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Systematic mapping of protein-metabolite
interactions in central metabolism of Escherichia
coli
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Abstract

Metabolite binding to proteins regulates nearly all cellular
processes, but our knowledge of these interactions originates
primarily from empirical in vitro studies. Here, we report the first
systematic study of interactions between water-soluble proteins
and polar metabolites in an entire biological subnetwork. To test
the depth of our current knowledge, we chose to investigate the
well-characterized Escherichia coli central metabolism. Using
ligand-detected NMR, we assayed 29 enzymes towards binding
events with 55 intracellular metabolites. Focusing on high-confi-
dence interactions at a false-positive rate of 5%, we detected 98
interactions, among which purine nucleotides accounted for one-
third, while 50% of all metabolites did not interact with any
enzyme. In contrast, only five enzymes did not exhibit any metabo-
lite binding and some interacted with up to 11 metabolites. About
40% of the interacting metabolites were predicted to be allosteric
effectors based on low chemical similarity to their target’s reac-
tants. For five of the eight tested interactions, in vitro assays
confirmed novel regulatory functions, including ATP and GTP inhi-
bition of the first pentose phosphate pathway enzyme. With 76
new candidate regulatory interactions that have not been reported
previously, we essentially doubled the number of known interac-
tions, indicating that the presently available information about
protein–metabolite interactions may only be the tip of the iceberg.
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Introduction

Robustness and adaptability of cells emerge from the dynamic regu-

latory interplay of diverse biomolecules. Interactions with metabo-

lites are of particular importance as information input to many

regulatory proteins such as transcription factors and kinases (Li

et al, 2010; Hahn & Young, 2011; Kochanowski et al, 2013, 2017;

Chubukov et al, 2014; Wegner et al, 2015), and also into the meta-

bolic reaction network itself (Gerosa & Sauer, 2011; Ljungdahl &

Daignan-Fornier, 2012). An extensive network of protein–metabolite

interactions enables coordination of the various activities in each

cell. Our knowledge about these functional interactions is largely

based on accumulated biochemical evidence from studies on indi-

vidual proteins that typically yield a few new interactions by testing

compounds on the basis of existing knowledge (Jones & Fink, 1982;

Cherry et al, 2012; Keseler et al, 2017; Placzek et al, 2017).

While great strides have been made toward systematic mapping

of physical protein–protein and protein–DNA interaction networks

(Cai & Huang, 2012; Syafrizayanti et al, 2014; Myers et al, 2015;

Smits & Vermeulen, 2016), systematic mapping of protein–metabo-

lite interactions is lagging behind. One challenge is the generally

low affinity (mM range) of protein–metabolite interactions (Reznik

et al, 2017) and their fleeting nature. Some large-scale discovery

approaches reported hundreds of novel protein–metabolite interac-

tions with nearly no overlap between the studies (Gallego et al,

2010; Savitski et al, 2014; Geer & Fitzgerald, 2016; Piazza et al,

2018), providing a glimpse on the size of the interaction space.

Given this vast space, it might be more desirable to systematically

map protein–metabolite interactions within a defined subnetwork.

While this has been achieved for non-polar metabolites (lipids;

Gallego et al, 2010; Li et al, 2010), these methods are not transfer-

able to polar metabolites. Alternative methods suitable for polar

metabolites suffer from other problems. For example, most available

high-throughput methods do not detect metabolite binding itself,

but instead measure indirect interaction consequences on the

protein (Savitski et al, 2014; Diether & Sauer, 2017; Piazza et al,

2018), thus missing interactions that elicit only weak effects or are

1 Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
2 Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
3 Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland

*Corresponding author. Tel: +41 44 633 0720; E-mail: yaroslav.v.nikolaev@gmail.com
**Corresponding author. Tel: +41 44 633 36 72; E-mail: sauer@imsb.biol.ethz.ch
† These authors contributed equally to this work

ª 2019 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 15: e9008 | 2019 1 of 16

https://orcid.org/0000-0002-1479-7474
https://orcid.org/0000-0002-1479-7474
https://orcid.org/0000-0002-1479-7474
https://orcid.org/0000-0002-2131-6237
https://orcid.org/0000-0002-2131-6237
https://orcid.org/0000-0002-2131-6237
https://orcid.org/0000-0002-5923-0770
https://orcid.org/0000-0002-5923-0770
https://orcid.org/0000-0002-5923-0770


condition-dependent. The remaining methods are hampered by

chemical limitations, requiring functionalization (Hulce et al, 2013;

Höglinger et al, 2017) or radiolabeling (Roelofs et al, 2011) of

metabolites, or high protein concentrations (Orsak et al, 2012). To

address these limitations, we recently showcased a nuclear magnetic

resonance (NMR) spectroscopy approach that permits direct detec-

tion of interactions between any set of water-soluble proteins and

metabolites (Nikolaev et al, 2016). In a proof-of-concept study with

four proteins and 33 metabolites, we recovered all known and

detected new interactions, some of which proved to be functional

modulators. This approach thus opened a venue to exhaustively

search a pre-selected space of proteins and metabolites for potential

interactions.

To elucidate whether our current knowledge on protein–metabo-

lite interactions is nearing completion, at least for well-characterized

subnetworks, we chose to investigate Escherichia coli central carbon

metabolism that has been thoroughly investigated over decades. At

present, about 100 regulatory (metabolite changes enzyme activity)

and 130 catalytic (metabolite is substrate or product) interactions

involving the 35 major isoenzymes of central metabolism are

reported in the EcoCyc database (Keseler et al, 2017). We systemati-

cally generated ligand-detected NMR interaction profiles of 29 puri-

fied enzymes from E. coli central metabolism with 55 selected

metabolites, between which 72 interactions were already known.

Here, we focused our analysis only on high-confidence NMR inter-

actions by choosing a false-positive rate cutoff of 5%, which yielded

a dataset encompassing 30% of the 72 known interactions. At the

above cutoff, we detected 98 interactions between all tested

enzymes and metabolites, including 22 known interactions and 76

interactions that had not been reported previously, and validated

five of the newly predicted interactions with in vitro enzyme assays.

Among the most striking observations was the highly promiscuous

binding of GTP and other purine nucleotides (ATP, AMP, and

cAMP), and the lack of interactions with metabolites from amino

acid biosynthesis.

Results

Ligand-detected T1rho NMR assay for a biological subnetwork

To probe the depth of our current knowledge on protein–metabolite

interactions in E. coli central metabolism, we selected all mono-

meric and homo-oligomeric enzymes. Hetero-oligomeric and

membrane-bound proteins were excluded because of expected diffi-

culties with purification and in vitro reconstitution. For reactions

catalyzed by more than one enzyme, the major isoenzyme was

chosen. The resulting 35 selected central metabolic enzymes were

purified by His-tag affinity purification from clones of the ASKA

library (Kitagawa et al, 2005). For six of the enzymes (AceB, GltA,

Ppc, PpsA, PrpC, and SthA), we achieved only low yields under

high-throughput purification conditions, reducing the final set to 29

enzymes (Dataset EV1).

For systematic testing of putative regulators, we selected 59

metabolites from several pathways, including amino acids,

nucleotides, cofactors, and central metabolism, several with

known regulatory functions (Dataset EV1). From the initial set

of 59, four metabolites (coenzyme A, acetyl-coenzyme A,

erythrose-4-phosphate, and 5-aminoimidazole-4-carboxamide

ribonucleotide) were not tested due to their instability in our buffer

and temperature conditions. To detect protein–metabolite interac-

tions, purified proteins were mixed with a subset of metabolites and

NMR spectra were recorded. A single one-dimensional (1D) NMR

spectrum can resolve few dozens of individual metabolite signals.

Due to differences in the NMR properties of small and large mole-

cules, metabolite signals broaden (exhibit reduced intensity) upon

protein binding. We exploit this change in signal intensity to detect

metabolite–protein interactions. High-throughput NMR analysis

relies on availability of isolated compound-specific peaks in the

combined NMR spectrum of specific metabolite mixtures. NMR

signals start overlapping as the complexity of the metabolite mixture

increases, thus limiting the number of metabolites that can be confi-

dently assayed within one mixture. To split the selected metabolites

into a minimum number of groups (mixes), the NMRmix tool (Stark

et al, 2016) was employed. Three metabolites were explicitly

assigned to different mixes to avoid potential enzymatic reactions,

yielding four mixes each containing 12, 14, 14, and 15 metabolites in

such a way that each metabolite had at least one well-separated

signal in the 1D 1H NMR spectrum of the mix (Fig 1A and B,

Appendix Figs S1–S4, Dataset EV1).

To automate data acquisition, we developed a set of Python-

based TopSpin libraries for sample changing, basic experiment

setup, and spectral processing. To increase the measurement

throughput compared to the pilot study (Nikolaev et al, 2016), we

only measured 1D hydrogen-detected (1H) T1rho relaxation spectra

and omitted water-ligand observed via gradient spectroscopy

(WaterLOGSY), as the former appeared more robust although

slightly less sensitive (Nikolaev et al, 2016). T1rho experiments

detect signal decay rates (relaxation rates) in metabolites upon bind-

ing to a large macromolecule target. If an interaction between

metabolite and target exists, the NMR signals of the metabolite

decay (disappear) faster. To minimize contributions of metabolite

instability to the signals in the final spectra, T1rho spectra with

short relaxation delay (10 ms) were measured as two identical repe-

titions, before and after the T1rho experiment with long relaxation

delay (200 ms), and summed up during processing. Furthermore,

the difference spectrum of the two short-delay T1rho spectra

provided a quality filter to detect metabolites showing increased

chemical instability in the presence of specific proteins. Among

other sources of instability, metabolite degradation could be the

result of enzymatic conversion, although this is not likely to be a

major confounding factor given that the protein–metabolite mixture

was incubated for several hours prior to NMR recording. However,

differentiating the various sources of metabolite instability is not

feasible given our current setup. To identify protein–metabolite

interactions, purified proteins were mixed individually with the four

metabolite mixes in excess (15 lM of protein monomer and 200 lM
of each metabolite) in a buffer optimized for physiological salt

concentrations (Fig 2). NMR measurements with pure enzymes and

four pure metabolite mixes were used as references for quan-

tification.

Interactions between enzymes and metabolites were analyzed

using a fully automated custom-built analysis pipeline, initially by

computing both the fractional signal intensity (Nikolaev et al, 2016)

and relaxation factor (DRF; Gossert & Jahnke, 2016). For the final

analyses, the ΔRF metric was selected as it gave slightly better
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results for the given set of proteins and metabolites (assessed by

comparing the “area under the curve” for both metrics;

Appendix Fig S5). The ΔRF metric quantifies the difference in the

signal relaxation rate of the metabolite alone and in the presence of

the protein. If an interaction between metabolite and target exists,

the difference ΔRF value increases above zero.

DRF ¼ RFM � RFPM ¼ M200ms

M10ms

� �
� ðPMÞ200ms � P200ms

ðPMÞ10ms � P10ms

� �

Under the NMR setup employed, interactions with dissociation

constants (KDs) in the lM-to-mM range were generally detect-

able, with lM KDs producing the strongest attenuation of

metabolite signals in the presence of the protein, i.e., highest

DRF (Gossert & Jahnke, 2016; Nikolaev et al, 2016). The final

analysis used here was restricted to peaks with a signal-to-noise

ratio greater than two in the final T1rho NMR spectra of the

protein–metabolite mixtures (after subtracting pure protein and

metabolite signals).

Systematic map of protein–metabolite interactions in Escherichia
coli central metabolism

To determine the DRF values that represent biologically relevant

interactions, we investigated the overlap of the interactions detected

by our approach with the known interactions reported in the EcoCyc

database (Keseler et al, 2017). Among the 29 enzymes and 55

metabolites, 43 catalytic (metabolite is substrate or product) and 40

regulatory (metabolite changes enzyme activity) interactions are

known. Since some regulatory metabolites are also substrates or

products of their target enzyme, we thus have 72 previously

known interactions. Using different DRF cutoffs, we calculated

the false-positive and true-positive rates of recovering the known

interactions, obtaining a receiver-operator characteristics curve

(Appendix Fig S5, Materials and Methods: Analysis of the recovery

of known interactions). For conservative discovery—to select only

high-confidence interactions—we chose a false-positive rate of 5%,

corresponding to a DRF cutoff of 0.1805 that was applied in all

subsequent analyses.

By applying the 5% false-positive rate cutoff, we detected 98

distinct protein–metabolite interactions in our dataset. We recovered

22 of the 72 previously reported interactions (30%), thus achieving

a twofold higher true-positive rate than a recent MS-based study

(Piazza et al, 2018; 16% recovery of known interactions). Half of

the 55 tested metabolites did not exhibit any interaction and the

other half interacted on average with 3.5 proteins each (Fig 3A,

Dataset EV2). Remarkably, only four of the 20 proteinogenic amino

acids (Asn, His, Leu, and Trp) exhibited interactions with the tested

enzymes in our assays. In contrast, the ten tested nucleotide-related

metabolites interacted with 36 enzymes, most prominently GTP
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Figure 1. NMR spectra of metabolite mixes.

A 1D 1H-NMR spectra of a metabolite mix and the individual metabolites contained therein.
B Identification of single compound peaks from 1D 1H-NMR spectra of a metabolite mix. Compound detection is exemplified by showing sections of the 1D 1H-NMR

spectra of ATP, IMP, proline (PRO), malate (MAL), shikimate (SKM), and methionine (MET).
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with 13 and AMP with nine proteins. Overall, the here-detected

interactions were equally distributed between regulatory and cata-

lytic interactions (Fig 3B), indicating that our NMR approach is not

biased by interaction type. Likewise, there does not appear to be a

bias through chemical structures as the interactions spanned a wide

range of metabolites, as expected from NMR T1rho relaxation exper-

iments (Hajduk et al, 1997). Only five tested proteins did not inter-

act with any metabolite, and the remaining 24 proteins interacted

with about four metabolites on average (Appendix Fig S6). The most

highly connected enzymes were fructose-bisphosphate aldolase

(FbaA) and malate dehydrogenase (MaeB) with eleven interacting

metabolites each. Projection of the newly detected interactions onto

the network of central metabolism revealed significantly fewer inter-

actions in the tricarboxylic acid (TCA) cycle (P-value 0.004, two-

tailed t-test assuming unequal variance; on average 1 per TCA cycle

enzyme vs. 3.2 for any other enzyme, excluding purely catalytic

interactions; Fig 3C). We observed no significant differences

between enzymes that catalyze reversible or irreversible reactions

(P-value 0.22, two-tailed t-test assuming unequal variance). The

number of interacting metabolites per protein did not correlate with

1H-NMR (T1rho)
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Figure 2. Workflow of ligand-detected NMR approach.

Twenty-nine His-tagged enzymes of Escherichia coli central metabolism were mixed individually with four metabolite mixes, and T1rho 1D 1H NMR spectra were recorded

for every protein–mix combination. All possible interactions between enzymes and metabolites were quantified using the relaxation factor and are displayed in a protein–

metabolite interaction map.
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protein size (Appendix Fig S7), suggesting that experimental results

are not biased by the molecular weight of the targets. Sequence-

level analysis (Gasteiger et al, 2005) showed no correlation of

protein aliphatic content and hydropathicity with the number of

significant hits observed (R2 = 0.0009 and 0.0007; Appendix Fig

S8). Similarly, metabolite hydrophobicity did not correlate with the

number of detected interactions (R2 = 0.0844; Appendix Fig S8). In

total, we discovered 76 new protein–metabolite interactions.

Chemical similarities distinguish between potential allosteric
and competitive interactions

In general, all identified enzyme–metabolite interactions represent

potential catalytic and/or regulatory interactions. For catalytic inter-

actions, binding must occur at the enzymes’ active site. For regula-

tory interactions, binding can occur either at the active site

(competitive regulation) or at an alternative binding site (allosteric

regulation). Such allosteric regulators often have stronger regula-

tory potential, as their effect generally does not depend much on

the concentrations of the enzymes’ native substrates [e.g., in the

case of non-competitive inhibition (Purich, 2010)]. To differentiate

binding modes, we investigated the chemical similarity of metabo-

lites with substrates and products of the tested enzymes. We

assume that competitive binders will have a higher similarity to

substrates or products than allosteric binders. To investigate the

underlying distribution of chemical similarities in our biological

subnetwork, we calculated the maximum global chemical similarity

between all possible regulator–substrate/product pairs using

Simcomp2 (Hattori et al, 2010; Fig 4). Simcomp2 identifies the

maximal common substructure of two chemical structures using a

graph-based method (Hattori et al, 2010). The resulting distribution

ranges from zero (no similarity) to one (perfect similarity; regulator

is identical to substrate or product) with a mean of 0.34. Computing

this metric for the 98 detected interactions results in a distribution

with a mean of 0.59 (Fig 4, Dataset EV2), implying that most NMR-

detected interactors are similar (> 0.5) to the natural substrates/

products of their target. In turn, this indicates that many of the

detected interactions are due to binding of the metabolite to the

enzyme active site. Nevertheless, 40% of the NMR-detected interac-

tors have a low chemical similarity (< 0.5) to substrates/products

of the target enzyme, suggesting an allosteric binding mode

(Fig 4B). Since they are more distant from central metabolism,

amino acid and nucleotide interactors expectedly dominate among

the putative allosteric binders (Fig 4A, black rectangles). Overall,

we predict that 36 out of the 76 newly discovered interactions are

allosteric while the remaining interactions have a competitive bind-

ing mode (Appendix Fig S9).

Validation of newly predicted protein–metabolite interactions
with in vitro enzyme assays

Given the established reliability of NMR in detecting molecular

interactions (Dalvit et al, 2006; Pellecchia et al, 2008), we

decided to directly validate the newly predicted interactions at

the functional level. To validate the functionality of the predic-

tions, we chose eight enzyme–metabolite pairs based on their

biological relevance and chemical similarity and tested the

enzyme activities by in vitro assays in the presence and absence

of the predicted regulator (summarized in Appendix Fig S10,

Dataset EV3). First, the NADP+-dependent glucose-6-phosphate

dehydrogenase (Zwf) was selected for being at the branch

point between glycolysis and pentose phosphate pathway. Our

NMR-based approach predicted interactions of Zwf with the

nucleotides ATP, GTP, and IMP, with chemical similarities to the

natural substrates/products of 0.60, 0.55, and 0.44, respectively.

These interactions were not reported in EcoCyc or BRENDA,

except for ATP inhibition of Zwf in the absence of stabilizing

Mg2+ ions (Santimoy Banerjee & Fraenkel, 1972). In our plate-

reader-based in vitro enzyme assay, ATP and GTP indeed inhib-

ited Zwf even at physiological concentrations of MgCl2. IMP did

not affect Zwf activity, similar to the negative control

AMP (Fig 5A). Second, we investigated the predicted regulation

of phosphate acetyltransferase (Pta) by L-tryptophan and

phenylpyruvate. These interactions were selected due to the very

low similarity between the regulators and the natural substrates

and products of the enzyme (0.06 and 0.05), indicating possible

allosteric interactions. Mass spectrometry-based in vitro assays

showed a small, but insignificant concentration-dependent inhibi-

tory effect of phenylpyruvate and no inhibitory effect of L-trypto-

phan on phosphate acetyltransferase activity (Fig 5B). Third, the

glycolytic fructose-bisphosphate aldolase class II (FbaA) has no

reported metabolite regulators in EcoCyc but was found to inter-

act with eleven metabolites. We selected 3-phosphoglycerate,

ATP, and phosphoenolpyruvate for validation, as well as hypox-

anthine and IMP as negative controls. Mass spectrometry-based

in vitro assays showed that 3-phosphoglycerate, ATP, and

phosphoenolpyruvate had an activating effect on the enzyme,

whereas hypoxanthine and IMP had no measurable impact

(Fig 5C). Previously, 3-phosphoglycerate has been reported to

inhibit fructose-bisphosphate aldolase (Szwergold et al, 1995)

and the activating effect of PEP was observed with the mecha-

nistically distinct fructose-bisphosphate aldolase class I (Baldwin

& Perham, 1978). Overall, we could validate the regulatory func-

tion of five out of eight newly observed enzyme–metabolite

interactions.

◀ Figure 3. Overview of enzyme–metabolite interactions detected with NMR.

A Number of interactions detected per metabolite. Metabolites are grouped according to biological pathways; the height of the bar indicates the total number of
interactions.

B Recovery of interactions reported in EcoCyc database. Metabolites are grouped according to biological pathways, the total height of the bar indicates the number of
known interactions that could have been detected, and the height of the colored bar indicates the number of actually recovered interactions. Recovery of catalytic
(metabolite is substrate or product of the enzyme) and regulatory interactions is shown.

C Distribution of known regulatory and newly predicted interactions in Escherichia coli central metabolism. Enzymes included in this study are depicted in bold. Gray
and white circles indicate how many known interactions were recovered or not recovered, respectively. Newly detected interactions are depicted using circles that are
color-coded according to the origin of the respective metabolite.

Data information: Abbreviations of proteins and metabolites are explained in Dataset EV1.
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Figure 4. A map of the enzyme–metabolite interactions in Escherichia coli central metabolism.

A Interactions between 29 central enzymes (in rows) and 55 metabolites (in columns), grouped according to metabolic pathways (n = 2, measurement replicates from
the same sample). The relaxation factor of every interaction is indicated in green. Previously reported catalytic and regulatory interactions are denoted with “C” and
“R”, respectively; black and red letters indicate interactions that were detected and not detected, respectively. Black rectangles indicate potential allosteric
interactions (maximum chemical similarity between the interactor and substrates/products of the target is lower than 0.5).

B Histogram showing the relative occurrences of maximum chemical similarity scores in the protein–metabolite interaction map. Gray bars indicate the distribution of
scores considering all possible enzyme–metabolite pairs, and green bars indicate the distribution scores for interactions with DRF > 0.1805 (false-positive rate < 5%).

Data information: Abbreviations of proteins and metabolites are explained in Dataset EV1.
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Discussion

To probe the depth of our present knowledge on protein–metabolite

interactions, we systematically mapped protein–(polar) metabolite

interactions in the arguably best-characterized molecular network:

E. coli central metabolism (Keseler et al, 2013; Placzek et al, 2017).

For this purpose, we developed a higher throughput version of a

ligand-detected NMR assay that was recently showcased to provide

direct readout of binding events at high sensitivity for weak interac-

tions (Nikolaev et al, 2016). Even with very conservative cutoffs at

a 5% false-positive rate of the known interactions, the metabolite-

binding profiles of 29 central enzymes with 55 metabolites identi-

fied 76 novel interactions. Detected interactions were spread across

most enzymes, rather than focusing on few regulatory hubs.

Although our NMR assays do not provide direct functionality

evidence, we estimate that over 60% of the newly detected binding

events are functional, based on the recovery of positive controls

from protein–metabolite interaction databases and functional

in vitro assays. By constructing the first near-comprehensive map of

protein–(polar) metabolite interactions in a defined biological

subnetwork, we could essentially double the number of known

interactions. Given that central metabolism was already heavily
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Figure 5. In vitro enzyme assays.

A Relative activity of NADP+-dependent glucose-6-phosphate dehydrogenase in the presence of potential regulators; error bars represent the s.e.m. All regulators were
tested at two concentrations in four distinct replicates (n = 4, ATP: 5 mM, 18 mM; GTP: 2 mM, 10 mM; IMP and AMP: 1 mM, 5 mM), and the asterisk denotes
significant inhibition (18 mM ATP: P-value = 0.029; 10 mM GTP: P-value = 0.025, one-tailed t-test).

B Relative activity of phosphate acetyltransferase in the presence of phenylpyruvate and tryptophan; error bars represent the s.e.m. All regulators were tested at three
concentrations in three distinct replicates (n = 3, phenylpyruvate: 0.1, 1, 5 mM; L-tryptophan: 0.1, 1, 4.4 mM).

C Relative activity of fructose-bisphosphate aldolase class II in the presence of 5 mM of potential regulators, except hypoxanthine, which was tested at 3.22 mM. All
regulators were tested in three distinct replicates (n = 3), and error bars represent the s.e.m. The asterisk denotes significant activation (5 mM 3PG: P-value = 0.025;
5 mM ATP: P-value = 0.024; 5 mM PEP: P-value = 0.046, one-tailed t-test).

Data information: The raw data for all in vitro enzyme assays can be found in Dataset EV3.
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investigated, our results suggest that the presently available infor-

mation about protein–metabolite interactions may only be the tip of

the iceberg.

Most striking was the large number of interactions with purine

nucleotides, most prominently with GTP. While ATP was known to

bind to a variety of proteins in several organisms (Reinhard et al,

2015; Geer & Fitzgerald, 2016; Piazza et al, 2018), promiscuous

binding of GTP was reported only recently (Piazza et al, 2018). The

frequent binding of purine nucleotides does not appear to be

explained by propensity of specific proteins for RNA binding, since

we found no correlation with RNA binding enzymes from two

recently published E. coli studies (Queiroz et al, 2019; Shchepachev

et al, 2019). The recent discovery of purine nucleotide function as

biological hydrotropes (Patel et al, 2017) could offer an explanation;

however, effects on protein aggregation were only observed at much

higher concentrations than used in our assay (> 5 mM compared to

0.2 mM). In general, purine nucleotide binding might induce

coupling of enzyme activity to the availability of energy cofactors,

although that does not explain the prominence of GTP over ATP.

Alternatively, the large number of purine compared to pyrimidine

interactions may simply reflect a general preference for purine-

based regulators, as is also seen for second messengers such as

cAMP and cGMP (Seifert, 2015; Nelson & Breaker, 2017). In contrast

to nucleotides, amino acids interacted with few central enzymes.

Thus, central metabolism appears to be regulated primarily through

central metabolites and cofactors. In general, regulatory interactions

are more frequent in glycolysis and pentose phosphate pathway,

while we found much fewer interactions for TCA cycle enzymes.

This observation is consistent with previous reports about primarily

transcriptional and comparatively less metabolite regulation of the

TCA cycle (Gerosa et al, 2015; Reznik et al, 2017). Remarkably, the

two tested malic enzymes (MaeA and MaeB), which catalyze

the decarboxylation of the TCA cycle intermediate malate to pyru-

vate, exhibit many new metabolite interactions. Possibly, this

reflects the need for a tight regulation of reactions branching from

the TCA cycle as suggested before (Reznik et al, 2017).

Enzyme activity modulation through metabolite binding may be

achieved through competitive or allosteric interactions, i.e., binding

at the active site or elsewhere on the protein, respectively. About

60% of the detected binders were of high chemical similarity

(> 0.5) to the native reactants of their protein targets, suggesting

competitive binding at the active site. This conclusion concurs with

the observation that most known metabolite regulators are chemi-

cally similar to either the substrates or products of their enzyme

target (Alam et al, 2017). The remaining 40 interactions with low

chemical similarity scores (≤ 0.5) are hence suspected to allosteri-

cally bind at some distance from the active site. Using in vitro

enzyme assays, we confirmed the regulatory role of five out of eight

tested interactions, in particular showing that the branch point

enzyme Zwf is inhibited by the frequently interacting metabolites

ATP and GTP. In summary, of the five interactions showing signifi-

cant effects on enzyme activity, two metabolites show the effect

within their physiological concentration range (Zwf–GTP and

FbaA–ATP), and three more show the effect at concentrations one-

to sevenfold higher than the anticipated physiological steady state

concentration range of the metabolite (Zwf–ATP, FbaA–3PG, and

FbaA–PEP; Park et al, 2016; Kochanowski et al, 2017; Appendix Fig

S10).

The previously published ligand-detected NMR experiments

identified 15 interactions for enolase and 6-phosphofructokinase I

(Nikolaev et al, 2016), while we report only four here, two of

which were detected in both datasets (Eno–PEP and PfkA–AMP).

The lower number of detected interactions in the current dataset

is likely due to a combination of (i) a new assay buffer with

physiological salt concentrations, to minimize unspecific binding;

and (ii) more stringent analysis, including fully automated peak

picking and exclusion of metabolite signals that are unstable over

time. Our experiments included 27 proteins and 18 metabolites

that were also covered in a recent proteomic study based on

limited proteolysis coupled to mass spectrometry (LiP-MS; Piazza

et al, 2018). The overlap between both studies was 11 interac-

tions, six of which were not reported before, similarly to what

can be expected from other large-scale studies (Diether & Sauer,

2017). Additionally, LiP-MS and our NMR analysis yielded 56 and

37 non-overlapping interactions on the same set of proteins and

metabolites, respectively. These differences could result from

NMR reporting on direct interactions under in vitro conditions,

while LiP-MS senses both direct and indirect effects under native

cellular extract conditions. Furthermore, while T1rho NMR is

most sensitive to interactions with lM dissociation constants

(Nikolaev et al, 2016), LiP-MS exhibits a broader sensitivity range

(Piazza et al, 2018). Despite the many non-overlapping interac-

tions, the amount of interactions detected for the same metabo-

lites was comparable (correlation with R2 = 0.2857; Appendix Fig

S11). Notably, the true-positive rate in NMR experiments was

twice as high as in LiP-MS (30% vs. 15.6%) at a comparable

false-positive rate (5% vs. 5.5%) (Piazza et al, 2018). Our ligand-

detected NMR method is therefore complementary to recent mass

spectrometry-based proteomics approaches that are also unbiased

with regard to specific metabolite and protein classes (Lomenick

et al, 2009; Savitski et al, 2014; Piazza et al, 2018). The in vitro

NMR assays are less susceptible to indirect effects, work also for

low-abundance proteins and proteins with unfavorable proteolytic

patterns, permit higher throughput in the number of tested

metabolites, and could potentially be applied to metabolite-inter-

acting RNA targets. MS-proteomics on the other hand permits

working in native cellular extracts and provides higher through-

put in the number of tested proteins, and in the case of limited

proteolysis, provides also information on potential allosteric bind-

ing sites.

Systematic mapping of regulatory protein–metabolite interac-

tions remains a challenge because of the weak energy of such

interactions and only indirect detection offered by most existing

methods. In this first large-scale application of the previously

developed ligand-detected NMR approach (Nikolaev et al,

2016), we demonstrate the potential for exhaustive mapping of

interactions in a pre-selected space of proteins and metabolites,

providing direct readout of binding events and sensitivity to

weak interactions without restrictions to specific protein or

metabolite classes. With the here-established fully automated

data analysis pipeline, including NMR spectra conversion, peak

detection, and quantification of interactions, ligand-detected

NMR can become an invaluable tool for the discovery of func-

tional protein–metabolite interactions in different biological

networks, including transcription factor networks and signaling

pathways.
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Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

ASKA library (E. coli) Kitagawa et al (2005) N/A

Chemicals, enzymes and other reagents

Yeast extract (for LB medium) BD Bioscience 288620

Tryptone (for LB medium) LLG Labware 6271005

Chloramphenicol Merck (Sigma-Aldrich) C0378

Isopropyl b-D-1-thiogalactopyranoside Merck (Sigma-Aldrich) I5502

B-PERTM reagent (in phosphate buffer) Thermo Scientific 78266

Lysozyme from chicken egg white Merck (Sigma-Aldrich) 62970-5G-F

DNase I PanReac AppliChem A3778, 0100

Phenylmethanesulfonyl fluoride Merck (Sigma-Aldrich) 93482

His GraviTrap TALON columns GE Healthcare 29000594

ZEBATM Spin Desalting Columns, 7K MWCO, 10 ml Thermo Scientific 89893

Imidazole Merck (Sigma-Aldrich) I3386

di-Potassium hydrogen phosphate Merck (Sigma-Aldrich) 1.05104

Potassium dihydrogen phosphate Merck (Sigma-Aldrich) 1.04873

Trizma base Merck (Sigma-Aldrich) T1503

NaCl Merck (Sigma-Aldrich) 1.06404

KCl Merck (Sigma-Aldrich) 60130

MgCl2 Merck (Sigma-Aldrich) 63072

D2O ARMAR Chemicals 014400

4,4-dimethyl-4-silapentane-1-sulfonic acid Merck (Sigma-Aldrich) 178837

Methanol Merck (Sigma-Aldrich) 1.06009

Isopropanol Merck (Sigma-Aldrich) 34863

Water Merck (Sigma-Aldrich) 34877

NH4F Merck (Sigma-Aldrich) 338869

Hexakis(1H, 1H, 3H-tetrafluoropropoxy)phosphazine Agilent G1969-85001

Homotaurine Merck (Sigma-Aldrich) A76109

D-glucopyranose-6-phosphate Merck (Sigma-Aldrich) G7879

Glyceraldehyde 3-phosphate Merck (Sigma-Aldrich) G5251

Acetyl phosphate Merck (Sigma-Aldrich) 01409

Coenzyme A Merck (Sigma-Aldrich) C4780

Acetyl-coenzyme A Merck (Sigma-Aldrich) A2056

L-Alanine Merck (Sigma-Aldrich) 05130

L-Arginine Merck (Sigma-Aldrich) 11010

L-Asparagine Merck (Sigma-Aldrich) A8381

L-Aspartate Merck (Sigma-Aldrich) 11189

L-Cysteine Merck (Sigma-Aldrich) C7352

L-Glutamine Merck (Sigma-Aldrich) 49419

L-Glutamate Merck (Sigma-Aldrich) 49621

Glycine Merck (Sigma-Aldrich) G5417

L-Histidine Merck (Sigma-Aldrich) 53320

L-Isoleucine Merck (Sigma-Aldrich) I2752
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

L-Leucine Merck (Sigma-Aldrich) 61819

L-Lysine Merck (Sigma-Aldrich) L5501

L-Methionine Merck (Sigma-Aldrich) M9625

L-Phenylalanine Merck (Sigma-Aldrich) P2126

L-Proline Merck (Sigma-Aldrich) P0380

L-Serine Merck (Sigma-Aldrich) 84960

L-Threonine Merck (Sigma-Aldrich) T8625

L-Tryptophan Merck (Sigma-Aldrich) 93660

L-Tyrosine Merck (Sigma-Aldrich) 93830

L-Valine Merck (Sigma-Aldrich) V0500

Phenylpyruvate Merck (Sigma-Aldrich) 286958

Shikimate Merck (Sigma-Aldrich) S5375

L-Homoserine Merck (Sigma-Aldrich) H6515

3-Methyl-2-oxobutanoate Merck (Sigma-Aldrich) 198994

L-Ornithine Merck (Sigma-Aldrich) O8305

L-Cystathionine Merck (Sigma-Aldrich) C7505

2-Oxoglutarate Merck (Sigma-Aldrich) 75890

Citrate Merck (Sigma-Aldrich) 1.00244

L-Malate Merck (Sigma-Aldrich) M1125

Succinate Merck (Sigma-Aldrich) S2378

Fumarate Merck (Sigma-Aldrich) F1506

Itaconate Merck (Sigma-Aldrich) 129204

Nicotinamide adenine dinucleotide Merck (Sigma-Aldrich) 43410

Nicotinamide adenine dinucleotide phosphate Merck (Sigma-Aldrich) N5755

Flavin adenine dinucleotide Merck (Sigma-Aldrich) F6625

D-Glucose-6-phosphate Merck (Sigma-Aldrich) G7250

D-Fructose 1,6-bisphosphate Merck (Sigma-Aldrich) F6803

Dihydroxyacetone phosphate Merck (Sigma-Aldrich) 51269

D-(-)-3-Phosphoglycerate Merck (Sigma-Aldrich) P8877

Phosphoenolpyruvate Merck (Sigma-Aldrich) 860077

Pyruvate Merck (Sigma-Aldrich) P2256

6-Phosphogluconate Merck (Sigma-Aldrich) P7877

D-Ribulose-5-phosphate Merck (Sigma-Aldrich) 83899

Inosine 50-monophosphate Merck (Sigma-Aldrich) I4500

Hypoxanthine Merck (Sigma-Aldrich) H9377

5-Phospho-D-ribose 1-diphosphate Merck (Sigma-Aldrich) P8296

Adenosine 50-monophosphate Merck (Sigma-Aldrich) 01930

Adenosine 50-triphosphate Merck (Sigma-Aldrich) A26209

Adenosine 30 ,50-cyclic monophosphate Merck (Sigma-Aldrich) A6885

Cytidine 50-triphosphate Merck (Sigma-Aldrich) C1506

Guanosine 50-triphosphate Merck (Sigma-Aldrich) G8877

Thymidine 50-triphosphate Merck (Sigma-Aldrich) T0251

Uracil Merck (Sigma-Aldrich) 94220

Spermidine Merck (Sigma-Aldrich) S2626

Malonate Merck (Sigma-Aldrich) M1875
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

Software

Matlab R2018b The MathWorks, Inc. N/A

Python 2.5.3 (TopSpin-Jython implementation) https://www.python.org/ N/A

TopSpin 3.2 Bruker N/A

NMRmix Stark et al (2016) N/A

Simcomp2 Hattori et al (2010);
https://www.genome.jp/tools/simcomp2/

N/A

Other

5-mm TA tubes ARMAR Chemicals N/A

Avance III-HD 600 MHz NMR spectrometer,
CPTCI 1H/19F-13C/15N-2H probe

Bruker N/A

Tecan Infinite M200 Tecan N/A

6520 series iFunnel quadrupole
time-of-flight mass spectrometer

Agilent N/A

MPS2 autosampler GERSTEL N/A

Methods and Protocols

Protein expression and purification
LB shake flask cultures (200–600 ml, 5 g/l yeast extract, 10 g/l tryp-

tone, 10 g/l NaCl) supplemented with 100 lg/ml chloramphenicol

were inoculated in a 1:100 ratio with LB precultures of the overexpres-

sion strains (Kitagawa et al, 2005), and expression was induced with

0.1 mM isopropyl b-D-1-thiogalactopyranoside. Cultures were incu-

bated for 16 h at 37°C while being shaken (300 rpm). Cells were

harvested by centrifugation (5,000 g and 4°C for 15 min) and flash-

frozen in liquid nitrogen. For cell lysis, cells were resuspended in lysis

buffer [B-PER reagent in phosphate buffer (Thermo Scientific) supple-

mented with 500 mM NaCl, 20 mM imidazole, 4 mM phenylmethane-

sulfonyl fluoride, 1 mM MgCl2, 2 mg/ml lysozyme, and 0.2 mg/ml

DNase I (PanReac AppliChem), volume: 10% of culture volume]. The

suspension was shaken at room temperature for 10 min, and cell

extracts were separated from cell debris by centrifugation (20,000 g

and 4°C for 30 min). His-tagged proteins were purified from cell

extracts using His GraviTrap TALON gravity flow columns (GE Health-

care), and the elution buffer was replaced by the respective assay

buffer [20 mM potassium phosphate buffer (pH 7.5), 100 mM KCl,

10 mM NaCl, and 5 mM MgCl2] using ZEBATM spin desalting columns

with 7 kDa cutoff (Thermo Scientific). The purity of all tested proteins

was higher than 90%, as assessed by sodium dodecyl sulfate–polyacry-

lamide gel electrophoresis (SDS–PAGE; Appendix Fig S12), in agree-

ment with the study in which these overexpression strains had first

been described. The purified proteins were flash-frozen in liquid nitro-

gen and stored at �80°C until further usage.

NMR measurements and analysis
Sample preparation (pure metabolite samples)

In order to obtain a reference peak list, NMR spectra of the pure

metabolites were recorded in 425–500 ll volume containing 200 lM
metabolite in assay buffer [20 mM potassium phosphate buffer (pH

7.5), 100 mM KCl, 10 mM NaCl, and 5 mM MgCl2], 10% D2O, and

25 lM 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS).

Sample preparation (proteins and metabolites)

Proteins stored at �80°C were thawed quickly and centrifuged (2 min,

20,000 g, room temperature) to remove aggregates. Protein concentra-

tions were measured based on their specific extinction coefficients at

280 nm immediately before NMR sample preparation. In all experi-

ments, the final protein and metabolite concentrations were 15 lM
(monomer) and 200 lM in assay buffer, respectively. All samples were

prepared in a total volume of 425–500 ll in 5-mm TA tubes (ARMAR

Chemicals) and contained 10% D2O and 25 lMDSS.

NMR measurements

NMR measurements were performed at 298K on a Bruker Avance

III-HD 600 MHz spectrometer as described previously (Nikolaev

et al, 2016). For proteins with final native mass below 40 kDa (Pgk,

Pgl, Rpe, TpiA), T1rho experiments used 400 ms instead of 200 ms

relaxation delay to compensate for lower relaxation rate enhance-

ment than in larger proteins. For acquisition, a 512-scan T1rho

experiment with long (200–400 ms) relaxation delay was sand-

wiched between two replicates of 256-scan T1rho experiments with

short (10 ms) relaxation delays. In the final analysis, the two short-

delay T1rho spectra were summed, thus averaging potential time-

dependent differences in the peak intensities when compared to the

long-delay T1rho spectra. Each acquisition included a 1D-1H spin-

echo experiment (Sklená�r & Bax, 1987), which provides maximal

sensitivity for the signals of proteins with large molecular weight,

thus allowing the control of protein stability between the samples.

To automate the data acquisition, a Python-based library for sample

changing, basic experiment setup, and acquisition logging was

developed (github.com/systemsnmr/metabolite-interactions),

making use of the Bruker “NMR Case” accessory.

NMR processing and data analysis

Spectra were processed in TopSpin 3.2 (Bruker) using custom-built

Python routine to process, calibrate, and calculate the difference

spectra (github.com/systemsnmr/metabolite-interactions). Calibra-

tion of spectra to the DSS reference signal was critical to minimize
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subtraction artifacts in the final difference spectra. As a measure of

experimental reproducibility and a quality filter for metabolite

stability, the two short-delay T1rho replicate spectra for each sample

were compared. Metabolite signals showing more than 5% dif-

ference between these two spectra were considered unstable in the

presence of the given protein and were excluded from the final anal-

ysis. Additionally, metabolite peaks that appeared to gain intensity

in the presence of the protein were excluded. These were identified

as the peaks which showed a marked negative intensity (smaller

than �0.05) after subtracting the intensities of the combined short-

delay spectra of the protein–metabolite mixtures (T1rho10ms_PM),

and free protein (T1rho10ms_P), from the free metabolite reference

spectra (T1rho10ms_M): [T1rho10ms_M � (T1rho10ms_PM �
T1rho10ms_P) < �0.05].

Peak detection and quantification

Identification, signal-to-noise ratio (S/N) quantification, assign-

ment, and disambiguation of interaction hits were performed

using custom-built Matlab scripts (github.com/systemsnmr/

metabolite-interactions). For every peak of every compound, a

peak window was determined. After the optimal metabolite mixes

were identified with the NMRmix software (Stark et al, 2016), a

list with peak windows for all metabolites was compiled for

every metabolite mix, excluding the regions with overlapping

peaks. During further analysis of NMR spectra, maximum peak

intensities in a given spectrum were identified by scanning the

pre-defined peak window for the maximum value. The S/N for

every peak was calculated from the T1rho NMR spectrum of the

protein–metabolite mixtures, after subtracting pure protein and

pure metabolite signals.

Quantification of interactions with the relaxation factor

Interactions between enzymes and metabolites were quantified

by computing the relaxation factor (Gossert & Jahnke, 2016;

Equation 1). In brief, this metric measures the difference in relax-

ation of the metabolite alone and in the presence of the protein.

In case there is no interaction, the relaxation of the metabolite is

not affected by the presence of the protein yielding a low DRF. If
a protein–metabolite interaction is present, the relaxation factor

decreases in the presence of the protein, yielding a value > 0 for

DRF. Specifically, maximum peak intensities in 10-ms-relaxation

and 200-ms-relaxation (or 400 ms for proteins with molecular

weight smaller than 40 kDa) NMR spectra were used to compute

the relaxation factor.

DRF ¼ M200ms

M10ms

� �
� ðPMÞ200ms � P200ms

ðPMÞ10ms � P10ms

� �
(1)

Analysis of the recovery of known interactions
In order to analyze the predictive power of the relaxation factor,

we investigated the recovery of known interactions for different

relaxation factor cutoffs. We considered the total space of interac-

tions as the combination of all tested enzymes (29) and all tested

metabolites (55) yielding 1,595 possible interactions. Known

interactions were taken from the EcoCyc database, whereby 72

unique catalytic and/or regulatory interactions were identified.

Next, we calculated the false-positive rate (FPR) and true-positive

rate (TPR) for DRF cutoffs in the interval [0, 0.5] according to

the following formulas:

TPRDRFC ¼ TPDRFC

TPDRFC þ FNDRFC
; DRF cutoff 2 ½0; 0:5� (2)

FPRDRFC ¼ FPDRFC

FPDRFC þ TNDRFC
; DRF cutoff 2 ½0; 0:5� (3)

Here, true-positive (TP) and false-negative (FN) interactions

refer to the number of known interactions with a DRF above or

below the cutoff DRF cutoff, respectively. Accordingly, false-posi-

tive (FP) and true-negative (TN) interactions refer to the number of

interactions not reported in EcoCyc with a DRF above or below the

cutoff DRF cutoff, respectively. Note that this approach likely

underestimates the total amount of true-positive interactions in the

dataset, since only previously known interactions are considered

true positive. Plotting the true-positive rate against the false-positive

rate yields a receiver operating characteristic curve (ROC curve;

Appendix Fig S5). For further investigation of the dataset, we

selected a false-positive rate of 5%, corresponding to a DRF cutoff

of 0.1805.

Metabolite mix assembly
The tool NMRmix was used to sort 59 metabolites (55 metabo-

lites from this study, and CoA, acetyl-CoA, erythrose-4-phos-

phate, and 5-aminoimidazole-4-carboxamide ribonucleotide

(AICAR)) into mixes with low spectral overlap (Stark et al,

2016). Peak lists generated from pure metabolite NMR spectra

(see above) were used as input, and NMRmix was run using the

following settings: Optimizing: Mixtures: 4, Max Mixture Size:

15, Cooling Rate: Linear, Start Temperature: 10,000, Final

Temperature: 25, Max Steps: 500,000, Mix Rate: 2, Iterations:

10, Randomize Initial Mixtures: ON; Refining: Use Refinement:

ON, Cooling Rate: Exponential, Start Temperature: 50, Final

Temperature: 25, Max Steps: 1,000, Mix Rate: 2; and Scoring:

Overlap Range: 0.025, Score Scaling: 100, Use Intensity Scoring:

ON, and Autosave Results: ON.

NMR measurements of the metabolite mixes revealed degrada-

tion of CoA, acetyl-CoA, erythrose-4-phosphate, and AICAR, which

were thus excluded from further experiments. To prevent potential

enzymatic reactions, ATP (initially in mix 3) was exchanged with

cAMP (initially in mix 1) and glucose-6-phosphate (initially in mix

4) was transferred to mix 2. The final mix compositions are given in

Dataset EV1.

Computation of chemical similarity
Chemical similarity of metabolite regulators and the substrates/

products of the tested enzymes was calculated using the Web-based

tool Simcomp2 (Hattori et al, 2010). The settings for “Global

search” were applied, and the cutoff was lowered to 0.01.

In vitro enzyme assays
Spectrophotometric assays for Zwf activity

Enzymatic in vitro assays for Zwf were performed by measuring the

formation of NADPH photometrically at 340 nm. Assays were

performed at 30°C in assay buffer [20 mM potassium phosphate

buffer (pH 7.5), 100 mM KCl, 10 mM NaCl, and 5 mM MgCl2] with
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2 mM D-glucopyranose-6-phosphate and 1 mM NADP+, and the

competing metabolites at a concentration of 1–18 mM (ATP: 5 mM,

18 mM; GTP: 2 mM, 10 mM; IMP: 1 mM, 5 mM; AMP: 1 mM,

5 mM). Reactions were started by addition of the purified Zwf

enzyme (final concentration in the assay of roughly 40 nM

monomer), and the formation of NADPH was monitored photomet-

rically at 240 nm every 10 s using a TECAN Infinite M200 spectrom-

eter. Initial reaction velocities (within the first 120–150 s) were then

determined by linear regression. Reaction velocities were normal-

ized to the control without regulator, and the significance of inhibi-

tion was calculated using a one-sided Student t-test. Each

experiment was performed in experimental quadruplicates. Raw

data for the in vitro assay are provided in Dataset EV3.

Mass spectrometry-based FbaA activity assays

FbaA activity assays were performed at 30°C in assay buffer

[10 mM Tris–HCl pH 7.5, 1 mM MgCl2] with 1 mM fructose 1,6-

bisphosphate and the competing metabolites at a concentration of

3.22 or 5 mM (hypoxanthine: 3.22 mM; ATP: 5 mM; 3PG: 5 mM;

PEP: 5 mM; IMP: 5 mM). Reactions were started by addition of the

purified FbaA enzyme (final concentration in the assay of roughly

1 lM monomer). At the indicated time points, a 10-ll aliquot of the
reaction solution was transferred to 40 ll methanol pre-cooled to

�20°C to quench the reaction by inducing enzyme denaturation.

Reactant concentrations were subsequently measured by flow-injec-

tion time-of-flight mass spectrometry (FIA TOF-MS). Negatively

charged ions were putatively annotated based on accurate mass

using 0.05 Da tolerance assuming simple deprotonation ([M-H]�).
Each experiment was performed in experimental triplicates. In order

to distinguish between mass spectrometry artifacts and real concen-

tration changes, product calibration curves were prepared. 0, 15, 30,

and 60 lM of dihydroxyacetone phosphate and glyceraldehyde 3-

phosphate were mixed with 1 mM fructose 1,6-bisphosphate in

assay buffer [10 mM Tris–HCl pH 7.5, 1 mM MgCl2], and the puta-

tive regulators were added at a concentration of 3.22 or 5 mM (hy-

poxanthine: 3.22 mM; ATP: 5 mM; 3PG: 5 mM; PEP: 5 mM; IMP:

5 mM). A 10-ll aliquot of each mix was transferred to 40 ll
methanol pre-cooled to �20°C. Reactant concentrations were subse-

quently measured by FIA TOF-MS. Negatively charged ions were

tentatively annotated based on accurate mass using 0.05 Da toler-

ance assuming simple deprotonation ([M-H] �). Each calibration

curve was performed in quadruplicates (Appendix Fig S13). Raw

data for the in vitro assay and the calibration curves are provided in

Dataset EV3.

Mass spectrometry-based Pta activity assays

Pta activity assays were performed at 30°C in assay buffer [10 mM

Tris–HCl pH 7.5, 1 mM MgCl2] with 1 mM acetyl phosphate, 1 mM

coenzyme A, and the competing metabolites at a concentration of

0.1–5 mM (phenylpyruvate: 0.1, 1, 5 mM; L-tryptophan: 0.1, 1,

4.4 mM). Reactions were started by addition of the purified Pta

enzyme (final concentration in the assay of roughly 200 nM

monomer). At the indicated time points, a 10-ll aliquot of the reac-

tion solution was transferred to 40 ll methanol pre-cooled to �20°C

to quench the reaction by inducing enzyme denaturation. Reactant

concentrations were subsequently measured by FIA TOF-MS. Nega-

tively charged ions were putatively annotated based on accurate

mass using 0.05 Da tolerance assuming simple deprotonation

([M-H]�). Each experiment was performed in experimental tripli-

cates. In order to distinguish between mass spectrometry artifacts

and real concentration changes, product calibration curves were

prepared. 0, 15, 30, and 60 lM of acetyl-coenzyme A were mixed

1 mM fructose 1,6-bisphosphate in assay buffer [10 mM Tris–HCl

pH 7.5, 1 mM MgCl2], and the putative regulators were added at a

concentration of 0.1–5 mM (phenylpyruvate: 0.1, 1, 5 mM; L-trypto-

phan: 0.1, 1, 4.4 mM). A 10-ll aliquot of each mix was transferred

to 40 ll methanol pre-cooled to �20°C. Reactant concentrations

were subsequently measured by FIA TOF-MS. Negatively charged

ions were tentatively annotated based on accurate mass using

0.05 Da tolerance assuming simple deprotonation ([M-H]�). Each

calibration curve was performed in quadruplicates, except for 5 mM

phenylpyruvate, where two curves had to be excluded due to empty

injections (Appendix Fig S13). Raw data for the in vitro assay and

the calibration curves are provided in Dataset EV3.

Semi-quantitative measurement of metabolite concentrations using

FIA TOF-MS

Samples were analyzed by direct flow double injection on an Agilent

6520 series iFunnel quadrupole time-of-flight mass spectrometer

(Agilent, Santa Clara, CA, USA) coupled to a GERSTELMPS2 autosam-

pler (Fuhrer et al, 2011). Mass spectra were recorded in negative

ionization mode within a mass/charge ratio range of 50–1,000. The

mobile phase was 60:40 isopropanol:water (v/v) and 1 mM NH4F at

pH 9.0, supplemented with hexakis (1H, 1H, 3H-tetrafluoropropoxy)

phosphazine and homotaurine for online mass correction. For every

sample, two technical replicates were measured.

Statistics

The Shapiro–Wilk test was used to confirm normality of the distri-

bution of initial reaction velocities, and equality of variance was

confirmed via Bartlett’s test. Subsequently, initial reaction velocities

were compared with t-tests. All statistical testing was performed

using Matlab (The MathWorks, Inc.).

Data availability

The datasets and computer code produced in this study are available

in the following databases:

(i) Python code used for NMR experiment setup and spectra

processing: GitHub (github.com/systemsnmr/metabolite-interac

tions).

(ii) Matlab code used for identification, signal-to-noise ratio (S/N)

quantification, assignment, and disambiguation of interaction

hits: GitHub (github.com/systemsnmr/metabolite-interactions).

(iii) Raw and processed NMR data: Zenodo (https://doi.org/10.

5281/zenodo.3339911).

Expanded View for this article is available online.
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