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Deep brain stimulation (DBS) is a neurosurgical technique that regulates neuron activity

by using internal pulse generators to electrodes in specific target areas of the brain. As

a blind treatment, DBS is widely used in the field of mental and neurological diseases,

although its mechanism of action is still unclear. In the past 10 years, DBS has shown

a certain positive effect in animal models and patients with Alzheimer’s disease (AD),

but there are also different results that may be related to the stimulation parameters

of DBS. Based on this, determining the optimal stimulation parameters for DBS in

AD and understanding its mechanism of action are essential to promote the clinical

application of DBS in AD. This review aims to explore the therapeutic effect of DBS in

AD, and to analyze its stimulation parameters and potential mechanism of action. The

keywords “Deep brain stimulation” and “Alzheimer’s Disease” were used for systematic

searches in the literature databases of Web of Science and PubMed (from 1900 to

September 29, 2020). All human clinical studies and animal studies were reported in

English, including individual case studies and long-term follow-up studies, were included.

These studies described the therapeutic effects of DBS in AD. The results included 16

human clinical studies and 14 animal studies, of which 28 studies clearly demonstrated

the positive effect of DBS in AD. We analyzed the current stimulation parameters of DBS

in AD from stimulation target, stimulation frequency, stimulation start time, stimulation

duration, unilateral/bilateral treatment and current intensity, etc., and we also discussed

its potential mechanism of action from multiple aspects, including regulating related

neural networks, promoting nerve oscillation, reducing β-amyloid and tau levels, reducing

neuroinflammation, regulating the cholinergic system, inducing the synthesis of nerve

growth factor.

Keywords: deep brain stimulation, Alzheimer’s disease, therapeutic effect, stimulation parameter, action

mechanism
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INTRODUCTION

Alzheimer’s disease (AD) is the most common type of dementia
in the elderly. Its clinical manifestations are progressive
cognitive decline and memory loss (Querfurth and LaFerla,
2010; Patterson, 2018). The prevalence and incidence of AD are
increasing rapidly, and it is one of the major health crises facing
the aging society of the 21st century (Alzheimer’s Association,
2020). Clinically, only a small number of AD patients benefit
from the temporary treatment effect of AD drugs. There are
currently no viablemedications to slow or reverse the progression
of AD (Ihl et al., 2011; Arai et al., 2016, 2018; Cummings
et al., 2020). The severity of AD and the limitations of drug
therapy have spurred the development of research on non-drug
therapies (Cummings et al., 2014; Aldehri et al., 2018). A series
of physical therapy methods, including electrical stimulation and
magnetic stimulation, are gradually being applied in the field of
neurological diseases (Li et al., 2015; Temel and Jahanshahi, 2015;
Zhou et al., 2018; Holczer et al., 2020).

Aldini first reported the use of electrical stimulation
technology to improve the mood of melancholy patients in 1804,
thus opening up a new field of electrical stimulation for the
clinical treatment of mental illness (Aldini, 1804; Parent, 2004).
Deep brain stimulation (DBS) is an invasive neuromodulation
technique that involves brain stimulation and is one of the
few neurosurgery methods that allows blinded research. The
DBS device is mainly composed of stimulating electrodes in
the brain, subcutaneous leads and pulse generators, and it
directly changes brain activity in a controlled manner by using
internal pulse generators to deliver electrical pulses to stimulation
electrodes in specific target areas of the brain (Kringelbach
et al., 2007; Lozano and Lipsman, 2013; Chen and Ponce, 2019).
DBS is used for mental disorders, such as obsessive-compulsive
disorder, epilepsy and depression (Zhou et al., 2018; Vazquez-
Bourgon et al., 2019; Onate-Cadena et al., 2020), and for a
variety of neurodegenerative diseases, such as idiopathic tremor,
Parkinson’s disease, and dystonia (Miocinovic et al., 2013; Chen
and Ponce, 2019; Lee et al., 2019; McKinnon et al., 2019). Human
clinical trials of DBS for AD began in 1984. Turnbull applied
DBS to the left nucleus basalis of Meynert (NBM) in patients
with a 4-years AD course but found no improvement in memory
or cognition (Turnbull et al., 1985). Since then, research on
treatment with DBS in AD has been vacant for more than
two decades.

Research on the use of DBS in AD was restarted by
a case study that used DBS to treat obese patients. The
memory of a morbidly obese patient was enhanced after chronic

hypothalamic/fornix DBS treatment. This enhancement may

have occurred because DBS regulates marginal activity. That

is, electrical activity in the medial temporal lobe is activated
during DBS stimulation (Hamani et al., 2008). In the past 10
years, preliminary studies of DBS in AD have shown some
positive effects of this treatment, including slowing cognitive
decline and hippocampal atrophy and increasing cerebral glucose
metabolism and brain connectivity in AD patients (Laxton et al.,
2010; Sankar et al., 2015; Lozano et al., 2016; Aldehri et al.,
2018), but there are also some controversial negative effects,

such as AD patients <65 years of age have not shown good
curative effects, and some patients have postoperative side effects
(Lozano et al., 2016; McMullen et al., 2016; Leoutsakos et al.,
2018). These discrepant results cannot be ignored. Differences
in methodology, such as DBS parameters (stimulation target,
frequency, stimulation start time, duration, unilateral/bilateral
treatment, and stimulation current intensity), study design and
sample size may explain these differences. The exact mechanism
of action of DBS in AD is unknown. At present, there is little
direct research on the mechanism of action of DBS in AD, and
various hypotheses (changing the electrical activity of neurons,
promoting neurogenesis and neurotransmitter release, etc.) have
been proposed to explain its potential mechanism of action
(Hescham et al., 2013a; Laxton and Lozano, 2013; Kuhn et al.,
2015a; Aldehri et al., 2018; Jakobs et al., 2019; Yu et al., 2019).

There is increasing interest in exploring DBS as a treatment
method for intervention in AD. A decision analysis model of
DBS in AD patients shows that DBS is more effective and more
cost-effective than standard treatment in the clinical treatment
of AD (Mirsaeedi-Farahani et al., 2015). To effectively promote
the application of DBS in the field of AD treatment, in this
review, we systematically searched the literature published in the
field of DBS in AD, and explored the effect of DBS stimulation
parameters on the treatment effect for AD and the potential
mechanism of action of DBS in the treatment of AD.

METHODS

Literature Search and Selection Criteria
In the literature databases of Web of Science and PubMed (from
1900 to September 29, 2020), human clinical studies and animal
studies on DBS in AD were systematically searched using the
following terms, individually and combined in multiple search
strategies: “Deep brain stimulation,” “DBS,” “Alzheimer’s disease,”
and “AD.” Literature inclusion criteria: the main purpose was
to study the therapeutic effects of DBS in AD, including human
clinical research and animal research; the language of the article
was English only; individual case studies and long-term follow-up
studies were not excluded; and duplicate studies were excluded.

Data Abstraction
The selected articles were classified according to human clinical
research and animal research to extract relevant data. The
following data were extracted from human clinical studies: (1)
study design; (2) basic information on the participants, including
number, sex, average age, average Alzheimer’s disease assessment
scale-cognitive section (ADAS-Cog), average Mini-Mental State
Examination (MMSE), and additional medications; (3) DBS data,
including the DBS protocol and brain target; (4) follow-up; (5)
main results, including the main outcome measures (average
ADAS-Cog and average MMSE) and conclusion; and (6) adverse
events. Various cognitive outcome measures have been used in
human clinical studies, and some studies have evaluated multiple
indicators. In this review, we chose the average ADAS-Cog and
average MMSE as the main outcome measures. For studies that
did not report averages and SDs, data were calculated from
specific figures in the literature. The following data were extracted
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from animal studies: (1) basic information on the animals,
including number, sex, age, animal type, grouping; (2) DBS data,
including DBS protocol and brain target; (3) behavioral methods;
(4) follow-up; and (5) main conclusion.

RESULTS

Search Results
This review included 30 studies on the treatment of DBS in AD.
As shown in Figure 1, research on DBS in AD treatment was
lacking for ∼25 years after 1984 when DBS was applied in AD
treatment. The time on the abscissa was the publication time of
the article. It was not until 2010 that there was another paper on
DBS in AD. During the 10-years period from 2010 to 2020, DBS
in AD papers were published every year.

Human Clinical Studies
DBS Implementation

DBS is implemented in the human body and its components
are surgically implanted. As mentioned earlier (Laxton et al.,
2010; Mao et al., 2018), after local anesthesia is applied, the
stereotaxic frame is installed on the patient’s head. The position
of the DBS target is ascertained by imaging. Subsequently,
a drill is used to make bilateral holes in the skull, and
the stimulation electrodes are implanted three-dimensionally.
After the electrodes are placed, the internal pulse generator is
implanted into the subclavian or subcutaneous area of the chest
or abdomen under general anesthesia. The lead is implanted
subcutaneously and connected to the stimulation electrodes and
internal pulse generator through the head, neck, and chest. The
positioning of the electrodes must be verified again by imaging
after the operation.

Therapeutic Effects

Table 1 lists the detailed characteristics of 16 human clinical
studies of DBS in AD patients. Turnbull et al. started the field
of DBS in the treatment for AD in 1984 (Turnbull et al., 1985). A
study by Laxton et al. (2010) showed that after DBS treatment,
the memory of AD patients improved, the rate of cognitive
decline decreased, and cerebral glucose metabolism increased
(Laxton et al., 2010; Smith et al., 2012). Subsequently, human
clinical studies of DBS in AD continued. Fontaine et al. reported
that a patient with AD showed stable memory and increased
metabolism in the medial temporal lobe after 1 year of DBS
(Fontaine et al., 2013). Other studies have also shown that the
nutritional status of AD patients remains stable, and the rate of
hippocampal atrophy slows down after 1 year of DBS (Noreik
et al., 2015; Sankar et al., 2015). Kuhn et al. applied DBS to
6 AD patients, and 1 year later, the ADAS-Cog scores of four
participants increased or remained stable, but the scores of two
participants deteriorated (Kuhn et al., 2015a). Kuhn et al. also
performed DBS on two other AD patients who were 5 years
younger. One AD patient had a stable ADAS-Cog score and

an increase in MMSE score after 28 months. Another case

showed overall improvement in the first year of treatment, but

the ADAS-Cog score increased by seven points after 26 months

(Kuhn et al., 2015b). The long-term follow-up results of all eight
patients at 24 months showed that the ADAS-cog of young
patients with mild AD remained relatively stable during the 24-
months follow-up period, while the ADAS-cog of AD patients
with high baseline increased (Hardenacke et al., 2016). In the
two youngest patients among the eight, the repetitive inhibition
of sensory gating improved (Durschmid et al., 2020). Therefore,
they believed that DBS performed in the early and young ages of
AD may have a beneficial effect on the progression of the disease

FIGURE 1 | The cumulative growth of studies of DBS in AD.
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TABLE 1 | The human clinical study of DBS in AD.

Study (first

author, year)

Study

design

Baseline DBS protocol Brain

target

Follow up Main results

Main outcome measures Conclusion

N Sex

(male/female)

Average

age (y)

Average

ADAS-

Cog

Average

MMSE

Medication

(add-on-therapy)

Average

ADAS-Cog

Average

MMSE

Turnbull et al.

(1985)

- 1 1 74 - - - 3 V, 50Hz, 210ms, on

for 15 s and off for

12min, 9m

L-NBM Followed

DBS

- - There was no

significant clinically

effect.

Laxton et al.

(2010)

- 6 4/2 60.7 ± 5.5 - 22.3 ± 4.1 Cholinesterase

inhibitors (least 6m)

3.0∼3.5 V, 130Hz, 90

µs,12m

B-fornix 1m, 6m,

12m

- - DBS drove neural

activity in the memory

circuit, activated the

brain’s default mode

network and could

improve the cognitive

ability of some patients

with mild AD.

Smith et al.

(2012)

- 5 4/1 62.6 ± 4.2 19.2 ± 7.2 22.2 ± 5.1 cholinesterase

inhibitors (least 6m)

3.0∼3.5 V, 130Hz, 90

µs,12m

B-fornix 1m, 12m 1m, 21.6 ±

9.2; 12m,

23.9 ± 13.7

- DBS increased cerebral

glucose metabolism of

patients with mild,

probable AD in 2

orthogonal networks.

Fontaine et al.

(2013)

- 1 0/1 71 3m before

DBS,

12.25; 7d

before

DBS, 9.

3m before

DBS, 23;

7d before

DBS, 29.

- 2.5V, 130Hz, 210ms,

12m

B-fornix 3m, 6m,

12m

3m, 9.41;

6m, 10;

12m, 9.91

3m, 25;

6m, 26;

12m, 24

During 1 year of DBS,

the memory scores of

an AD patient remained

stable, and its

metabolism increased

in the mesial temporal

lobes.

Kuhn et al.

(2015a)

double

blind,

crossover

design

6 2/4 69.5 ± 7.7 20.2 ± 6.0 20.3 ± 2.5 Acetylcholinesterase

medication

Randomized

sham-controlled: −0,

−8, +case, 20Hz, 90

µs and 2.5 V, on for 2w

and off for 2w;

followed by continuous

individualized

stimulation: 2.0-4.5 V,

10-20Hz and 90-150

µs

B-NBM 6w, 12w,

26w, 52w

6w, 19.0 ±

10.0; 12w,

20.0 ± 8.0;

26w, 20.0

± 9.0; 52w,

23.2 ± 13.0

6w, 19.3 ±

4.0; 12w,

18.8 ± 3.1;

26w, 19.2

± 5.3; 52w,

18.7 ± 6.7

ADAS-cog scores

worsened by an

average of three points

after 1 year of

stimulation, and the

mean MMSE score

remained almost

stable. Bilateral

low-frequency DBS of

the NBM in AD patients

is technically feasible

and tolerable.

Kuhn et al.

(2015b)

Double

blind

2 - 64 ± 2.12 10 ± 0.71 22 ± 2.12 - Continuous

individualized

stimulation: 20Hz

B-NBM 12m, 26m 12m, 7.5 ±

0.35; 24m,

13.5 ± 1.77

12m, 26 ±

1.41; 24m,

22 ± 0.71

NBM DBS performed

may have a favorable

impact on disease

progression at the early

stage of AD.

(Continued)
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TABLE 1 | Continued

Study (first

author, year)

Study

design

Baseline DBS protocol Brain

target

Follow up Main results

Main outcome measures Conclusion

N Sex

(male/female)

Average

age (y)

Average

ADAS-

Cog

Average

MMSE

Medication

(add-on-therapy)

Average

ADAS-Cog

Average

MMSE

Noreik et al.

(2015)

Proof-of-

concept

6 2/4 69.2 ± 7.5 - - - 2.0-4.5 V, 10-20Hz and

90-150 µs, 2w ON,

2w OFF or vice versa,

followed by continuous

stimulation

B-NBM 1 year - increased

by 3 points

(min −9,

max 19)

AD patients treated

with NBM DBS

demonstrated a mainly

stable nutritional status

within 1 year.

Sankar et al.

(2015)

Controlled 31 DBS: 4/2

Control:

16/9

DBS: 60.7 ±

6.1; Sham,

63.9 ± 4.4

DBS, 19.1

± 6.4;

Sham,

18.7 ± 7.0

DBS, 22.3

± 4.5;

Sham,

23.6 ± 1.8

acetylcholinesterase

medication (least 6m)

3.0 V, 130Hz, 90 µs,

12m

B-fornix 1 year DBS: 23.33

± 12.3;

Sham, 23.8

± 10.6

DBS: 21.5

± 6.2;

Sham, 19.7

± 4.8

The mean hippocampal

atrophy of AD patients

after DBS became

slower.

Lozano et al.

(2016)

Randomized,

double

blind,

controlled,

multi-

center

42 DBS,11/21

(≥65, 15);

Sham, 12/21

(≥65, 15)

DBS, 68.5 ±

7.7; sham,

67.8 ± 8.1

DBS, 28.6

± 3.9;

sham, 27.1

± 3.8

- cholinesterase

inhibitor (least 2m)

3.0∼3.5 V, 130Hz, 90

µs, 12m

B-fornix 1m, 6m,

9m, 12m

1m, DBS,

28.0 ± 7.7,

sham, 28.9

± 7.4;

Difference

of DBS and

sham:<65,

12m, 10.3

± 6.1; ≥65,

9m, 4.5 ±

2.0, 12m,

4.1 ± 2.6.

- DBS may have a

positive effect on AD

patients ≥65 years old,

but may have an

adverse effect on

patients under 65 years

old.

Hardenacke

et al. (2016)

- 8 - - - - - - B-NBM 12m, 18m,

24m

- - NBM DBS performed

may have a favorable

impact on disease

progression at the early

stage of AD.

McMullen

et al. (2016)

Double-

blind,

randomized

1 1 48 19 - - - B-fornix 3m 22 - A patient with AD who

experienced fornix DBS

developed bilateral

encephalomalacia.

(Continued)
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TABLE 1 | Continued

Study (first

author, year)

Study

design

Baseline DBS protocol Brain

target

Follow up Main results

Main outcome measures Conclusion

N Sex

(male/female)

Average

age (y)

Average

ADAS-

Cog

Average

MMSE

Medication

(add-on-therapy)

Average

ADAS-Cog

Average

MMSE

Baldermann

et al. (2018)

- 10 5/5 66.9 ± 4.3 9.3 ± 6.5 18.3 ± 3.8 - 2.0-4.2 V, 5-20Hz,

60-150 µs

B-NBM 6m, 12m 6m, 10.9 ±

8.1; 12m,

11.6 ± 11.2

6m, 17.9 ±

5.8; 12m,

20.1 ± 6.6

AD patients with less

advanced atrophy may

profit from NBM DBS.

Scharre et al.

(2018)

- 3 - 63 ± 5.31 30.33 ±

3.66

22.67 ±

0.72

- continuous stimulation

for at least 18m.

B-

VC/VS

27m, 24m,

21m

- - DBS of the VC/VS was

well-tolerated and the

extent of CDR-SB

decline in AD patients

with VC/VS DBS was

reduced.

Leoutsakos

et al. (2018)

Double

blind,

controlled

42 DBS,11/21

(≥65, 15);

Sham, 12/21

(≥65, 15)

- - - Cholinesterase

inhibitor (least 2m)

Sham, DBS in the

second year.

B-fornix 3m, 6m,

9m, 12m,

18m, 24m

DBS, first

year, 7.83 ±

1.86, the

second

year, 5.60 ±

1.85; sham,

first year,

8.33 ±

1.82, the

second

year, 6.16 ±

1.97.

- Fornix DBS was safe

and may be beneficial

for AD patients ≥65

years of age.

Mao et al.

(2018)

- 5 2/3 59 ± 1.79 - 2.4 ± 1.15 Cholinesterase

inhibitor,

Chinese medication.

(least 6 m)

130Hz, 90ms, 1–5 V B-fornix 1.5m, 3m - 3 ± 1.33 Fornix DBS could

improve partial

improvement in

performance of

patients with severe

AD, including cognitive

performance, mental

state and social

performance.

Durschmid

et al. (2020)

- 2 - 62 ± 0.71 - - - 1 V, 20Hz B-NBM - - - NBM DBS has a

positive impact on

sensory gating into

memory.

AD, Alzheimer’s Disease; ADAS-Cog, Alzheimer’s disease assessment scale-cognitive section; B, bilateral; CDR-SB, clinical dementia rating–sum of boxes; DBS, deep brain stimulation; L, left; m, mouth; min, minute; MMSE, mini-mental

state examination; N, number; NBM, nucleus basalis of Meynert; Sham, sham stimulation; R-, right; VC/VS, ventral capsule/ventral striatum; w, week; y, year.
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and cognitive function. Baldermann et al. also showed that AD
patients with less atrophy can benefit from DBS (Baldermann
et al., 2018). However, the study by Lozano et al. showed different
results. Lozano et al. observed an increase in cerebral glucose
metabolism in 21 AD patients after 1 year of DBS, considered
DBS to be safe, and proposed that DBS may benefit AD patients
aged 65 years and older, while those under 65 years old may
show a worsening condition (Lozano et al., 2016). Leoutsakos
et al. conducted a second-year follow-up of 42 participants in
the study, confirming that DBS benefits older patients with
AD (Leoutsakos et al., 2018). Furthermore, McMullen et al.
reported that an AD patient implanted with bilateral fornix DBS
experienced asymptomatic bilateral cerebral encephalomalacia
(McMullen et al., 2016). Among the current existing studies,
only two studies have shown no therapeutic effect of DBS in
AD (Turnbull et al., 1985; McMullen et al., 2016), and there
were a few AD patients with poor performance in other studies
(Lozano et al., 2016; Leoutsakos et al., 2018; Mao et al., 2018). The
small sample size (case report) (Turnbull et al., 1985; McMullen
et al., 2016), side effects of DBS surgery (Ponce et al., 2016),
and improper use of quetiapine by patients (Lozano et al., 2016;
Leoutsakos et al., 2018; Mao et al., 2018) may account for these
differences, but we cannot rule out the possibility that it is due
to other methodological differences. However, among most AD
patients receiving DBS, DBS is a promising intervention for AD.

Animal Studies
DBS Implementation

For DBS in AD animal models, the stimulating electrodes are
implanted, and the stimulator is connected externally. A single
study implanted the stimulators subcutaneously on the backs of
mice (Huang et al., 2019). Each mouse is anesthetized and fixed
on a stereotaxic device; the scalp is removed, exposing the skull.
An electric drill is used gently drill small holes at the target points
on the skull. Then, the stimulating electrode is implanted at the
target position and fixed to the skull with adhesive material. In
some studies, a small number of screws are implanted in the skull
to fix the electrodes (Hescham et al., 2013b; Chen et al., 2014;
Zhang et al., 2015; Tsai et al., 2020). X-ray imaging or tissue
staining is used to ensure that the electrode is implanted in the
target position (Lee et al., 2016; Mann et al., 2018; Huang et al.,
2019).

Therapeutic Effects

In addition to human clinical research on DBS in AD, animal
research on DBS in AD is also being carried out simultaneously.
Table 2 lists the detailed characteristics of 14 animal studies
of DBS in AD animal models. Compared with human clinical
studies, the behavioral, physiological and biochemical changes
of AD model mice established by transgenic AD model or drug
injection after DBS are mostly positive in the animal studies.
This review later used these animal studies, combined with
human clinical studies, to explore the effects of DBS stimulation
parameters on the efficacy of AD treatment and the potential
mechanism of action of DBS in AD.

Adverse Events
DBS is an invasive brain stimulation technique that carries
the risk of major surgery (Doshi, 2011). The main surgical
complications include bleeding, infection, and hardware failure
(Ponce et al., 2016; Barrett, 2017). The adverse events related to
DBS that occur in AD are manifested in human clinical studies
which are rarely found in animal studies. Table 3 lists the adverse
events of the human clinical study of DBS in AD. At higher
voltage intensity, AD patients felt inner restlessness, warmth,
flushing, sweating, increased heart rate and blood pressure, and
other adverse reactions. However, after reducing the voltage
intensity, AD patients had almost no adverse effects (Laxton
et al., 2010; Kuhn et al., 2015a). Other minor adverse reactions,
including headache, diarrhea, vomiting, and paresthesias, were
almost transient and had no sequelae (Laxton et al., 2010; Kuhn
et al., 2015a; Leoutsakos et al., 2018; Scharre et al., 2018). Serious
adverse events, including internal pulse generato infections,
skin infections, inaccurate device location, hematoma, syncope,
epilepsy, etc., could almost be resolved (Ponce et al., 2016).
Leoutsakos et al. conducted the largest-scale study on the safety of
DBS in AD patients, which involved 42 patients with AD (Lozano
et al., 2016; Ponce et al., 2016; Leoutsakos et al., 2018). Within
90 days after receiving DBS surgery, 26 patients experienced
64 non-serious adverse events related to DBS surgery, of which
5 patients experienced 7 serious adverse events. For these 64
non-serious adverse events, 57 occurred within 30 days after
surgery. In the second year after receiving DBS surgery, 24
patients reported 86 non-serious adverse events, and eight
patients reported 15 serious adverse events. Two statistical results
showed that the shorter the time after the completion of the
operation is, the greater the possibility of reported adverse events
in AD patients. The occurrence of adverse events gradually
decreased over time, and there seemed to be no long-term
complications. The safety of adverse events was as expected.
However, the case report by McMullen et al. showed that DBS
has brought long-term adverse effects (McMullen et al., 2016).
This might be related to both the physical state of the patients
and the experience of the surgeon. Although this was only a
case study, researchers should pay attention to it. In general,
AD patients tolerate DBS well under the appropriate DBS
parameters, which proves that DBS is a relatively safe technique
for AD patients.

DBS PARAMETERS

Stimulation Targets
To date, the stimulation targets for DBS in the treatment of
AD patients in human clinical studies have involved the fornix,
NBM, and ventral capsule/ventral striatum (VC/VS) (Table 1).
Relevant animal research also involved multiple stimulation
targets, including the intralaminar thalamic nucleus (ILN),
midline thalamic nuclei (MTN), mammillothalamic tract (MT),
anterior nucleus of thalamus (ANT), entorhinal cortex (EC), and
CA1 (Table 2). The selection of these stimulation targets for DBS
is mainly based on the neural network of the brain. Among
them, VC/VS is related to the frontal lobe neural network (Price
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TABLE 2 | The animal study of DBS in AD.

Study (first

author, year)

Base DBS protocol Brain target Behavior

methods

Follow up Main conclusion

N Sex

(male/female)

Age Animal Group

Arrieta-Cruz

et al. (2010)

16–20 male 8w TgCRND8, WT

(B6C3F1)

WT, AD-DBS Eight trains of HFS;

each train of 25Hz,

1 s duration, 300

µA, 10 s inter-train

interval, 3 d

B-MTN, [AP: −1.1,

ML: 0.3, DV:

2.5–3.3]

NOR After DBS DBS could enhance short-term

memory in the CA1 region of

hippocampus in TgCRND8 mice.

Hescham

et al. (2013b)

21 21/0 - An injection of

scopolamine to

SD rats

AD (n = 11),

AD-DBS (n = 10)

50 µA, 100 µA, 200

µA, 10Hz, 100Hz,

100 µs, 2 min/time

B-fornix, [AP −1.88,

ML 1.3, DV 8.2]

NLR, OF After DBS Fornix DBS reversed the memory

of rats received scopolamine and

it was not sensitive to stimulation

frequency, but rather to current

levels.

Chen et al.

(2014)

32 32/0 - An injection of

Aß1−42 and Aß1−40

to SD rats

SD-PBS (n = 8), AD

(n = 8), AD-ANT (n

= 8), AD-DBS (n =

8)

130Hz, 60 µs, 1.5 V B-ANT, [AP: −2.0,

ML: ± 1.8, DV:

−4.7]

MWM After DBS Bilateral ANT HFS could improve

the performance of AD rats in

MWM.

Zhang et al.

(2015)

48 48/0 6w An injection of

Aß1−42 to SD rats

ANT DBS (n = 8),

EC DBS (n = 8),

fornix DBS (n = 8),

ANT-sham (n = 8),

EC-sham (n = 8),

fornix-sham (n = 8)

500 µA, 130Hz, 90

µs, 24 h

B-ANT, [AP: −1.6,

ML: 1.5, DV: −5.2];

B-EC, [AP: −7.0,

ML: 5.4, DV: −8.2];

B-fornix, [AP: −1.9,

ML: 1.3, DV: −8.2]

MWM,

NOR, OF

4w after

DBS.

EC and fornix DBS could

enhance

hippocampus-independent

recognition memory, and

facilitated

hippocampus-dependent spatial

memory more prominently than

ANT DBS.

Hescham

et al. (2015)

63 - - An injection of

scopolamine to

SD rats

Sham (n = 11), CA1

DBS (n = 10), MT

DBS (n = 13), ANT

DBS (n = 14), EC

DBS (n = 15)

50 µA, 100 µA, 200

µA, 10Hz, 100Hz,

100 µs, 24 h

B-CA1, [AP: −3.6,

ML: 1.8, DV: −2.6];

B-MT, [AP: −1.8,

ML: 1, DV: −6.2];

B-ANT, [AP: −1.6,

ML: 1.5, DV: −5.2];

B-EC, [AP: −6.7,

ML: 4, DV: −8].

NLR, OF,

EZM

After DBS CA1, EC, and fornix DBS could

able to restore spatial

memory-related functions and

CA1 DBS increased neural

activity in the anterior cingulate

gyrus.

Lee et al.

(2016)

25 25/0 6w An injection of 192

IgG-saporin to SD

rats

SD (n = 6), AD (n =

7), AD-NS (n = 7),

AD-DBS (n = 5)

120Hz, 90 µs, 1 V, 1

h/d, 7 d

R-NBM, [AP: −1.32,

ML: +2.8, DV: −7.4]

MWM After DBS NBM DBS improved spatial

memory performance of SD rats

injected 192 IgG-saporin in the

MWM.

Xia et al.

(2017)

98 49/49 6w,

6m

TgCRND8, WT

(C57BL/6NTac)

WT-NS (n = 50),

AD-NS (n = 19),

AD-DBS (n = 29)

130Hz, 90 µs, 1 h,

square wave

B-EC, [AP: −4.0,

ML: ± 3.25, DV:

−5.1]

Contextual

fear

testing;

Tone fear

testing;

MWM

1, 3, and

6w for

behavior

experiments

after DBS.

EC DBS rescued subsequent

deficits in context fear memory,

reversed spatial learning deficits

in Tg mice, and reduced plaque

load in young mice. But EC DBS

did not produce a detectable

decrease in plaque load in either

the dorsal hippocampus or

cortex in old mice.

(Continued)
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TABLE 2 | Continued

Study (first

author, year)

Base DBS protocol Brain target Behavior

methods

Follow up Main conclusion

N Sex

(male/female)

Age Animal Group

Akwa et al.

(2018)

20 20/0 4m 3×Tg, WT

(C57BL/6/129SVJ)

WT-NS (n = 5),

WT-DBS (n = 5),

AD-NS (n = 5),

AD-DBS (n = 5)

50 µA, 130Hz, 90

µs, 7 h/d, weekends

off, 25 d

B-EC, [AP: −4.0,

ML: ± 3.0, DV:

−5.1]

- - Chronic DBS in 3×Tg mice

resulted in reduced levels of Tau

oligomers, and increased levels

of synaptophysin.

Mann et al.

(2018)

38 38/0 4m 3×Tg, WT

(129SV/C57BL6)

WT-Cont (n = 5),

AD-Cont (n = 11),

AD-NS (n = 10),

AD-DBS (n = 12)

50 µA, 130Hz, 90

µs, 7 h/d, weekends

off, 25 d

B-EC, [AP: −4.0,

ML: 3.0, DV:5.1]

MWM,

NLR, NOR

5m for

MWM,

6.5m for

NPR and

NOR; 7m

for

euthanize.

Chronic EC DBS improved both

memory and AD specific

pathological markers of AD mice.

Leplus et al.

(2019)

22 - 18m TgF344-AD, WT

F344

WT (n = 6), WT-DBS

(n = 6), AD (n = 4),

AD-DBS (n = 6)

130Hz, 80 µs, 100

µA, unipolar, 42 d

B-fornix, [AP: −0.6,

ML: ± 0.75, DV:

−5.8]

- After DBS Chronic DBS decreased

amyloidosis, inflammatory

responses, and neuronal loss in

both cortex and hippocampus in

AD rats.

Huang et al.

(2019)

192 192/0 4m,

6m,

9m,

12m

APP/PS1

(HuAPP695swe,

PSEN1-dE9), WT

(C57BL/6)

Frequencies:

control, sham,

10Hz, 50Hz,

100Hz,130Hz;

Starting times:

control, sham, 4m,

6m, 9m, 12m;

Durations: control,

sham, 7, 14, 21, 28

days; APP/PS1:

control, sham, DBS;

WT: control, DBS;

The optimized

parameters of DBS:

control, sham, DBS,

U0126,

DBS+U0126,

LY294002,

DBS+LY294002

10Hz, 50Hz,

100Hz,130Hz,

biphasic stimulus

pulse wave, 7, 14,

21, 28 days

L-NBM, [AP: −0.7;

ML: 1.75; DV: 4.0]

MWM After DBS

or 30 d after

DBS or

mice at

13m

NBM DBS starting from 4

months of age for 21 days at

100Hz had therapeutic effects

on APP/PS1 mice through

activating phosphatidylinositol

3′-kinase (PI3K)/Akt pathway

and inhibiting ERK1/2 pathway.

(Continued)
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TABLE 2 | Continued

Study (first

author, year)

Base DBS protocol Brain target Behavior

methods

Follow up Main conclusion

N Sex

(male/female)

Age Animal Group

Gallino et al.

(2019)

50 AD-DBS,

9/8;

Sham-DBS,

8/9; AD,

8/8.

2m 3×Tg AD-DBS (n = 17),

Sham-DBS (n = 17),

AD (n = 16)

100 µA, 100Hz,

100 µs, 1 h

B-fornix, [AP: 0; ML:

0.75; DV: 3.0]

MWM MWM

weekly and

structural

MRI in 3 d

before and

3 d after

DBS with a

6w

follow-up.

Acute DBS could improve

learning and long-term memory

of 3×Tg mice in a delayed, sex

specific, and transient manner.

Koulousakis

et al. (2020)

12 12 18m TgF344-AD AD-DBS 200 µA, 100 µs,

60Hz for intermittent

DBS (duty cycle:

20 s ON and 40 s

OFF. 20Hz, 120 µs

for continuous DBS.

B-NBM, [AP: −1.44;

ML: ± 2.88;

DV: 7.4].

Intermittent,

unilaterally or

bilaterally;

continuous, bilaterally.

OF, NOR,

MBM

Before and

after DBS.

Bilateral intermittent NBM DBS

allowed aged TgF344-AD rats to

perform better and maintain their

performance longer in a spatial

memory task.

Tsai et al.

(2020)

37 37/0 - An injection of

Aß1−42 and Aß1−40

Wistar rats

Cont (n = 8), AD (n

= 12), AD-sham (n

= 8), AD-DBS (n =

9)

0.5mA, 60 µs,

100Hz, 30min

R-ILN, [AP: −2.8,

ML: 1.25, DV: −5.5]

MWM After DBS A single rostral ILN DBS could

rescue spatial learning and

memory deficits, and significantly

reversed PSD-95 expression

reductions and preserved

dendritic spine densities in the

mPFC and hippocampal region

of Aβ-infused rats.

Aβ, β-amyloid; AD, Alzheimer’s Disease; ADAS-Cog, Alzheimer’s disease assessment scale-cognitive section; ANT, anterior nucleus of thalamus; APP/PS1, amyloid-β precursor protein/presenilin1; B, bilateral; EC, entorhinal cortex;

EZM, elevated zero maze; Cont, control; DBS, deep brain stimulation; DG, dentate gyrus; HFS, high frequency stimulation; ILN, intralaminar thalamic nucleus; L, left; m, mouth; MBM, modified barnes maze; min, Minute; mPFC, medial

prefrontal cortex; MT, mammillothalamic tract; MTN, midline thalamic nuclei; MWM, morris water maze; N, number; NBM, nucleus basalis of Meynert; NOR, novel object recognition; NLR, novel location recognition; NS, non-stimulation;

OF, open field test; SD, sprague dawley; Sham, sham stimulation; 3xTg, toronto triple transgenic; R, right; w, week; y, year; WT, wild type.
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TABLE 3 | Adverse events of the human clinical study of DBS in AD.

Study (first author, year) Adverse events

Turnbull et al. (1985) Did not cause epilepsy or any other untoward reactions in a personal case.

Laxton et al. (2010) When the voltage intensity of DBS was between 6 and 8V, AD patients would experience adverse reactions, such as

warmth, flushing, sweating, increased heart rate and blood pressure. When the stimulation intensity was reduced by 50%,

there was almost no adverse effect.

Smith et al. (2012) Not involved.

Fontaine et al. (2013) An AD patient had no complications after DBS 1 year and was fully tolerant to stimulation, except a discrete increase of

irritability.

Kuhn et al. (2015a) The DBS device was malfunctioning; an AD patient felt inner restlessness at a stimulation intensity >5V. There were no

other adverse events.

Kuhn et al. (2015b) Both patients were well-tolerated by DBS. There were no adverse events.

Noreik et al. (2015) Not involved.

Sankar et al. (2015) Not involved.

Lozano et al. (2016) Three patients had 4 adverse events, including 1 internal pulse generato infection, 1 DBS positioning error, and 2

postoperative nausea (1 patient). No neurosurgical and cognitive adverse reactions.

Hardenacke et al. (2016) Not involved.

McMullen et al. (2016) At 3 months after surgery, the case patient was anxious and complained that “left side of brain is asleep,” and cystic

encephalomalacia appeared in the frontal lobe; at 1 year after surgery, minimal encephalomalacia appeared on the bilateral

lead.

Baldermann et al. (2018) Not involved.

Scharre et al. (2018) Short-term side effects were resolved without sequela, including hot flashes, increased heart rate/palpitations, flushing,

paresthesias, muscle twitching, non-specific discomfort, fatigue, and neuropsychiatric symptoms, mild pain at implantable

pulse generator site, headache at incision site, transient visual neglect following surgery, diarrhea, vomiting, rash, rhinitis,

arthralgia, fall, hematoma, and depression.

Leoutsakos et al. (2018) Twenty-four patients experienced non-serious adverse events, common ones including neurological (including falls,

headache, and muscle spasms), genitourinary (including urinary tract infections, urgency, and incontinence), and pulmonary

(including upper respiratory infections and dyspnea). Seven patients had syncope and/or falls; two patients had altered

mental status; two patients were involved in seizures or possible seizure; one patient was involved in agitation in a delayed;

three patients were involved in a skin infection, suspected aortic valve endocarditis, and rigidity.

Mao et al. (2018) No serious neurological adverse events occurred.

Durschmid et al. (2020) Not involved.

AD, Alzheimer’s Disease; DBS, deep brain stimulation.

and Drevets, 2010); ILN and MTN are important components
forming cortico-thalamo-cortical pathways (Saalmann, 2014);
NBM participates in the base forebrain cholinergic circuit;
and the fornix, MT, ANT, EC, and CA1 (hippocampus) are
nodes in the Papez circuit (Yu et al., 2019). Figure 2 shows
a schematic representation of these targets in the brain. AD
is also considered to be a disease of the neural circuit, as
neurons and neural circuits associated with cognitive function
are damaged, and the Papez circuit is degraded (Lv et al.,
2018). The Papez circuit is the main pathway of the limbic
system and plays a vital role in the formation and storage
of memory. Understanding the effects of these stimulation
targets can help to select the best DBS stimulation target
for AD.

VC/VS

DBS regulates the frontal lobe network of the brain that is
involved in cognition and behavior. The ventral striatum, nucleus
accumbens, and anterior limb of the internal capsule sit at the
base of the frontal lobes. White matter fibers of the frontal lobe
and the ventral capsule connect the dorsomedial and orbital
prefrontal cortices to the ventral striatum (Price and Drevets,

2010). These neural networks have shown degeneration in AD
(Lehericy et al., 1989). VC/VS DBS can affect related behavioral
disorders in patients with mental disorders such as obsessive-
compulsive disorder and depression (Greenberg et al., 2010;
Dougherty et al., 2015). In a non-random phase I experiment,
Scharre et al. first used the VC/VS of the frontal lobe network
as the stimulation target for DBS in AD patients (Scharre
et al., 2018). Fluorodeoxyglucose-positron emission tomography
metabolism increased, and clinical dementia rating–sum of boxes
(CDR-SB) performance decreased in AD patients receiving DBS.
By targeting the VC/VS, DBS may adjust the frontal lobe network
and affect the executive function of AD patients. This is the
first report to show improved behavioral and executive defects
without tracking memory targets in the treatment of AD by DBS.
It provides new target options for DBS treatment in AD. This
study also shows that chronic DBS with the VC/VS as a target
is well-tolerated.

ILN

The rostral part of the ILN is connected to the medial prefrontal
cortex (mPFC) and is considered to be a key component of
cognitive function (Mair and Hembrook, 2008; Saalmann, 2014).
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FIGURE 2 | The schematic diagram of the stimulation targets for DBS in AD.

Although the function of the ILN in cognitive function has
been proven, the effect of ILN DBS on AD-related cognitive
dysfunction has not been extensively studied. Only one related
study has shown that unilateral ILN DBS treatment can improve
spatial learning and memory deficits in AD rat models injected
with β-amyloid (Aβ), reduce the expression of postsynaptic
density protein 95 (PSD-95) in the mPFC and hippocampus, and
maintain dendritic spine density (Tsai et al., 2020).

MTN

The MTN connects to the medial prefrontal cortex, medial
temporal lobe and hippocampus. The midline structure of
thalamus is involved in memory related functions (Saalmann,
2014). An study of high-frequency MTN DBS showed that the
time that TgCRND8 mice explored new objects in the object
recognition task was significantly longer than that of wild type
mice, and the expression of FosB protein in the hippocampus
was significantly upregulated (Arrieta-Cruz et al., 2010). There
is currently no other research on MTN DBS in AD.

NBM

Acetylcholine (ACh) is essential for cognitive function and
memory processing, and it is mainly derived from cholinergic
neurons in the NBM (Carlsen et al., 1985). This region is mainly
located below the anterior commissure and globus pallidus
and on the anterior lateral part of the hypothalamus (Hedreen
et al., 1984). The NBM sends a wide range of cholinergic nerve
projections that dominate the cortex and hippocampus, and
it represents an important cholinergic pathway in functional

networks that subserve cognition and memory (Gratwicke et al.,
2013). NBM damage can lead to a decrease in cholinergic
transmission and degenerative changes in mossy fibers and the
dentate gyrus of the hippocampus (Bartus et al., 1982; Amenta
et al., 1991). The first evidence neural network dysfunction in
AD is the loss of NBM cholinergic neurons in the brain, which
is evident on postmortem examination (Whitehouse et al., 1981).
Turnbull et al. reported for the first time the impact of NBM
DBS on AD patients, although the report found no evidence of
clinical improvement (Turnbull et al., 1985). Since then, chronic
NBMDBS has shown good efficacy in AD. NBMDBS performed
in early AD may have beneficial effects on AD progression
and cognitive function (Kuhn et al., 2015b; Hardenacke et al.,
2016). AD patients receiving NBM DBS showed a substantially
stabilized nutritional status within 1 year (Noreik et al., 2015).
NBM DBS can also improve the spatial learning and memory of
ADmodel mice; regulate the gamma-aminobutyric acid (GABA),
glutamate system, and cholinergic systems; reduce the abundance
of amyloid protein; and exert neuroprotective effects (Lee et al.,
2016; Huang et al., 2019; Koulousakis et al., 2020).

Fornix

As part of the Papez circuit, the fornix is the main inflow and
outflow pathway of the hippocampus and middle temporal lobe.
The fornix is an arcuate fiber bundle from the hippocampus
to the mammillary body. This tract provides a direct source of
input from the hippocampal structure to the anterior nucleus of
the thalamus and can effectively encode and integrate memory
information (Browning et al., 2010; Lovblad et al., 2014). When
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the fornix of humans and animals is damaged, it can cause severe
memory impairment (Tsivilis et al., 2008; Browning et al., 2010).
Atrophy of the fornix can be accompanied by a transition from
mild cognitive impairment to AD (Copenhaver et al., 2006).
Hamani et al. reported for the first time that fornix stimulation
can improve memory, although only one patient in their study
received DBS to treat obesity (Hamani et al., 2008). Since then,
DBS in the fornix has gradually been applied to AD. Chronic
fornix DBS can stabilize or slow memory decline and increase
hippocampal volume and cerebral metabolism in some patients
with AD (Laxton et al., 2010; Smith et al., 2012; Fontaine et al.,
2013; Sankar et al., 2015; Lozano et al., 2016) and improve
spatial learning memory and recognition memory and reduce
amyloidosis, the inflammatory response, the loss of neurons and
the local changes in brain volume in AD model mice (Hescham
et al., 2013b; Zhang et al., 2015; Gallino et al., 2019; Leplus
et al., 2019). Therefore, the fornix is a good target choice for the
treatment of DBS in human clinical research and animal research
on AD (Senova et al., 2020).

MT

In the Papez circuit, information related to memory is
transmitted to the mammillary body through the fornix,
and then to the ANT through the MT. Although the MT
participates in the Papez circuit, MT DBS did not cause
memory changes in patients with refractory epilepsy (Duprez
et al., 2005). No beneficial memory effect of MT DBS was
found in SD rats injected scopolamine (Hescham et al., 2015).
Therefore, it is worth exploring whether DBS in the MT has a
positive effect.

ANT

The ANT is part of the Papez circuit, receiving information
from the mammillary body via the MT and projecting it to the
cingulate gyrus. The functional interaction between the ANT
and hippocampus is crucial for spatial memory and conditional
learning (Dumont et al., 2010). In AD model rats, ANT DBS
improves impaired spatial memory (Chen et al., 2014). This is
consistent with the research by Zhang et al., even though ANT
DBS did not improve the recognition memory of AD model
rats (Zhang et al., 2015). ANT DBS appears to be a potential
treatment for AD cognitive dysfunction. However, Hescham
et al. did not seem to find any beneficial memory effects of
ANT DBS in SD rats injected scopolamine (Hescham et al.,
2015). In addition, at high current densities, ANT DBS disrupts
the acquisition of contextual fear conditions in healthy rats
and impairs the performance of rats in spatially alternating
tasks. In this case, ANT DBS caused a functional depolarization
block near the stimulation electrode, which greatly reduced
the spontaneous discharge of the local neuron population.
Extracellular recordings showed that under high current ANT
DBS, the discharge rate of DG cells was reduced and hippocampal
activity was suppressed (Hamani et al., 2010). The differences in
the results of various animal studies may have multiple causes,
and further research is needed to explore the impact of ANTDBS
in AD.

EC

The EC is located in the anterior part of the parahippocampal
gyrus and is a key area for information transmission to and
from the hippocampus, forming a three-synapse circuit with the
hippocampus. At the same time, EC is the first area affected
in AD and is closely related to memory formation (Braak
and Braak, 1991; Khan et al., 2014). EC DBS can enhance
the spatial memory of wild-type mice, and promote the rapid
proliferation of neurons in the dentate gyrus (DG) (Stone et al.,
2011). Acute EC DBS can improve memory deficits induced
by scopolamine, and increase the expression of c-Fos in the
CA3 region (Hescham et al., 2015). Research by Zhang et al.
showed that chronic EC DBS contributes to spatial memory
and recognition memory deficits induced by Aβ40 (Zhang et al.,
2015), which is consistent with research on AD transgenic mice
(Xia et al., 2017; Mann et al., 2018). In addition, chronic EC
DBS can significantly reduce Aβ and tau in the hippocampus
of AD transgenic mouse models, as well as reduce total tau and
phosphorylated tau in the cortical region (Mann et al., 2018).
In another study, it was been demonstrated that EC DBS can
increase synaptic activity by increasing synaptophysin levels,
and promote low sedimentation clearance of tau through the
lysosomal pathway, thereby exerting a beneficial effect on AD
(Akwa et al., 2018).

CA1

The hippocampus is a brain area that is closely related to learning
and memory functions, and is almost the central structure of
memory-related circuits in the brain. The first region of the
hippocampal circuit is the CA1, which mainly projects to the
EC and subiculum and is very important for spatial memory
(Igarashi et al., 2014). Acute CA1 DBS can improve memory
deficits induced by scopolamine, and the beneficial effect of
CA1 DBS is accompanied by increased expression of Fos in the
cingulate gyrus (Hescham et al., 2015). No other studies related
to DBS in AD have targeted the CA1 area to date.

Overall, the fornix, NBM, and EC are the preferred targets for
DBS treatment in AD, even if there are other alternative targets.
Currently, there are only two comparative studies of different
stimulation targets for DBS in AD. Hescham et al. compared
the effects of DBS in the ANT, CA1, MT, and EC in AD rat
models induced by scopolamine (Hescham et al., 2015). CA1
DBS and EC DBS could improve memory deficits caused by
scopolamine, and no beneficial memory effect was observed in
the ANT or MT. A study had even shown that DBS in the
hippocampus and entorhinal regions can impair memory (Jacobs
et al., 2016). Zhang et al. investigated the effects of DBS in the
ANT, EC, and fornix on the cognitive behavior of AD rat models
(Zhang et al., 2015). DBS of these three targets can benefit the
spatial memory of AD model rats. EC DBS and fornix DBS also
improved the recognition andmemory of ADmodel rats, but this
effect was not observed in ANT DBS. In the Papez circuit, the
EC and the fornix are directly connected to the hippocampus,
while the ANT is connected to the fornix and the nipple body
and indirectly connected to the hippocampus. This difference in
neural connectivity may explain why the EC and fornix show
more significant spatial and recognition memory improvements
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than the ANT. The comparison of different targets of DBS in AD
still needs more research.

Stimulation Frequency
To date, the application of DBS in AD has been carried out
under fixed stimulation parameters with a single frequency
setting of 20, 100, or 130Hz. The selection of frequency
parameters in AD is based on the application of DBS in
other diseases. The stimulation frequency of DBS, it can
be divided into high frequency electrical stimulation (HFS,
25∼1,000Hz) and low frequency electrical stimulation (LFS,
0.1∼25Hz) (Schiller and Bankirer, 2007). HFS is commonly
used in the treatment of mental illness. For patients with
Parkinson’s disease, high-frequency stimulation is beneficial
for dyskinesias, and low-frequency stimulation may improve
some axial movement symptoms (Baizabal-Carvallo and Alonso-
Juarez, 2016). However, stimulation at a frequency that is too
high can cause functional lesions (Jakobs et al., 2019). Therefore,
it is critical to optimize the stimulation frequency of DBS
to minimize the side effects of electrical stimulation caused
by the stimulation frequency. Huang et al. implemented four
DBS frequencies of 10, 50, 100, and 130Hz in the NBM of
Aβ precursor protein/Presenilin1 (APP/PS1) mice and tested
their spatial memory using the Morris water maze (MWM)
(Huang et al., 2019). It was found that 10Hz DBS had no
effect. The latency during the learning period was significantly
reduced by DBS at frequencies at 50, 100, and 130Hz, and the
number of passes and occupation time of the target quadrant
and platform area in the exploration task increased significantly.
Higher frequency (100Hz, 130Hz) stimulation was better than
lower frequency (10Hz, 50Hz) stimulation, and a shorter latency,
a larger number of times and a longer occupation time were
observed at 100Hz. Therefore, the optimal DBS frequency
remains unclear. Some studies have shown that the efficacy of
DBS in AD is not affected by frequency, as 10Hz and 100Hz show
the same effect (Hescham et al., 2013b).

Stimulation Start Time
The stimulation start time of DBS in AD is also closely related to
the effect of treatment. The time from pathological appearance
to clinical symptoms of AD may be as long as 20 years or more
(Bateman et al., 2012; Villemagne et al., 2013; Selkoe and Hardy,
2016). It is one of the new interests in the treatment of AD to
take measures to intervene the development of AD before clinical
symptoms appear, and to delay or even prevent brain lesions
(Alzheimer’s Association, 2018; Fan and Wang, 2020). Several
studies have shown that DBS intervention in the early stages of
AD produces better results. Huang et al. administered NBMDBS
to APP/PS1 mice at 4, 6, 9, and 12 months of age and performed
MWM tests at the end of 13 months of age (Huang et al., 2019).
APP/PS1 mice at 4–6 months of age are in the early stages of AD.
The results showed that the escape latency of AD mice receiving
DBS at 4 and 6 months of age was significantly reduced, and
the occupation time of the target quadrant and the number of
passes through the platform area increased significantly. DBS at
4 months of age produced the best results. However, DBS had
little effect at 9 and 12 months of age. EC DBS was performed in

TgCRND8 mice at 6 weeks and 6 months of age, but a reduction
in amyloid plaque was found only in mice at 6 weeks. In clinical
studies, Hardenacke et al. evaluated the effects of DBS on 8 AD
patients and proposed that NBM DBS in the early stage of the
disease or at a younger age may have a beneficial effect on disease
progression (Hardenacke et al., 2016). NBM DBS can increase
blood flow by more than 50% in the cerebral cortex and nerve
growth factor (NGF) expression in the parietal cortex by ∼68%
in healthy rats at 4–6 months of age, but in aged rats at 29–
31 months of age, blood flow increased by only ∼25%, with no
significant change in NGF in the parietal cortex (Hotta et al.,
2009). This again proves that providing DBS at a younger age
has a more favorable impact. Unfortunately, in a phase II clinical
study, it was suggested that fornix DBS may benefit patients with
AD who are≥65 years of age, and that patients under 65 years of
age may show worsening condition (Lozano et al., 2016). This
has an effect that is opposite to the impact of NBM DBS in
interventions for young AD patients (Hardenacke et al., 2016).
The reason for this difference may be that young patients are not
in the early stages of AD, or fornix DBS alone may not be suitable
for the early treatment of AD, or among other possible reasons.

Stimulation Duration
After DBS, AD patients’ disease progression slowed significantly.
This may be related to the stimulation duration of DBS, and the
persistence of the effect is unclear. Animal research has shown
that both acute and chronic DBS can cause long-term remodeling
of the mouse brain. One hour of fornix DBS improved spatial
memory deficits and caused local volume differences in various
regions of the brain in AD mice. These changes can last at least
45 days, suggesting that the role of DBS in AD is more than
immediate (Gallino et al., 2019). The improvement of spatial
memory and recognition memory caused by DBS for 24 h in
the AD rat model induced by Aβ42 can last for at least 4 weeks
(Zhang et al., 2015). Chronic DBS (7 h/d) was performed on
Toronto triple-transgenic (3×Tg) AD model mice for 25 d, and
the beneficial effects of DBS on recognition and memory in AD
mice lasted at least 1 month. The after effects of DBS suggest that
chronic DBS can also cause long-term changes in brain function
(Mann et al., 2018). Huang et al. performed four durations of
DBS (7, 14, 21, and 28 days for 1 h/days) in APP/PS1 mice at
4 months of age and performed the MWM and Aβ detection
30 d after the end of DBS (Huang et al., 2019). However, 7 d
of DBS had almost no impact. DBS for 14, 21, and 28 days all
improved the spatial memory of APP/PS1 mice and significantly
reduced the soluble Aβ40 and Aβ42 levels in the hippocampus and
cortex. DBS achieved the best results after 21 consecutive days of
stimulation. This shows that the therapeutic effect of DBS is not
directly proportional to the duration of treatment.

Unilateral/Bilateral Treatment
Of the human clinical studies and animal studies of DBS in
AD, only 5 studies used unilateral DBS (Turnbull et al., 1985;
Lee et al., 2016; Huang et al., 2019; Koulousakis et al., 2020;
Tsai et al., 2020). Although researchers believe that bilateral DBS
seems safe for AD, there have still been a small number of adverse
events (Ponce et al., 2016; Leoutsakos et al., 2018). Preliminary
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experiments by Huang et al. showed that bilateral DBS led to
more severe complications and higher mortality (Huang et al.,
2019). In fact, unilateral DBS can also improve the symptoms
associated with AD and shows good neuroprotective effects and
reversible side effects (Lee et al., 2016; Huang et al., 2019; Tsai
et al., 2020). To improve the safety of DBS for AD, whether to
switch to unilateral DBS in the future is worth exploring.

Current Intensity
The efficacy of DBS in AD is affected by current density.
Decreasing DBS current intensities of 200, 100, and 50 µA
were applied to rats receiving scopolamine to study the
effects of higher, medium, and lower current densities. At low
currents, there was no significant difference in the time ratio
of discrimination between the displaced and familiar objects in
rats receiving DBS compared with the control rats. However, the
spatial memory of rats was substantially improved under DBS at
100 and 200 µA. Therefore, it was found that a lower current
intensity had no effect on DBS in AD (Hescham et al., 2013b).
However, there is no other study on the effect of DBS stimulation
current intensity on AD.

POTENTIAL MECHANISMS OF ACTION

The mechanism of DBS in AD is unknown. This article
will explore the potential mechanism of DBS in AD from
several perspectives.

Regulation Related Neural Networks
Due to related molecular and structural abnormalities, the
memory network of patients with AD changes (Sperling et al.,
2010). There is evidence that the Papez circuit and the default
mode network of AD patients are impaired and that the inherent
connectivity in the default network is disrupted during resting
states and cognitive tasks (Raichle et al., 2001; Greicius et al.,
2004; Sperling et al., 2009). DBS has been shown to play a role
in the regulation of neural networks in diseases. In patients
with epilepsy, fornix DBS shows an electrical effect in the
upstream hippocampus (Lozano and Lipsman, 2013; Miller et al.,
2015). Hamani et al. used fornix DBS in obese patients, and
electroencephalogram (EEG) showed that electrical activity in
the hippocampus and parahippocampus was activated during
stimulation (Hamani et al., 2008). Based on this, the Hamani
team further used fornix DBS in AD, and the results showed
that the neural network of the default pattern network and
memory circuits in AD patients’ brains were activated, including
the entorhinal and hippocampal regions, and the connectivity
between neural networks in the brain was also increased
(Laxton et al., 2010). Functional connectivity analyses revealed
that cerebral glucose metabolism in AD patients increased
in a frontal-temporal-parietal-striatal-thalamic network and a
frontal-temporal-parietal-occipital network after fornix DBS
(Smith et al., 2012). The beneficial effects of NBM DBS in
AD patients are significantly correlated with the fronto-parieto-
temporal pattern of cortical thickness (Baldermann et al., 2018).
Figure 3 shows the modulated brain structure of AD patients
after DBS in the current study. Therefore, DBS may establish

FIGURE 3 | The modulated brain structure of AD patients after DBS in the

current study. (A) Modulated brain areas of AD patients after DBS of different

targets. (B) Modulated brain networks of AD patients after DBS. NBM, nucleus

basalis of Meynert; VC/VS, ventral capsule/ventral striatum.

upstream and downstream effects in related neural network
circuits by targeting key nodes of the neural network in the AD
brain, increasing connectivity between networks, and thereby
improving AD symptoms.

Promotion of Nerve Oscillation
Neuronal oscillations are essential for information processing
and communication between different brain structures. DBS has
the potential to reset the unstable mode of neuron oscillations
in AD, especially θ oscillations in the hippocampus (Hardenacke
et al., 2013; Senova et al., 2018).With an approximately sinusoidal
(4–10Hz) EEG activity, θ oscillations can be recorded in edge
circuits, are related to various cognitive processes, and play an
important role in learning and memory (Buzsaki, 2002; Laxton
et al., 2010). Various drugs that destroy cognitive functions
reduce or eliminate hippocampal θ oscillations (McNaughton
et al., 2007; Scott et al., 2012). The disruption of θ activity leads
to impaired spatial and recognition memory, and the restoration
of θ rhythm improves the learning ability of rats (Howlett et al.,
2004; Hasselmo, 2006; Villette et al., 2010). Suthana et al. found
that DBS caused the hippocampal θ rhythm to reset, optimally
encode input information, and improve memory function in
animal models (Suthana et al., 2012). In addition, electrical
stimulation of perforated pathways in rodents can trigger θ

phase reset, which creates favorable conditions for long-term
memory enhancement (McCartney et al., 2004). Abnormalities

Frontiers in Aging Neuroscience | www.frontiersin.org 15 March 2021 | Volume 13 | Article 619543

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Luo et al. DBS for AD

in θ rhythm have been shown in AD patients and mouse models
of AD (Klimesch, 1999; Scott et al., 2012). Based on these studies,
we hypothesized that DBS may improve AD symptoms through
neural oscillations that cause θ reset.

Reduction of Aβ Levels
Aβ oligomers are one of the main neuropathological signs of
AD. Aβ oligomers are highly neurotoxic, which may cause loss
of synapses and neuronal damage (Hardy and Higgins, 1992;
Perl, 2010), and affect circuit connectivity and network activities
(Canter et al., 2016). Over the past decades, genetic, biochemical,
and pathological evidence has revealed the importance of Aβ

as a neuropathological marker of AD (Sperling et al., 2011;
Barage and Sonawane, 2015). Acute DBS significantly reduced Aβ

plaques in the hippocampus and cortex of 6-week-old TgCRND8
mice (Xia et al., 2017). Chronic DBS can also reduce Aβ and
APP levels in 3xTg mice. The main source of Aβ production
is the hydrolysis of APP. APP is hydrolyzed by β-secretase and
γ-secretase to generate Aβ amyloid production pathways and
non-amyloid production pathways are cleaved by α-secretase
and γ-secretase (Barage and Sonawane, 2015; Chen et al., 2017;
Kowalski and Mulak, 2019). Arrieta-Cruz et al. showed that
high-frequency DBS can increase α-secretase activity in the
hippocampus of TgCRND8 AD mice by a factor of two, which
significantly increases synaptic plasticity in the CA1 region but
does not change β-secretase activity (Arrieta-Cruz et al., 2010). In
addition, Aβ can be cleared by internalization into glial cells (Kim
et al., 2018), and DBS can regulate glial cell activity (Vedam-Mai
et al., 2016; Xia et al., 2017). Therefore, DBS can reduce Aβ levels
and improve the pathological state of AD, possibly by reducing
Aβ production or increasing Aβ clearance.

Reduction of Tau Levels
Neurofibrillary tangles containing aggregates of
hyperphosphorylated tau protein are also one of the
neuropathological signs of AD. Tau with an abnormally
high degree of phosphorylation forms toxic paired helical
filaments, severely impairs synaptic function and causes cell
death (Mohandas et al., 2009; Joel et al., 2015). Fornix DBS has
no significant effect on hippocampal tau or phosphorylated tau
in Wistar rats. However, EC DBS can reduce the total tau and
Ser416-phosphorylated tau in the cortex and hippocampus of
3×Tg AD mice and increase neurogenesis in the dentate gyrus
(Mann et al., 2018). A study by Akwa et al. also showed that EC
DBS can reduce tau phosphorylation and accumulation of tau
oligomers in the CA1 region of 3xTg AD mice, and increase
tau autophagy-lysosomal degradation and synaptic protein
expression (Akwa et al., 2018). Therefore, DBS may affect the
degradation or clearance of tau in AD to reduce tau levels.
However, the specific details are not yet clear.

Reduction of Neuroinflammation
It has been recognized that neuroinflammation plays an
important role in the development and progression of AD (Von
Bernhardi, 2007; Le Page et al., 2017). The development of
AD is closely related to the complex cascade that leads to the
death of neurons. Normally functioning glial cells can express

Aβ-related degradation enzymes or bind related proteins to
promote the degradation and clearance of Aβ (Mulder et al.,
2012; Yali et al., 2014; Kim et al., 2018). With the development
of AD, glial cell malfunction can release excessive inflammatory
factors and neurotoxic factors to produce neurotoxic effects,
promote the cascade of Aβ and inflammation, and aggravate
neuronal death and the progression of AD (Bagyinszky et al.,
2017). In AD, astrocytes and microglia, the two main groups of
cells driving neuroinflammation, exhibit high levels of abnormal
activation (Cohen et al., 2013; Lopategui Cabezas et al., 2014).
Chronic fornix DBS can reduce the degree of astrocytic and
microglial reactivity and the extent of neuron loss in the cortex
and hippocampus (Leplus et al., 2019). DBS activates astrocytes
and microglia in the early stage after implantation; the degree
of glial reactivity later decreases (Song et al., 2013). Whether
DBS promotes the degradation and clearance of Aβ by activating
additional protective glial cells, thereby reducing neurotoxicity
and cascade reactions and ultimately downregulating glial cell
levels and reducing neuroinflammation, is worth exploring.

Regulation the Cholinergic System
Degeneration of the cholinergic circuit is a pathological
manifestation of AD. AD patients and animal models have
obvious cholinergic dysfunction involving abnormal ACh
production and degradation, including choline acetyltransferase
(ChAT) and acetylcholinesterase (AChE), respectively (Davies
and Maloney, 1976; Perry et al., 1977; Schliebs and Arendt,
2011). Acetylcholinesterase inhibitors (donepezil, rivastigmine,
galantamine) are approved by the U.S. Food and Drug
Administration for the treatment of AD patients (Unzeta et al.,
2016; Kaushik et al., 2018; Alzheimer’s Association, 2020).
High levels of ACh contribute to hippocampal θ oscillation
and enhance memory (Verdier and Dykes, 2001; Micheau
and Marighetto, 2011). Supplementation of exogenous ChAT
can improve memory and cognitive dysfunction in AD model
mice (Fu et al., 2004; Zhu et al., 2020). Studies have shown
that DBS improves scopolamine-induced learning and memory
deficits in rats (Hescham et al., 2013b, 2015). Scopolamine is a
muscarinic acetylcholine receptor antagonist. In APP/PS1 mice,
DBS reduced the level of AChE in the hippocampus and cortex
while increasing the level of ChAT, which implies an increase
in ACh (Huang et al., 2019). In rats with amygdala injury, DBS
treatment can effectively compensate for amygdala injury and
reduce the activity of AChE (Kadar et al., 2014). Therefore, DBS
can regulate the cholinergic system, which may be one of the
mechanisms by which DBS improves AD. However, a large-scale
study on long-term use of donepezil hydrochloride in patients
with AD showed that the donepezil hydrochloride cannot
help AD patients after the first 6 months. Acetylcholinesterase
inhibitors are not long-term effective in the treatment of AD
(Arai et al., 2016, 2018). This prompts us to consider whether
DBS improves AD directly or indirectly by regulating the
cholinergic system, whether this regulatory improvement is long-
term effective, and how long this improvement will last. At
present, there is no relevant research to solve these problems.
There are still many questions to be explored about the regulation
of DBS on the cholinergic system in AD.
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Induction of NGF Synthesis
DBS may exert neuroprotective effects by inducing NGF
synthesis in AD (Mashayekhi and Salehin, 2006; Hardenacke
et al., 2013). NGF is the most typical neurotrophic peptide
involved in regulating the survival and differentiation of neurons
(Lindsay and Harmar, 1989; Sofroniew et al., 2001). NGF levels
and metabolic pathways are clearly imbalanced in AD (Cuello
et al., 2010). The decrease in NGF supply at the age-related
basal forebrain cholinergic neuron cell level is similar to that
observed in AD (Salehi et al., 2004). NGF gene therapy caused
classic trophic responses in the brains of AD patients, including
neuronal hypertrophy, axonal sprouting and activation of cell
signaling (Tuszynski et al., 2015). The supply of NGF can provide
long-term cholinergic nutritional support, thereby slowing or
preventing cognitive decline in AD patients (Hardenacke et al.,
2013). Studies have shown that unilateral NBM DBS can result
in significantly higher NGF levels in healthy rats than observed
before stimulation. Mecamylamine, the nicotinic blocker, can
completely eliminate the secretion of NGF, which suggests that
the projection of the basal forebrain may be the reason for the
increase of NGF (Hotta et al., 2009). In AD disease, the ability
of DBS to induce the release of NGF may be a pathway closely
related to its mechanism, which also seems to be related to the
cholinergic system of the basal forebrain.

Other Potential Mechanisms
The mechanism of DBS in AD may also involve a variety of
other factors. In addition to the mechanisms described above,
DBS may also improve AD symptoms by regulating other
neurotransmitter systems. GABA and glutamic acid are closely
involved in memory function (Sivilotti and Nistri, 1991). In
AD rat models, glutamate acid decarboxylase 65 and 67 and
glutamate transporter levels changed after NBM DBS. This
suggests that NBM DBS may regulate changes in the GABA and
glutamate systems and improve memory in AD rat models (Lee
et al., 2016). It is also possible that DBS can enhance synaptic
plasticity, promote neuron formation, and improve memory by
regulating brain-derived nerve factors, including brain-derived
neurotrophic factor and vascular endothelial growth factor
(Gondard et al., 2015). It has been reported that DBS can
increase hippocampal neurogenesis in AD (Mann et al., 2018;
McKinnon et al., 2019). The newly born neurons have normal
morphology and function and can promote the normalization
of functional circuits (Lledo et al., 2006). DBS may improve AD
symptoms by promoting neuron regeneration. Figure 4 shows
the protein changes and potential protective mechanisms in AD
animal models after DBS of different targets in the current study.
The impact of DBS on AD animal models involves multiple
potential protective mechanisms including signaling pathways,

FIGURE 4 | The protein changes and potential protective mechanisms in AD animal models after DBS in the current study. Aβ, β-amyloid; AchE, acetylcholine

esterase; ANT, anterior nucleus of thalamus; APP, amyloid precursor protein; ChAT, choline acetyltransferase; EC, entorhinal cortex; DG, dentate gyrus; GABA,

gamma-aminobutyric acid; GAD 65 and 67, glutamate acid decarboxylase 65 and 67; GFAP, glial fibrillary acidic protein; GSH-Px, glutathione peroxidase; ILN,

intralaminar thalamic nucleus; MDA, methane dicarboxylic aldehyde; mPFC, medial prefrontal cortex; MT, mammillothalamic tract; MTN, midline thalamic nuclei; NBM,

nucleus basalis of Meynert; PSD-95: postsynaptic density protein 95; SOD, superoxide dismutase; VC/VS, ventral capsule/ventral striatum.
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oxidative stress, cell apoptosis, the GABA and glutamate systems
and neuronal function. More research is still needed to explore
these possibilities.

DISCUSSION

This article reviews the published literature on DBS in AD.
In patients and animal models with AD, DBS has shown
some efficacy.

To provide the best parameter as a reference for the
application of DBS in AD, this review summarizes and analyzes
the different treatment parameters from current human clinical
studies and animal studies of DBS in AD. Concerning stimulation
targets, the NBM, fornix, and EC are the preferred targets for DBS
treatment. This may be related to their structures and roles in the
brain. They are involved in different circuit systems, including
the base forebrain cholinergic system, the Papez circuit, and
the trisynaptic circuit (Lv et al., 2018; Yu et al., 2019). There
is currently no human clinical study of the EC as a target of
stimulation in AD, and only animal studies support the EC as
a target of DBS. The first area where neuropathy occurs in the
AD brain is the EC, which then spreads to other cortexes and
the hippocampus (Braak and Braak, 1991). The EC plays a very
important role in information transmission. Whether EC DBS
has a better effect than NBM and fornix DBS in AD is worthy
of further investigation in animals and humans. In addition, EC
DBS has been reported to improve spatial memory in patients
with epilepsy by resetting the θ rhythm on EEG (Suthana et al.,
2012).

Other DBS parameters that are commonly used in AD patient
studies include stimulation frequency (130/20Hz), stimulation
duration (long-term), bilateral stimulation, pulse width (90–
150 µs), and stimulation voltage (3.0–3.5V) (Table 1); in AD
animals the investigated parameters are stimulation frequency
(130/100Hz), stimulation duration (30 min-1 h, 3–42 days),
bilateral stimulation, pulse width (60–100 µs), and stimulation
current (100 µA) (Table 2). Based on the characteristics of
human and animal tissues, although these DBS parameters used
in AD animals cannot be directly applied for DBS in AD patients,
they can provide more supporting evidence for the study of
DBS in AD patients. Unilateral DBS should be popular in the
treatment of DBS. After all, unilateral DBS is very likely to cause
less surgical injury. Based on the long early incubation period
of AD and the irreversible characteristics of neurodegenerative
diseases (Selkoe and Hardy, 2016), using DBS to intervene in
the early stages of AD to delay the AD process seems to be
an excellent approach to treat AD (Huang et al., 2019). A
number of studies have shown that NBM DBS and EC DBS
have more beneficial effects in early AD (Hardenacke et al.,
2016; Xia et al., 2017; Huang et al., 2019). However, in one
clinical study, fornix DBS may have caused worse outcomes
for AD patients at a younger age (Lozano et al., 2016). This
may be related to multiple differences among different studies.
In general, the preferred of DBS parameters for AD tend
to be unilateral, early stage, and chronic treatment, with the
NBS/fornix/EC as targets, and the pulse width, stimulation
frequency, and stimulation voltage/current intensity can be
individually designed in the future.

The improvement in AD caused by DBS is a multifactorial
phenomenon, involving neural networks, θ oscillations, and
changes in the microenvironment in the body (Laxton et al.,
2010; Smith et al., 2012; Baldermann et al., 2018; Huang et al.,
2019; Leplus et al., 2019). DBS is a neural regulation technology
that directly changes brain activity in a controlled manner and
corrects abnormal electrical circuits in the brain (Yu et al.,
2019). In AD, during stimulation, DBS may have upstream
and downstream effects on related neural network circuits by
stimulating targets, activating or promoting electrical activity
in the brain, and resetting θ oscillation. However, it is unclear
what different upstream and downstream effects DBS has on
different targets in AD. Most animal research focuses on the
behavioral and biological effects in AD animals after DBS.
The biological effects of DBS on AD animal models involve
multiple potential protective mechanisms (Figure 4), and there
may be interconnections among these fields. For example, DBS
may regulate the microenvironment of AD animal models by
promoting ACh release, inducing NGF synthesis, and reducing
Aβ and tau levels (Hescham et al., 2013a; Xia et al., 2017;
Huang et al., 2019). At present, these changes are only superficial
phenomena, and the mechanism underlying them has not
been explored. In the future, experimental methods such as
electrophysiological recording, in vivo and in vitro optogenetics,
and patch clamp technology may be used to further study the
mechanism of DBS in AD.

DBS has broad application prospects for the treatment of
AD. However, research in this area is still in its infancy. The
stimulation parameters and mechanism of DBS in AD need
to be further explored. There are still limitations to applying
DBS in AD. To date, most of the published studies have been
performed with small sample sizes, especially human clinical
studies. Some patients with AD in human clinical studies
also used acetylcholinesterase medication when receiving DBS
(Table 1), which may have confounding effects on the results.
Compared with other electrical stimulation techniques, DBS is
an invasive technique with multiple risks, including the risks
of major surgery, such as bleeding, infection and other side
effects (Doshi, 2011; Ponce et al., 2016; Barrett, 2017). Creating
a personalized DBS treatment plan for each AD patient is a
way to reduce the risk of DBS. In addition, sex is considered
to be a factor related to the sex risk for AD. AD has a higher
prevalence in women (Mielke et al., 2014). Most experiments in
animal research are dominated by male animals. Fornix DBS can
significantly improve the performance of male mice in the water
maze without affecting the performance of females (Gallino et al.,
2019). Human clinical studies have not considered the sex of
patients with AD. Therefore, whether DBS can eventually become
an effective approach for AD is still not clear.More animal studies
and human clinical studies on the application of DBS in AD
are needed.

CONCLUSION

Most current research shows that DBS is a promising
intervention for the treatment of AD. However, future studies
of DBS therapy for AD should consider additional aspects,
including individual differences, based on the diversity of DBS
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parameters. The stimulation parameters need to be standardized,
and the after effect and mechanism of action need to be
further explored.
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