random number of size 150 according to 
a lognormal distribution with the estimated param-
eters in section 2.3.6 as true values.

2. Simulate censoring by using a particular theoretical 
percentile of the sample data as an RL.

3. Execute the various methods to estimate parameters.

4. Repeat steps 1-3 1000 times.

5. Using the true values, compute some criteria.
When simulating censoring, we used theoretical percen-

tiles of simulated data. For example, to simulate data with 
40% nondetects, we considered any value falling below the 
theoretical 40th percentile of the data as nondetects. We 
considered the minimum value of detected data as RL. The 
simulations cover multiple censored percentages from 10 to 
90%. Then 6 parameters ( m̂ , ŝ , µ̂ , σ̂ , L̂ , and Û ) were 
estimated using the 6 methods.

To evaluate accuracy, bias and mean squared error (MSE) 
were calculated. The bias of an estimator θ̂ , for estimating 
parameter θ , is defined as follows:

 
( ) ( )  ˆ . ˆB Eθ θ θ= −

 
Equation 2



71

doi: 10.14252/foodsafetyfscj.D-20-00007

MSE of an estimator θ̂  is defined as follows:

 
( ) ( )2SE ˆ ˆM  . Eθ θ θ 

= − 
   

Equation 3

We calculated the coverage probability of 95% CIs for 
mean (CP), which indicates the fraction of computed CIs that 
include the desired but unobservable parameter value. The 
95% CIs for means estimated by DN and RL/2 were calcu-
lated using Cox’s method41) (see Supporting Information 
S5. for further details). The 95% CIs for means estimated by 
KM, ROS, and MLE were calculated by the bootstrap with 
bias-corrected and accelerated method (with 1000 repeti-
tions). For the MCMC method, 95% credible intervals (CrI) 
for the mean were calculated (see line 43 of Fig. S1). Then the 
CP was evaluated by calculating whether the expected value 
was included within the 95% CI or 95% CrI (see Supporting 
Information S7. for further information of CI and CrI).

To evaluate reliability, which indicates the stability of 
results given alternative data, we calculated the relative 
interquartile range (RIQR) and relative standard deviation 
(RSD) for estimated parameters of GM and GSD from 1000 
different datasets.

3. Results

3.1 Method Inter-comparison for Cr(VI) 
concentrations with Nondetects

To validate the MCMC results, we conducted a method 
inter-comparison. Table 1 shows summary statistics and 
estimated parameters from left-censored data by various 
methods. The following describes the results from each 
estimation method.

3.1.1 Discard nondetects

Among the estimation methods, DN
 µ̂  (0.472×10−3) and 

DN
 ŝ (2.18) were highest and lowest, respectively. Given that 

nondetects are ignored, it seems reasonable to have such a 
result.

3.1.2 Substitution of one half of reporting limit

Although the 95% CI of RL/2
 µ̂  overlapped with that esti-

mated by other methods except for DN, RL/2
 µ̂  (0.233×10−3) 

showed the minimum value among the estimation methods. 
Since the dataset used in this study does not satisfy the EPA’s 
proposed requirements for RL/215), we should not use the 
RL/2 method.

3.1.3 Kaplan-Meier

If there is only one RL, the estimation result is that KM
 µ̂  

is identical to a substitution of the RL for censored data18). 

Thus, it is reasonable that KM
 µ̂  (0.261×10−3) was higher than 

RL/2
 µ̂  (0.233×10−3). The value of KM

 µ̂  was similar to ROS
 µ̂  

(0.257×10−3) and MLE
 µ̂  (0.266×10−3). The value of KM

 σ̂  
(0.338×10−3) was similar to RL/2

 σ̂  (0.353×10−3) and ROS
 σ̂  

(0.343×10−3). Since the data used herein have more than 50% 
nondetects, KM estimates may be less relevant.

3.1.4 Regression on order statistics
ROS
 µ̂  (0.257×10−3) was relatively close to what was ob-

tained using other methods except for DN. ROS
 σ̂  (0.355×10−3) 

was lower than MLE
 σ̂  (0.846×10−3) and MCMC

 σ̂  (1.06×10−3).

Table 1. Summary statistics and estimated parameters from left-censored data based on six inferential methods.

Method Mean (×10−3) SD (×10−3) LCIb (×10−3) UCIb (×10−3) GM (×10−3) GSD

DN 0.472 0.433 0.380 0.587 0.348 2.18

RL/2 0.233 0.353 0.187 0.291 0.114 2.97

KM 0.261 0.338 0.216 0.305 0.160 2.69

ROS 0.257 0.343 0.208 0.398 0.148 2.78

MLE 0.266 0.846 0.201 0.342 0.080 4.72

MCMC 0.289a 1.06 a 0.194 0.460 0.082c 4.90c

a: Expected a posteriori of generated quantities (mean_est or sd_est) calculated by MCMC.
b: Lower and upper 95% confidence interval of the mean. For MCMC, 95% credible interval of posterior predictive distribution for 

generated quantities (mean_est).
c: Expected a posteriori of target parameters (GM and GSD).
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3.1.5 Maximum likelihood estimation
MLE
 µ̂  (0.266×10−3) was comparable to what was obtained 

using other methods except for DN. However, MLE
 σ̂  

(0.846×10−3) and MLE
 ŝ  (4.72) were higher compared to the 

other methods except for MCMC.

3.1.6 Markov chain Monte Carlo

The posterior predictive distributions of parameters (GM, 
GSD, and RL) and generated quantities (means and SD) 
are shown in Fig. 1. The value of MCMC

 µ̂  (0.289×10−3) was 
slightly higher compared to KM, ROS, and MLE. MCMC

 m̂  
(0.082×10−3) showed the second lowest value among all other 
methods. MCMC

 σ̂  (1.06×10−3) and MCMC
 ŝ  (4.94) were higher 

than corresponding values from all other methods.
The 95% CrI for the mean by MCMC was wider than other 

methods. There are two possible reasons for this. The first is 
that, according to the Cox method, the larger GSD resulted 
in the wider CrI. Another reason is that the estimated pa-
rameters themselves have a distribution in MCMC, and the 
uncertainty was combined, resulting in wider CrI than other 
methods.

3.1.7 Distribution of Cr(VI) concentrations in 
mineral water products

To estimate the distribution of Cr(VI), a total of 105 Cr(VI) 
random numbers were generated (Fig. 2). Regardless of 
estimation method, Cr(VI) concentrations in MW products 
were sufficiently lower than the regulated value of 0.05 

mg/L stipulated by the Food Sanitation Act42). The mean 
values were higher in the order of DN (0.472×10−3) > MCMC 
(0.289×10−3) > MLE (0.268×10−3) > KM (0.2602×10−3) > 
ROS (0.2599×10−3) > RL/2 (0.205×10−3). The 97.5th percen-
tile values were higher in the order of MCMC (1.82×10−3) 
> MLE (1.69×10−3) > DN (1.61×10−3) > ROS (1.123×10−3) > 
KM (1.117×10−3) > RL/2 (0.96×10−3). Since the actual 97.5th 
percentile value is 1.38×10−3, it can be concluded that the 
methods explored herein express the original data reason-
ably well. The estimated mean values showed similar values 
except for DN, but the 97.5th percentile value was larger 
when MCMC was used.

3.2 Comparison the Different Methods
Since the true values for parameters of probability density 

distribution are unknown, we conducted the simulation study 
to determine the most appropriate methods. We compared 
the performances of each method with using assessment 
criteria (bias, MSE, CP, RIQR, and RSD). Ideally, we want 
the methods being studied to have a bias as close to 0 as 
possible and an MSE as small as possible. In addition to high 
accuracy, we want to know that a particular method is ap-
propriate in terms of estimating CI for means, and reliable 
when faced with alternative data sets.

3.2.1 Accuracy
The results of accuracy assessment under censored 

percentages from 10 to 90% are shown in Fig. 3. The DN 
method overestimates GM and underestimates GSD. This 
tendency became more pronounced as the censored percent-

Fig. 1. Violin plots for posterior predictive distribution of parameters (geometric mean (GM), geometric standard deviation (GSD), re-
porting limit (RL), mean, and standard deviation (SD)) about Cr(VI) concentration in mineral water products reported by Kataoka et al 
(2017) under assumption that original data follow a lognormal distribution. Violins, boxes, horizontal solid lines, and open circles indicate 
probability density, interquartile range, median, and arithmetic mean, respectively.
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age increases. We should refrain from calculating sum-
mary statistics after discarding nondetects. MCMC tended to 
overestimate the GSD slightly (<101% overestimated when 
the censored percentage was between 10 and 50), but other 
methods tended to underestimate the GSD.

Even when the censored percentage is small, DN
 ŝ  and KM

 ŝ  
exhibited high MSE values. Where the censored percentage 
was between 10 and 50, the ROS, MLE, and MCMC meth-
ods exhibited similar MSE values for both GM and GSD. 
However, in terms of the ROS method, MSE increased from 
around 50% censoring upwards for both GM and GSD.

MLE
 m̂  and MCMC

 m̂  showed similar values in the censoring 
range of 10 to 90%, and these estimation methods exhibited 
better accuracy. The MSE of both MCMC

 m̂  and MCMC
 ŝ  were

 

lower compared to other estimation methods when the cen-
sored percentage was in the range of 10 to 90%. From these 
results, we concluded that MCMC showed the best accuracy 
to estimate distribution parameters from the original data.

3.2.2 Coverage probability
The results of CPs assessment under censored percentages 

from 10 to 90% are shown in Fig. 4. The CPs decreased 
sharply from 10% for DN and 60% for the KM method. In 
terms of the RL/2 method, the CP gradually decreased from 
10%, and rapidly decreased around 70%. In ROS and MLE, 
the CP showed similar values (75 to 85%) depending on the 
censoring ratio. MCMC showed the most stable CPs, and the 
CPs were generally close to the target coverage of 0.95.

Fig. 2. Histograms of generated random numbers for Cr(VI) concentrations in mineral water products following a lognormal distribu-
tion with estimated parameters by DN, RL/2, KM, ROS, MLE, and MCMC. Vertical solid, dashed, and dotted lines indicate regulated 
concentration (0.05 mg/L), 97.5th percentiles, and mean, respectively.
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3.2.3 Reliability

The violin plots for m̂  and ŝ  at the censored ratio of 
85/150 are shown in Fig. 5. The true values   were distributed 

within the IQR estimated by ROS, MLE, and MCMC, but 
not within those by DN, RL, and KM. Among these three 
estimation methods, MCMC showed the smallest variation 

Fig. 3. Bias and mean squared error (MSE) for GM and GSD estimated by DN, RL/2, KM, ROS, MLE, and MCMC from 1000 randomly 
generated left-censored data subsets (n = 150) which follow a lognormal distribution with certain parameters (GM = 0.082×10−3; GSD = 
4.9) over a 10 to 90% censoring range. For MCMC, the expected a posteriori was used for further calculation.

Fig. 4. Coverage probability of 95% CI or 95% CrI for mean estimated by DN, RL/2, KM, ROS, MLE, and MCMC from 1000 randomly 
generated left-censored data subsets (n = 150) which follow a lognormal distribution with certain parameters (GM = 0.082×10−3; GSD = 
4.9) over a 10 to 90% censoring range.
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in RIQR and RSD for both m̂  and ŝ .
The results of reliability assessment under censored per-

centages from 10 to 90% are shown in Fig. 6. The variations 

for both m̂  and ŝ  were generally in the order of RL/2 < 
DN < MCMC < MLE < ROS. When the censored rate was 
high, KM exhibited lower RSD and RIQR compared to MLE 
and ROS. Even when the censored percentage was low, KM 
exhibited higher variation in both RSD and RIQR compared 
to other methods.

Since DN, RL/2, and KM showed lower accuracy, when 
these three methods were excluded, the MCMC estimation 
exhibited lower variation in both RSD and RIQR compared 
to ROS and MLE at censored percentages from 10 to 90%. 
From these results, it was concluded that MCMC is the most 
reliable estimation method.

Although MCMC
 ŝ  showed reasonable reliability (the maxi-

mum RSD of MCMC
 ŝ  was 0.18 at 90% censoring), the varia-

tion in MCMC
 m̂  was as high as RSD=0.37 and RIQR=0.44 

at a censoring rate of 90%. A reliable estimation method for 
left-censored data with a high censoring rate is required.

4. Discussions

We have described the MCMC method, as well as the 
commonly used methods, for summarizing and analyzing 
left-censored Cr(V) concentration in MW products. We used 
a simulation study to demonstrate the properties of these 
methods. MCMC showed the most stable CPs with the high-
est accuracy, and the CPs were generally close to the target 
coverage of 0.95. These results are consistent with previous 
reports32,34). MLE showed the second-best performance 
next to MCMC. Since the original data is sufficient for MLE 
requirements (more than 50 observations and censoring ratio 
of 50–80%) recommended by Helsel18), the performance of 
MLE was superior to those of ROS and KM. Other studies 
have also reported that MLE has a smaller bias than ROS (or 
probability plotting method) and KM25,27). Although RL/2 
showed the best reliability, RL/2 showed lower accuracy and 
coverage probability under censored percentage from 20 to 
90%. The RL/2 estimation results are considered to have a 
serious bias. As reported previously, substitution is essen-
tially creating data which does not have an empirical basis. 
Since our simulation results are consistent with previous 
reports, the simulation in this study is considered to be valid.

Although the reliability of Bayesian approaches on left-
censored data is less understood, our study shows that MCMC 
performed with the smaller variation in estimates compared 
to KM, ROS, and MLE. Since MCMC showed better per-
formance on accuracy, coverage probability, and reliability 
compared to other methods, estimates by MCMC for Cr(VI) 
concentration in MW products are the most appropriate 
estimates among the methods used in this study. The most 
appropriate estimates of mean and those of 97.5th percentile 
of Cr(VI) concentration, which were estimated with MCMC, 
were 0.289×10−3 and 1.82×10−3 mg/L, respectively. These 
estimates were sufficiently lower than the regulated value of 
0.05 mg/L stipulated by the Food Sanitation Act42).

Huynh et al31) reported that the use of more informative 
priors generally improved the Bayesian method’s perfor-
mance, making both the bias and the root MSE lower. The 
adoption of the appropriate prior distribution is sometimes 
difficult under the conditions when they are needed most, 
i.e. small sample sizes or high censored percentage. Since 
MCMC showed better performance on accuracy, coverage 
probability, and reliability, we have successfully adopted 

Fig. 5. Violin plots of GM and GSD estimated by DN, RL/2, KM, 
ROS, MLE, and MCMC from 1000 randomly generated left-cen-
sored data subsets (n = 150) which follow a lognormal distribu-
tion with certain parameters (GM = 0.082×10−3; GSD = 4.9) at a 
censoring ratio of 85/150. For MCMC, the expected a posteriori 
was used for further calculation. Horizontal dashed lines indicate 
true values. Violins, boxes, horizontal solid lines, and open circles 
indicate probability density, IQR, median, and arithmetic mean, 
respectively.
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informative prior distribution to the original data. We con-
sider that this is the main reason why the MCMC showed 
better performance compared to other methods. It is well 
known that MCMC can accommodate outliers by describing 
data via heavy-tailed distributions to the extent implied by 
the data43). Since lognormal distributions with GSD greater 
than 4 are considered to have heavy tails, the performance 
of MCMC was superior to that of the other methods. In 
this study, we used the EAPs as point estimator in MCMC. 
Other point estimators (maximum a posteriori and median 
of posterior predictive distribution) for Bayesian estimation 
might show different performances. These are other reasons 
why the MCMC is better than other methods.

To perform safe assessment of exposure to chemicals, 
substituting RL for nondetects may be a conservative and 
preferable method. However, when the dissociation between 
reality and assumption is large, such a conservative method 
may generate overestimates that are meaningless for health 
risk, leading to false concern and excessive regulation. 
Rather than imposing strict rules onto society and the food 
community, it is important to introduce new, scientifically 
sound methods and resolve the lack of transparency arising 
from inadequate evaluation. The use of prior distributions in 
Bayesian estimation can be considered as bridging a prior 
knowledge to MLE. Although it is necessary to carefully 
check whether the prior distribution has been adopted appro-
priately, utilizing knowledge of society and food community, 

as well as researchers, is able to help to reduce the gap be-
tween science-technology and society. Bayesian estimation 
provides the whole (posterior predictive) distribution for each 
parameter estimated, instead of one single-value estimate 
in MLE, thus it can provide estimates on the safe side with 
considering uncertainty. We expect that Bayesian estimation 
with incorporating consumer and regulatory science reduce 
this gap in food safety fields.

Since the original data are univariate, we have not ex-
tended the regression model in this study. However, it may 
be possible to estimate individual values   of nondetects 
using data covering signal intensity, production location, 
and other information. If sufficient information is available 
on the manufacturing process, storage method, factory, 
manufacturer, and so on, a hierarchical Bayesian model that 
considers these factors as random effects and incorporates 
them into the model could be considered (see Supporting 
Information S8. as example of comparison between Japa-
nese and imported MW products). By virtue of such a com-
plex analysis, it may be possible to evaluate manufacturing 
process risks such as contamination or changes in chemical 
species.

This study demonstrates that using the MCMC method 
provide the most appropriate estimation result for Cr(VI) 
concentration in MW products. On the other hands, as men-
tioned in many articles18,27,44), our simulation result indicate 
that the use of RL/2 (and DN method) should be avoided. 

Fig. 6. Relative standard deviation (RSD) and relative interquartile range (IQR) of GM and GSD estimated by DN, RL/2, KM, ROS, 
MLE, and MCMC from 1000 randomly generated left-censored data subsets (n = 150) which follow a lognormal distribution with certain 
parameters (GM = 0.082×10−3; GSD = 4.9) over a 10 to 90% censoring range. For MCMC, the expected a posteriori was used for further 
calculation.
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Evaluation, prediction, and judgment based on scientific evi-
dences are the basis of regulatory science and are important 
for risk assessment in food safety administration. MCMC, 
as well as other methods based on statistical validity such as 
MLE, is important in the field of food safety as an estima-
tion method instead of conventional substitution method. 
On the other hand, it should be discussed carefully whether 
the MCMC estimation results are appropriate for other data. 
Evaluation of the validity for different probability density 
distributions, sample sizes, and parameters is necessary.

5. Conclusions

We demonstrate that parameter estimation from left-
censored data with MCMC show better performance on 
accuracy, coverage probability, and reliability compared 
to other methods (DN, RL/2, KM, MLE, and ROS) for 
Cr(VI) concentration in MW products. The most appropri-
ate estimate of mean concentration, which was estimated 
with MCMC, was 0.289×10−3 mg/L and this estimate was 
sufficiently lower than the regulated value of 0.05 mg/L 
stipulated by the Food Sanitation Act.

In the field of food safety, although chemical substances in 
food are rarely detected, there are many chemical substances 
that have to be periodically investigated for protecting public 
health. This study suggests that MCMC could be a power-
ful estimation method in exposure assessment contexts in 
food safety science. However, there is ample scope of future 
research for the standardization to explore this further for 
the model with various sample size, alternative parameters, 
and different distributions, as well as multiple RLs due to the 
performance difference of analytical instruments.
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Supporting Information

S1. Description of the Stan Program

The Stan code assuming a lognormal distribution is shown 
in Fig. S1. This code contains 5 blocks (data, transformed 
data, parameter, model, and generated quantities). In the data 
block (Fig. S1, lines 1-6), we specified 3 data dimensions 
(sample number of observed (Nobs) and censored (Ncen) data, 
and value of observed data (Yobs)). Moreover, we specified 
repetition number to generate random numbers (Nnew) for 
2-dimensional Monte Carlo simulations. In the transformed 
data block (Fig. S1, lines 8–14), we calculated the minimum 
and maximum value of Yobs. In the parameter block (Fig. S1, 
lines 16–21), we declared 3 parameters (GM, GSD, and RL) 
and 85 non-detected values (Ycen) to estimate.

In the model block (Fig. S1, lines 23–31), Stan can estimate 
declared parameter(s). In the Bayesian framework, all param-
eters follow a probability distribution, so a prior distribution 
must be specified. In lines 24–27 of Fig. S1, the informative 
prior distributions for all parameters are specified. Since GM 
is equivalent to median of lognormal distribution, we used 
the normal distribution with mean of half maximum value of 
Y (Ymax) and standard deviation of Ymax/4. The natural total Cr 
content of dissolved waters is approximately 0.02–0.3 μg/L1).  
If the Cr concentration follows a logarithmic distribution and 
this range covers 80% of the concentration distribution, the 
GSD is estimated to be 2.9. Thus, we used the lognormal 
distribution with GM of 3 and GSD of 2 for prior distribu-
tion of GSD. It is expected that RL is close to minimum of 
observed data. We used the normal distribution with mean 
of minimum value of Yobs (Yobs, min) and standard deviation 
of Yobs, min/5. In lines 29 and 30 of Fig. S1, both Yobs and Ycen 
are specified as stochastically generated from a lognormal 
distribution with certain parameters, and Stan seeks to find 
the optimum parameter values from the data.

In the generated quantities block (Fig. S1, lines 33–45), 
we calculated the posterior predictive distribution of 
log(arithmic) pointwise density for both observed and cen-
sored data. For the likelihoods of censored data, we used 
the cumulative distribution function (CDF). Moreover, in 
this block, we generated random numbers according to the 
declared distribution having estimated parameters.

In addition to lognormal distribution, we performed 
Bayesian estimation under assumption that the original data 
follow a gamma distribution with the stan code in Fig. S2.

S2. Convergence of MCMC

After the MCMC iteration finished, the three parameters 
(GM, GSD, and RL) declared in the parameter block and the 
sum of the log(arithmic) posterior predictive probabilities 
(lp__) had converged (Figs. S3a and b). Besides these 
four values, in all calculation results such as log posterior 
predictive probabilities, R̂ , which is the ratio of inter-chain 
variance to intra-chain variance, satisfied 1.1 or less, which 
is a general criterion of convergence. In addition, the rela-
tive effective sample number and the relative Monte Carlo 
standard deviation also satisfied general criteria (0.1 or more 
and 0.1 or less, respectively) (Fig. S3c).

In addition, the estimated values about these parameters 
were similar even assuming different prior distributions 
(Table S1). From these results, the dissociation of the 
estimated values among the chains and the influence of 
autocorrelation are small, and each chain started from dif-
ferent initial values and finally arrived at a similar value. We 
conclude that all the calculated values converged. Even when 
assuming a gamma distribution, parameter convergence was 
confirmed under identical conditions.

S3. Calculation of Widely Applicable 
Information Criterion (WAIC)

The widely applicable information criterion (WAIC) de-
rived by Watanabe2) as an information criterion for Bayesian 
inference, is defined as follows:

WAIC = LWAIC + pWAIC,  Equation S1

where LWAIC denotes average of the pointwise predictive den-
sity, which shows the Bayes training loss, and pWAIC denotes 
fluctuation of the posterior distribution, which indicates the 
estimated effective number of parameters. 
LWAIC and pWAIC are defined as follows:

( )WAIC
1

1 log ,
n

i
i

L E L
n

=

= − ∑
 

Equation S2

( )WAIC
1

1 log ,  
n

i
i

p V L
n

=

= ∑
 

Equation S3

Where n represents the sample size, Li represents the point-
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wise predictive density for each data point i obtained from 
the posterior predictive distribution, E(X) indicates the mean 
of variable X, and V(X) indicates the variance of variable X. 
To calculate complete likelihood according to the likelihood 
function (Equation 1), we used log(arithmic) pointwise 
density (Fig. S1, line 40) for log Li of observed data and 
log(arithmic) lower-tail probability (Fig. S1, line 41) for log 

Li of censored data.
Unlike other criteria, WAIC has a theoretical foundation 

as follows2):

( ) ( ) 1WAIC ,  E G E O
n

 ≡ +  
   

Equation S4

Fig. S1. Stan code for estimating parameters from left-censored data assuming a lognormal distribution
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Where G represents Bayes generalization loss and O(g(x)) 
represents mathematical notation that describes the limiting 
behavior of a function ( f(x)) when the argument tends toward 
a particular value or infinity. The expectation value of the 
Bayes generalization loss is asymptotically equal to WAIC. 
And Watanabe2) also showed the cross-validation loss is 
asymptotically equivalent to the WAIC, even in singular sta-

tistical model. WAIC can be used for any true distribution, 
probability model, and prior distribution. The WAIC is a 
generalized version of Akaike’s information criterion (AIC) 
and can be calculated from posterior predictive distributions 
by MCMC.

S4. Probability Distribution Assumption

Fig. S2. Stan code for estimating parameters from left-censored data assuming a gamma distribution
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Fig. S3. Confirmation of MCMC convergence. (a) Trace plot for declared parameters (GM, GSD, and RL) in stan code (Fig. 1) and the 
sum of log posterior predictive probabilities (lp__); (b) Summary of estimation and convergence indices for parameters and lp__; (c) 
Histograms of three convergence indices ( R̂ , neff/N, and mcse/sd) for all calculated values, where R̂  is the ratio of intra-chain variation 
to inter-chain variance, neff/N is the ratio of effective sample number to MCMC sample, and mcse/sd  is the ratio of Monte Carlo standard 
error to standard deviation. If calculated data are not distributed in the light blue area, it can be concluded that MCMC calculations have 
converged.
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Some EPA guidance documents strongly recommend 
against using a lognormal model for environmental data 
and instead suggest a gamma distribution3). We examined 
whether a lognormal or a gamma distribution is more ap-
propriate for the original data. The WAIC assuming a log-
normal and a gamma distribution resulted in similar values 
for WAIC (Table S2).

The WAIC (−2.28) of original data assuming a lognormal 
distribution was in good agreement with WAICs (−2.33±0.09) 
from 1000 randomly generated left-censored data subsets (n 
= 150) which follow a lognormal distribution with certain 
parameters (GM = 0.082×10−3; GSD = 4.9) at a censoring 
ratio of 85/150 (Fig. S4). This result indicate that the data fit 
a lognormal distribution reasonably well.

Although WAIC assuming a lognormal distribution was 
slightly higher than that assuming a gamma distribution 
(−2.29), to compare as many estimation methods as possible, 
we proceeded with further analysis under the assumption 
that the original data follow a lognormal distribution.

S5. Cox’s Method for 95%CIs for Means 
Which Follow a lognormal Distribution

The 95% CIs for means estimated by DN and RL/2 were 
calculated by Cox’s method4) as follows:

( ) ( )

2 4 2 4

/ exp 1 .96  , exp 1 .96  ,  
2 1 2

ˆ
1

ˆ
n n n

s
n

s s sµ µ
    

    + × +    − −        

   

 
Equation S5

where µ̂  indicates the estimated mean, ŝ  denotes the log-
transformed GSD estimate, and n is total observations.

S6. Estimation Using Left-censored Data

S6.1 The Kaplan-Meier Algorithm
The Kaplan-Meier (KM) method is a nonparametric 

technique for dealing with censored data. It is widely used 
in survival and lifetime data analysis to estimate survival 
functions, which are then used to estimate different sum-
mary statistics. The KM method can be summarized via the 
following steps:5)

1) This method requires the use of right-censored data. 
Therefore, right-censored data (Flipi) are constructed by 
subtracting all observations (xi) from M.

Flipi = M –xi,  Equation S6

Where M equals a flipping constant larger than the maxi-
mum of xi.

2) The survival function probability (S(t)) is the product 
of the j = 1 to k incremental survival probabilities to the 
point, proceeding from high to low concentration for the k 
uncensored observations.

( )
1

,  
k

j j
j

jj

b d
S t

b
=

−
=∏

 
Equation S7

Where tj is the flipped uncensored observations; bj is the 

Table S1. MCMC results assuming a lognormal distribution using various prior distributions. Mean ± standard deviation and 95% cred-
ible interval are shown.

Prior distribution GM (× 10−3) GSD WAIC

GM ~ normal(Y_max/2, Y_max/4)a* 
GSD ~ lognormal(log(3), log(2))b*

0.082±0.014 
0.055–0.111

4.90±0.80 
3.65–6.71

−2.28

GM ~ cauchy(0, 5)c 
GSD ~ lognormal(log(3), log(2))

0.081±0.013 
0.057–0.108

4.94±0.80 
3.76–6.90

−2.28

GM ~ uniform(0, 10^5)d 
GSD ~ uniform(0, 10^5)

0.078±0.014 
0.052–0.106

5.24±0.98 
3.88–7.61

−2.28

GM ~ normal(0, 10^5) 
GSD ~ normal(0, 10^5)

0.078±0.014 
0.054–0.109

5.20±0.93 
3.83–7.36

−2.28

GM ~ cauchy(0, 5) 
GSD ~ cauchy(0, 5)

0.079±0.014 
0.053–0.108

5.08±0.87 
3.81–7.04

−2.28

a: "X ~ normal(μ, σ)" means that variable X follows a normal distribution with location parameter μ and shape parameter σ.
b: "X ~ lognormal(μ, σ)" means that variable X follows a lognormal distribution with location parameter μ and shape parameter σ.
c: "X ~ cauchy(μ, σ)" means that variable X follows a Cauchy distribution with location parameter μ and shape parameter σ.
d: "X ~ uniform(a, b)" means that variable X follows a uniform distribution with range from a to b.
* The prior distributions used in Fig. 1.
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number of observations, both detected and censored, at 
and higher than each tj; and dj is the number of uncensored 
observations at that value.

3) The KM estimate of the mean is calculated by integrat-
ing the area under the KM survival curve. Since this is the 
average value for flipped right-censored data, the average 
value ( KMµ̂ ) for the original left-censored data is calculated 
as follows:

( )

( ) ( ){ }

max
KM

0

1 1
1

ˆ

.

ˆ

 

t

k

j j j
j

M S t dt

M S t t t

µ

− −
=

= −

≈ − × −

∫

∑
 

Equation S8

4) Following Lee and Wang6), the variance of the mean is 
computed using the formula inside the square root sign of the 
following equation for data with m censored values under the 
Kaplan-Meier curve:

( )( )
2
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1

Standard error ,  
1 1
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m A
m n r n r

=

 =  − − − + ∑
  

  
Equation S9

Where n is total observations and Ar is the cumulative area. 

Finally, the standard deviation ( KMσ̂ ) is calculated as fol-
lows:

Table S2. MCMC results assuming both lognormal and gamma distributions for estimating censored values. Widely applicable informa-
tion criterion, mean ± standard deviation, maximum a posteriori (MAP), and 95% credible interval (CrI) of posterior predictive distribu-
tion for target parameters

Lognormal Gamma

WAIC −2.28 −2.29

Parameter RL (× 10−3) 
0.098±0.002 
MAP: 0.0993, 95% CrI: 0.091–0.0999

RL (× 10−3) 
0.096±0.004 
MAP: 0.0990, 95% CrI: 0.087–0.0999

GM (× 10−3) 
0.082±0.014 
MAP: 0.080, 95% CrI: 0.055–0.111

Shape 
0.353±0.059 
MAP: 0.354, 95% CrI: 0.254–0.487

GSD 
4.90±0.80 
MAP: 4.60, 95% CrI: 3.65–6.71

Rate 
1625±347 
MAP: 1589, 95% CrI: 1019–2378

Mean (× 10−3) 
0.290±0.71 
MAP: 0.249, 95% CrI: 0.197–0.459

Mean (× 10−3) 
0.221±0.31 
MAP: 0.212, 95% CrI: 0.168–0.288

SD (× 10−3) 
1.09±0.70 
MAP: 0.715, 95% CrI: 0.453–2.88

SD (× 10−3) 
0.375±0.60 
MAP: 0.353, 95% CrI: 0.275–5.16

Fig. S4. Violin plot of WAICs from 1000 randomly generated left-
censored data subsets (n = 150) which follow a lognormal distribu-
tion with certain parameters (GM = 0.082×10−3; GSD = 4.9) at a 
censoring ratio of 85/150. Horizontal dashed lines indicate WAIC 
calculated from original data. Violins, boxes, horizontal solid 
lines, and open circles indicate probability density, interquartile 
range, median, and arithmetic mean for simulation data, respec-
tively.
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KM KMStandard error . ˆ nσ = ×  Equation S10

In the KM method, the location parameter of the geometric 
mean (GM) and the shape parameter of the geometric stan-
dard deviation (GSD) for a lognormal distribution were cal-
culated using KMµ̂  and KMσ̂  with the following equations.

If x is a random variable following a lognormal distribu-
tion with certain parameters (GM and GSD), and GM and 
GSD are expressed as em and es, respectively, and the mean 
E(x) and variance V(x) are expressed as follows:

( )
2

exp ,  
2
sE x m

 
= + 

    
Equation S11

( ) ( )2 2exp 2  exp 1 . V x m s s   = + −     
Equation S12

The GM and GSD parameters estimated by the KM method 
assuming a lognormal distribution can be transformed as 
follows:
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Equation S14

S6.2 The Robust Regression on Order Statistics 
Algorithm

There are two versions of ROS, one is a fully parametric 
and the other is a semi-parametric robust implementation 
ROS. These are sometimes confused in the literature5). In 
this study, we used robust ROS (rROS) developed by Helsel 
and Cohn7). Robust ROS is also known as “Imputation Using 
Quantile-Quantile Regression”. This method involves using 
quantile-quantile regression on the log-transformed obser-
vations to fit a regression line. Using this method, a more 
limited assumption of normal or lognormal distribution is 
used. The algorithm for the ROS method can be summarized 
according to the following steps:

1) In general, the probability of exceeding the jth detection 
limit (EPj) is

E  E  E  
  1  11 ,  j

j j j
j j

A
P P P

A B+ +
 = + − +  

Equation S15

where Aj is the number of observations in the range of jth and 
( j + 1)th reporting limits, and Bj is the number of observa-
tions, censored and uncensored, below the jth reporting limit.

When j is the highest reporting limit, EP j+1 = 0  and 
Aj+Bj=n. The number of censored observations below the jth 
reporting limit is defined as Cj:

Cj = Bj – B j-1 – Aj-1. Equation S16

2) Plotting positions for uncensored observation Dpj can be 
calculated by

( )D  E  E  E  
    11  for 1 to ,  

1j j j j j
j

ip P P P i A
A +

 
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  Equation S17

and for censored observations Cpj are generally given by

C  E  
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1j j j
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Equation S18

3) The normal quantiles of the plotting positions are 
known as the order statistics of the ROS method. Assuming a 
lognormal distribution, a linear regression of the uncensored 
observations against the normal quantiles of the uncensored 
plotting positions is formed as

( ) D  
obs  log  . jx pβ α= + ×  Equation S19

Then the regression equation for predicting the unobserved 
data can be obtained as

( ) C  
cens  log  .ˆ  jx pβ α= + ×  Equation S20

4) Using the log-transformed detected data ( ( )obslog x ) and 
the predicted log-value ( ( )censog ˆl x ), calculate the mean and 
standard deviation for the log-transformed x, and finally esti-
mates of the geometric mean ( ROSm̂ ) and geometric standard 
deviation ( ROSŝ ) are obtained. After retransforming the log-
scale imputed values, compute the usual method of moments 
estimates of ROSµ̂  and ROSσ̂ .

Gilliom and Helsel8) reported that the robust ROS method 
perform better on high-skew distributions than did MLE. 

Helsel and Cohn7) reported that the robust ROS generally 
produced better estimates for the mean and standard devia-
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tion whenever data did not follow the distribution assumed 
by maximum likelihood.

S6.3 The Maximum Likelihood Algorithm
Maximum likelihood estimation solves a likelihood equa-

tion to estimate the parameter(s) using both detected obser-
vations and the proportion of data falling below RL9). The 
observed data (x) enter the likelihood function through the 
probability density function f(x|θ) and the censored observa-
tions can be accounted for by the cumulative distribution 
function F(RL|θ) = P(x≤ RL|θ) as follows:

( ) ( ) ( )1 2| , , , | RL| ,  n
x D x C

L x x x f x Fθ θ θ
∈ ∈
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Equation S21

where D is the set of all observed values; and C  is the set of 
all left-censored values. MLE finds the parameter values (θ) 
that maximize the likelihood function against the observa-
tions. In the case of lognormal distribution, 
( ) ( )log log log log| ,  and RL| , f x m s F m s

 are defined as follows:
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Equation S23

where mlog is log-transformed geometric mean, slog is 
log-transformed geometric standard deviation, and erfc(x) 
indicates complementary error function.

In the EnvStat package, a transformation is adopted as fol-
lows10). Let x be a vector of n observations from a lognormal 
distribution with location parameter μx (mean) and scale 
parameter σx (standard deviation). Set y = log(x). Then y is a 
vector of observations from a normal distribution with loca-
tion parameters μy = m (GMx = em) and scale parameter σy = 
s (GSDx = es). The maximum likelihood estimators of MLEˆxµ  
and MLEˆxσ  are given by
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where MLEµ̂  and MLEσ̂  denote the maximum likelihood 
estimators of μ and σ, respectively.

S7. Confidence Interval and Credible 
Interval

A credible interval (CrI) is an important concept in Bayes-
ian statistics to describe and summarize the uncertainty. In 
this regards, CrI is quite similar to the frequentist “confi-
dence Intervals (CI)”. However, while their goal is similar, 
their statistical meaning is different.

● 95% CI: with a large number of repeated samples, 95%  
CI represents 95% frequency (i.e. 95% proportion) of pos-
sible confidence intervals that contain the true estimate of 
the unknown parameter.

● 95% CrI: given the observed data, there is a 95% prob-
ability that the true estimate of unknow parameter would lie 
within the 95% CrI.

Thus, it is inappropriate to compare CI and CrI directly. 
In this study, to compare uncertainty of mean estimates, 
we calculated the coverage probability of 95% CIs for mean 
(CP), which indicates the fraction of computed CIs and CrIs 
that include the desired but unobservable parameter value.

S8. Comparison between Japanese and 
Imported MW Products

To compare Cr(VI) concentration in Japanese MW prod-
ucts and imported ones, we used another Stan code (Fig. S5). 
Fig. S6A presents histograms of the Cr(VI) concentrations 
of Japanese and imported MW products based on empirical 
data. Table S3 shows the estimated parameters. Both GM 
and GSD parameters of Japanese and imported MW products 
(Table S3) showed good agreement within ±1σ with those in 
Table 1.

Fig. S6B shows the distribution of expected values 
(Fig. S5, lines 47 and 48). Although the distribution of mean 
Cr(VI) concentrations in imported products was wider, the 
probability that the expected value of Cr(VI) concentrations 
in imported MW products is higher than in Japanese prod-
ucts was 0.632. Kataoka et al11) investigated imported MW 
products from 14 countries and, based on that, the present 
results may reflect differences in concentration depending on 
the country of origin.

Finally, 105 random numbers for Cr(VI) concentrations in 
imported MW and Japanese products were generated, and 
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the difference between the groups was verified. Histograms 
of the generated data are shown in Fig. S6C. These results 
suggest that the probability of Cr(VI) concentrations being 
higher in imported MW products compared to Japanese 
products was 0.507.

Fig. S5. Stan code for estimating parameters from left-censored data assuming a lognormal distribution: comparing differences between 
Japanese and imported mineral water products



Suzuki Y, et al: Bayesian estimation from left-censored data

88

Fig. S6. Histograms of Cr(VI) concentrations in mineral water products from Japan and other countries. (a) Original 
data from Kataoka et al (2017). Gray bars indicate nondetects; (b) Violin plots for expected Cr(VI) concentrations 
in Japanese and imported mineral water products; (c) 50 random numbers generated by 2-dimensional Monte Carlo 
simulations from 2000 parameters estimated by MCMC. Color indicates density curves obtained from 2000 param-
eters.

Table S3. Group comparison of estimated parameters and summary statistics by MCMC assuming a lognormal distribution. Mean ± 
standard deviation and 95% credible interval are shown.

Group GM (× 10−3) GSD Expected value 
(× 10−3 mg/L)

Predicted concentrationa 
(× 10−3 mg/L)

Imported MW products 0.088±0.013 
0.065–0.113

5.07±0.60 
3.91–6.29

0.331±0.074 
0.205–0.508

0.333±1.442 
0.003–2.111

Japanese MW products 0.089±0.011 
0.068–0.110

4.71±0.54 
3.74–5.82

0.296±0.054 
0.209–0.418

0.297±1.474 
0.004–1.825

a: 50 random numbers generated by 2-dimensional Monte Carlo simulations from 2000 parameters estimated by MCMC.
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