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Abstract
It has often been suggested that the productivity of an ecosystem affects the num-
ber of species that it can support. Despite decades of study, the nature, extent, and 
underlying mechanisms of this relationship are unclear. One suggested mechanism is 
the “more individuals” hypothesis (MIH). This proposes that productivity controls the 
number of individuals in the ecosystem, and that more individuals can be divided into 
a greater number of species before their population size is sufficiently small for each 
to be at substantial risk of extinction. Here, we test this hypothesis using REvoSim: an 
individual-based eco-evolutionary system that simulates the evolution and speciation 
of populations over geological time, allowing phenomena occurring over timescales 
that cannot be easily observed in the real world to be evaluated. The individual-based 
nature of this system allows us to remove assumptions about the nature of speciation 
and extinction that previous models have had to make. Many of the predictions of the 
MIH are supported in our simulations: Rare species are more likely to undergo extinc-
tion than common species, and species richness scales with productivity. However, 
we also find support for relationships that contradict the predictions of the strict 
MIH: species population size scales with productivity, and species extinction risk is 
better predicted by relative than absolute species population size, apparently due to 
increased competition when total community abundance is higher. Furthermore, we 
show that the scaling of species richness with productivity depends upon the ability 
of species to partition niche space. Consequently, we suggest that the MIH is appli-
cable only to ecosystems in which niche partitioning has not been halted by species 
saturation. Some hypotheses regarding patterns of biodiversity implicitly or explicitly 
overlook niche theory in favor of neutral explanations, as has historically been the 
case with the MIH. Our simulations demonstrate that niche theory exerts a control 
on the applicability of the MIH and thus needs to be accounted for in macroecology.
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1  | INTRODUC TION

Species richness in ecosystems is thought to be controlled in some 
way by productivity, with higher productivity facilitating greater 
species richness (Allen et  al.,  2007). This productivity hypothesis 
has a long history and was originally proposed to explain the lat-
itudinal biodiversity gradient (Hutchinson,  1959), in which species 
richness declines from low to high latitudes (von Humboldt, 1807). 
The productivity hypothesis has received consistent but equivocal 
support (Allen et  al.,  2007; Brown,  2014; Pianka,  1966; Valentine 
& Jablonski, 2015; Woolley et al., 2016). Globally, species richness 
correlates strongly with various measures of environmental energy 
availability, some of which are reasonable proxies for productivity 
(Currie, 1991; Hawkins et al., 2003). Indeed, one early articulation 
of the productivity hypothesis (Wright,  1983) demonstrated its 
ability to improve global predictions of species richness on islands 
made by the species–area relationship (MacArthur & Wilson, 1963). 
Empirical data demonstrate that the productivity hypothesis does 
not hold in all circumstances. For example, on smaller spatial scales, 
species richness often peaks at intermediate productivity levels 
(Mittelbach et al., 2001). Furthermore, some ecosystems confound 
productivity hypothesis predictions more fundamentally. These in-
clude shallow-water coral reefs, which are more speciose than their 
productivity would predict, as well as the deep marine realm, which 
has extremely low productivity but reportedly high species richness 
(McClain & Schlacher, 2015; Valentine & Jablonski, 2015).

While there is a consensus that a relationship between pro-
ductivity and species richness does exist in many circumstances, 
there is no agreement on the precise nature of this relationship 
(Pontarp & Wiens,  2016; Rabosky & Hurlbert,  2015; Valentine & 
Jablonski,  2015). Consensus regarding the mechanisms that drive 
the relationship has also not been reached, although numerous un-
derlying mechanisms have been proposed (Evans et  al.,  2005). Of 
these, the “more individuals” hypothesis (MIH) is the simplest and 
most broadly supported. This proposes that the presence of more 
individuals in a system is sufficient to promote the coexistence of 
a greater number of species (Allen et  al.,  2002; Kisel et  al.,  2011; 
Storch et  al.,  2018). This follows from the assumption that larger 
species (i.e., those with higher numbers of individuals) will display 
elevated speciation rates as a consequence of their broader geo-
graphic ranges and greater genetic variation (Allen et  al.,  2007), 
coupled with an expectation of depressed extinction rates result-
ing from the reduced impact of random population fluctuations and 
demographic processes (Pimm et al., 1988). Whereas the former of 
these assumptions is contested (e.g., Chown & Gaston, 2000), the 
latter is a cornerstone of multiple, well-tested ecological “rules,” in-
cluding the species–area relationship and theory of island biogeog-
raphy (MacArthur & Wilson, 1963). The MIH predicts that a net gain 
of species should occur until mean species population size falls to 
the point at which origination (through speciation and, unless the 
system is closed, immigration) is in equilibrium with extinction (Allen 
et  al.,  2007; Pontarp & Wiens,  2016; Storch et  al.,  2018). Storch 
et al. (2018) provided further detailed and formalized predictions of 

the MIH. These include that: (a) species extinction probability per 
unit time should decrease with increasing species population size; 
(b) mean species population size should be independent of total 
productivity; (c) community abundance (total number of individuals 
in the system) should be directly proportional to total productivity, 
and should be reduced by environmental disturbance; and (d) spe-
cies richness should be directly proportional to community abun-
dance, and should also be reduced by environmental disturbance. 
Note that although the strict MIH makes no mention of niche diver-
sity (Storch et al., 2018), ecological theory implies that the diversi-
fication of species is favored by the presence of unoccupied niches 
(Brockhurst et al., 2007; Rabosky, 2013; Rabosky & Hurlbert, 2015). 
Consequently, it is important to ensure that niche diversity does not 
inhibit the functioning of the MIH when testing the latter.

Testing the MIH has been difficult; experiments that have artifi-
cially modified productivity in environments (Armitage, 2015; Asgari 
& Steiner, 2017; McClain et al., 2018; Tilman, 1993) could only ob-
serve community responses on an ecological timescale (except ex-
periments with bacterial communities, e.g., Armitage (2015)). We 
might expect responses on evolutionary timescales to be different. 
Furthermore, spatial scale has consistently been identified as a major 
factor influencing relationships between productivity and species 
richness (Storch et al., 2018), yet experimental investigation of rich-
ness on large scales is not practical. As a result, much of the support 
for the MIH comes from observational studies of species-richness 
gradients (Bonn et al., 2004; Fine, 2015). Such studies are hampered 
by the fact that many hypothesized drivers of biodiversity covary 
in space and make similar predictions about observable phenomena 
(Fine, 2015; Pontarp et al., 2019). These include productivity (Evans 
et al., 2005), ecosystem stability (Ghalambor et al., 2006), and ambi-
ent temperature (Allen et al., 2006). In addition, attempts to verify 
the MIH (and other productivity–diversity hypothesis mechanisms) 
have been hindered by disagreement on the precise predictions of 
these mechanisms (Storch et al., 2018).

Here, we present a series of experiments that evaluate the pre-
dictions of the MIH as presented in Storch et al. (2018) within a dig-
ital, individual-based eco-evolutionary system, REvoSim (Garwood 
et al., 2019). Simulation studies are becoming increasingly influen-
tial in ecology because of their ability to disentangle tightly cor-
related variables in a way that observational studies cannot (Furness 
et  al.,  2021; Pontarp et  al.,  2019; Pontarp & Wiens,  2016; Saupe 
et al., 2019; Zurell et al., 2010). However, unlike many previous simu-
lation studies (Gotelli et al., 2009; Münkemüller & Gallien, 2015; van 
der Plas et al., 2015; Rangel et al., 2018; Ruffley et al., 2019), REvoSim 
works at the level of the individual, which has the benefit of remov-
ing otherwise necessary assumptions about species-level processes 
(Pontarp & Wiens,  2016). REvoSim models processes such as mu-
tation, reproduction, and dispersal within a controlled environment 
and in the absence of ecological interactions more complex than 
exploitation-competition. Despite its abstracted nature, REvoSim 
produces biologically realistic outputs (Garwood et  al.,  2019) and 
operates over evolutionary time. Macroecological phenomena, such 
as species richness gradients, are emergent properties of the model. 
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Although REvoSim lacks certain features (e.g., complex biological 
interactions), these limitations allow it to be used to test whether 
such features are required for the generation of real-world patterns. 
Here, we apply this approach to testing of the MIH, to studying its 
interaction with niche availability and, more generally, to the analysis 
of the relationship between species richness and productivity.

2  | METHODS

2.1 | The simulation

Simulations of species dynamics were performed in the Rapid 
Evolutionary Simulator (REvoSim) version 2.1.0—see Garwood 
et al. (2019) for a full description of this model and software. REvoSim 
is an eco-evolutionary simulator designed to simulate evolution in 
large populations over geological time. It is open-source software 
written in the C++ language supplemented by the QT framework 
(https://www.qt.io/). It is freely available from https://github.com/
palae​oware/​revosim, with releases also archived at 10.5281/ze-
nodo.2531610. A full description of the system and software is pro-
vided by Garwood et al. (2019); we present an abstracted summary 
here for convenience.

REvoSim models populations at the level of individual organisms, 
each of which comprise a 64-bit binary genome, current energy 
level, age, and fitness. REvoSim simulations take place within a grid 
of “cells” (by default 100x100), each of which can contain many or-
ganisms (default 100, each in a structure called a “slot”). Cells are 
characterized by three independent environmental variables, which 
are visualized as the red, green, and blue color channels of an image. 
These can be used to provide spatial structure to a simulation and 
are analogous to variables such as temperature or rainfall in real-
world ecosystems. Environment images can be varied over time in 
order to provide temporal structure, mimicking disturbance in the 
real world.

At the start of a simulation, genetically identical organisms are 
seeded into a single cell in the grid. The simulation then takes place 
over a number of “iterations” (analogous to years): timesteps during 
which organisms sequentially: collect energy, attempt to breed and, 
if they are sufficiently old, die. At regularly spaced “logging itera-
tions” (default every 50 iterations), information about current organ-
isms is output to log files, and the REvoSim speciation algorithm is 
applied to detect speciation events that have occurred.

2.2 | Collecting energy

Every iteration, each cell in the simulation is provisioned with a con-
stant amount of energy, determined by the energy level setting of 
the simulation. This energy is apportioned between all occupants of 
that cell proportionally to their fitness.

Organism fitness is an integral value between zero and fifteen, 
determined by an interaction between one half of the organism's 

genome (the “coding genome”) and the three environmental vari-
ables that characterize its cell. At the start of the simulation, three 
sets of 256 “masks” are generated: one set for each color channel 
(red, green and blue): one mask for each possible level of that color 
channel in the environment image. Each mask is 32 bits in length 
and differs by 1 bit from the masks in the same color channel that 
represent brightnesses one point brighter or dimmer. For each or-
ganism, a “coding bitcount” is calculated as the sum of the number of 
“1”s (varying between 0 and 96) resulting from an exclusive or (XOR) 
operation between the coding genome and the red, green, and blue 
color masks specific to the environment of the cell. The fitness of the 
organism is then calculated as the settle tolerance parameter (de-
fault 15) minus the absolute difference between the fitness target 
parameter (default 66) and this coding bitcount. Fitness values less 
than zero are set to zero. This system ensures that there are very 
many more ways to be unfit within any environment than there are 
to be optimally fit, but that there are nonetheless a very large num-
ber of optimally fit coding genomes.

2.3 | Breeding

Energy is not lost over time from organisms and accumulates in in-
dividuals as they age. Every iteration, after organisms have collected 
energy, those with more than a user-defined threshold energy value 
are entered onto the “breed list” for their cell. Every iteration, each 
organism on the list will select a partner at random from the popu-
lated list to attempt to breed with. If partners are too genetically 
dissimilar, then this breed attempt fails and no energy is lost by ei-
ther organism. Otherwise, the organism that initiated the breeding 
attempt loses a defined amount of energy and an offspring organism 
is produced. The offspring genome is constructed through random 
selection from parents for each bit. A single bit of the genome then 
has a user-defined defined chance of undergoing a mutation.

Offspring organisms then undergo dispersal. This may result in 
an individual remaining in the same cell as its parents, or moving to 
a nearby cell, with probability of dispersal to any given cell being 
inversely proportional to its distance from the parents’ current po-
sition. Once the offspring have moved, each organism attempts to 
settle, moving into a vacant slot in the cell. This will fail if no vacant 
slots exist (i.e., if the cell is at capacity) or if the organism's fitness, 
which is calculated during settling, is zero (i.e., if the organism is very 
poorly adapted to the environment). If settling fails, then the off-
spring organism dies.

2.4 | Species identification

The organisms produced at the start of the simulation are clones 
and, as such, represent a single species. However, as mutations ac-
cumulate, organisms become adapted to different environments and 
populations form groups that are incapable of breeding with other 
groups due to genetic dissimilarity. Every logging iteration, REvoSim 

https://www.qt.io/
https://github.com/palaeoware/revosim
https://github.com/palaeoware/revosim
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searches every existing species to determine whether it has under-
gone speciation. Speciation is identified only if an ancestral species 
has become partitioned into reproductively isolated clusters: That is, 
if there are two or more groups of individuals, such that no individual 
in one group is genetically compatible with any individual in any of 
the other groups. This algorithm therefore implements the biologi-
cal species concept (Mayr, 1942). Once speciation has occurred, all 
members of the less abundant species are assigned a new, unique, 
species ID number.

2.5 | Equilibrium

The time required for simulations to reach equilibrium varies de-
pending upon the settings of the simulation and the environment in 
which organisms are evolving. Equilibria in REvoSim are invariably 
dynamic: speciation and extinction tend to continue indefinitely 
but, in the absence of any large changes in simulation conditions, 
variables such as species richness, mean individual fitness, and total 
community abundance will fluctuate around equilibrium values after 
a period of initial directional change.

2.6 | Comparison with real-world ecosystems

REvoSim is simplified in a number of ways relative to real ecosystems: 
It lacks ecological interactions beyond exploitation–competition, 
and environments have only three axes of variation. However, these 
simplifications are useful because they mean that any patterns pro-
duced by the simulations cannot be dependent on more complex 
processes such as interference competition and trophic structure, 
which have been implicated in structuring biodiversity gradients 
in some hypotheses (Schemske et al., 2009). In the context of the 
productivity hypothesis, this means that any relationships demon-
strated within REvoSim are not the product of the “trophic-levels” 
hypothesis (Evans et al., 2005), or related hypotheses that rely upon 
the number of available niches in the environment being a function 
of energy level (Evans et al., 2005; McClain et al., 2012).

2.7 | Evaluated environments

Two different environment types were evaluated: (a) pure spatial 
heterogeneity (PS) (Figure 1a), in which each pixel's color is random 
and not correlated with the colors of neighboring pixels, and where 
pixel colors do not change over time, and (b) “lights” (Figure  1b), 
an environment consisting of colored circles that move gradually 
through space, brighten and fade, and intersect. The PS environ-
ment was used because it has an easily approximable number of 
niches (one for each cell in the 100 × 100 grid), a niche here being 
defined as a unique combination of environmental variables to which 
a species can specialize. The light environment was used because it 
produces environmental gradients, temporal structure, and habitat 
patches of variable size, all of which are present in real environments 
and none of which are present in the PS environment.

Both PS and lights environments were generated using the 
EnviroGen software package (Garwood et al., 2019). The PS environ-
ment was generated using the “Noise” tool, with the minimum value 
set to 0 and the maximum value set to 255. The first environment 
image was taken from the output of this tool and combined with an 
all-black image using the “combine” tool, with 50% input from each 
image, to create the image used. The lights environment was gener-
ated using the “dynamic 2” tool with settings modified to increase 
environmental heterogeneity (Table S2).

2.8 | Simulation settings

REvoSim settings used in the experiments are recorded in Table S1. 
Each simulation employed obligate sexual reproduction (rather 
than asexual, or facultatively sexual reproduction). Organisms had 
a maximum lifespan of 15 iterations and, where environments 
were dynamic, linear interpolation of color was used between tem-
porally adjacent images, which were cycled every 100 iterations. 
Productivity was modified through the “Energy input” parameter in 
REvoSim, which is functionally equivalent to per cell primary pro-
ductivity. Python scripts were used to interpret outputs from the 
model (Code S1–S4).

F I G U R E  1   (a) The PS environment. 
This environment remained static for the 
duration of the simulations in which it was 
used. (b) Sample image from the lights 
environment. Circles in this environment 
appear, disappear, and move across the 
space over time

(a) (b)
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2.9 | The experiments

In each experiment, sampling occurred once the simulation had 
reached equilibrium. The number of iterations required for this to 
occur varies based on simulation settings, but was achieved in all 
experiments, with the exception noted for part of Experiment 3. A 
summary of these experiments is provided in Table 1.

Experiments 1, 2, and 3 were designed to determine how the 
shape of the relationship between species richness and productiv-
ity changed as the total number of niches in the environment var-
ied. These experiments took place in either the PS environment 
(Experiment 1) or modified PS environments where the individual 
areas of color had been expanded from single pixels to either 2 × 2 
(Experiment 2) or 4x4 (Experiment 3) pixel areas using a Python 
script (Code S5 and S6). These modifications changed the number 
of niches in a predetermined way (i.e., changing color blocks from 
single pixels to 2 × 2 pixel squares reduced the number of niches by 
a factor of 4; 4 × 4 pixel squares by a factor of 16). Here, and in later 
experiments, the number of levels of productivity investigated was 
somewhat arbitrary, but was selected on the basis that it showed 
the full range of variation that could be produced by the simulations. 
116 simulations were run in each of experiments 1–3, and each sim-
ulation had one of 29 levels of productivity. An additional 116 sim-
ulations were run in Experiment 3, with species richness measured 
after 450,000 iterations rather than the default 45,000, in order to 
ensure that the simulation reached equilibrium. Mean individual fit-
ness (how well-adapted organisms are to collect energy from their 
current environment) was also measured in these simulations as an 
alternate measure of the degree to which species had adapted to 
environmental heterogeneity.

A further five experiments (4–8) were conducted to investigate 
the mechanisms responsible for controlling the relationship be-
tween species richness and energy level observed in experiments 
1–3. These experiments all took place in the lights environment be-
cause of its more realistic environmental conditions, and because 
the relationship between niche availability, which is not well defined 
in the lights environment, and species richness was clearly defined 
in experiments 1–3.

Experiment 4 was designed to test the hypothesis that higher 
levels of environmental disturbance reduce total community abun-
dance at any given energy level (see Storch et al., 2018). 208 sim-
ulations were run in this experiment, each with one of 52 possible 
energy levels and one of two possible environmental refresh rates 
(environments persisted either indefinitely or for 200 iterations). 
Indefinite persistence of an environment was achieved by loading 
in only the first environment image from a set of lights environment 
images. The number of simulations is higher in this experiment than 
in experiments 1–3 as there are more possible treatments.

Experiment 5 was designed to test the hypothesis, common to 
numerous ecological theories including the MIH (Storch et al., 2018), 
that smaller species (i.e., those with lower numbers of individuals) 
have higher rates of extinction than larger species. Five simulations 
were run in Experiment 5. This is much fewer than in experiments 

1–4 because each simulation produced multiple data points. In order 
to ensure that the relationship between species size and extinction 
rate was not dependent on energy level, each simulation in this ex-
periment had a different energy level. Hybridization between species 
was prohibited in this experiment because it had a disproportionate 
impact on the extinction rates of rare species. This prohibition is 
justified on the grounds that species that survive only through hy-
bridization are not true biological species. In each simulation, every 
extant species was sampled every 50 iterations between a minimum 
and maximum iteration (60,000 and 90,000). Sampling consisted of 
recording species population size and whether the species was still 
present 500 iterations later. The simulation duration is greater than 
in experiments 1–4 because the sampling range (60,000–90,000 
iterations) is long, and must only include equilibrium dynamics. A 
wide range of species sizes needed to be examined in order for the 
impact of species size on extinction rate to be apparent. To ensure 
that small sample sizes (i.e., low numbers of species of a given size) 
did not introduce substantial noise into the results, species were 
grouped into “size classes” for analysis. Each size class had a range 
of 20 (e.g., species with a population size of 1–20 were grouped into 
a single size class).

Experiment 6 was designed to test the hypothesis that more 
abundant species produce daughter species at higher rates than 
less abundant species. Five simulations were run in Experiment 6, 
each with one of five energy levels. Every 50 iterations between 
two bounds (60,000 and 90,000), each species in the simulation was 
sampled. Sampling consisted of recording the population size of the 
species, and number of new daughter species in the next iteration. 
As in Experiment 5, species in Experiment 6 were binned into “size 
classes,” each with a range of 500, in order to reduce noise in the 
results that would have been caused by small sample sizes of large 
species. As in Experiment 5, energy level was varied in Experiment 
6 to ensure that the relationship between rate of daughter species 
production and species size was not dependent on energy level.

Experiment 7 was designed to test the hypothesis that species 
population size is not a function of total community abundance. 
1,552 simulations were run with every species in the 90,000th it-
eration sampled for population size. Each simulation had one of 97 
energy levels. Both the number of simulations and the number of dif-
ferent energy levels sampled were increased in Experiment 7 relative 
to Experiment 4 because the data contained a greater magnitude of 
noise and, as such, a larger sample size was needed to confidently 
detect or reject the presence of trends.

Following the results of Experiments 5 and 6, Experiment 8 was 
designed to test if mean species evenness (a measure of the dispar-
ity in species sizes within an ecosystem) within simulations changed 
as a function of energy level. This experiment used the same 1552 
simulations as Experiment 7. Shannon's evenness (Pielou, 1975) was 
determined for each iteration between 60,000 and 90,000 in each 
simulation, and these data were used to calculate the mean evenness 
for each simulation.

All statistical analyses were performed in R (R Core Team, 2020). 
Analyses of experiments 1 and 4–8 involved linear models, some 
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of which were “segmented” using the “segmented” package 
(Muggero,  2008), meaning that breakpoints were fitted into the 
model at which the coefficient of the relationship between variables 
changed. Where single models are presented, “df” represents the 
number of degrees of freedom in the model. Where they are com-
pared, “ddf” represents the difference in the number of degrees of 
freedom between the models. Reported R2 values are the adjusted 
R2 values produced in R (R Core Team, 2020).

White et  al.  (2013) objected to the use of frequentist statis-
tics in simulation studies for two reasons: Firstly, simulation stud-
ies can be replicated arbitrarily, until effects are significant even if 
they are so small as to be biologically meaningless; and secondly, 
because model parameters are explicitly manipulated between dif-
ferent treatments, the null hypothesis that there is no difference 
between the treatments is known a priori to be untrue, and will 
therefore always be rejected given sufficient data. We do not follow 
these recommendations herein for two reasons: Firstly, there is no 
difference between the ability of a statistical test to detect a signif-
icant effect when it is applied to simulated or nonsimulated data, 
and the objection of White et al.  (2013) applies not specifically to 
simulated datasets but to large datasets, regardless of source. Use of 
frequentist statistics on a simulated dataset of limited size is there-
fore appropriate, and we do not believe that these criticisms apply. 
Secondly, the suggestion that changes in model inputs will always 
result in changes in outputs is untrue for models with any degree 
of stochasticity. A sufficiently complex model could, in principle, be 
indistinguishable from reality and, as such, this claim is equivalent to 

suggesting that a change to any one parameter in the real world will 
predictably change all other measurable parameters. We acknowl-
edge, however, the concerns that White et al. (2013) raise regarding 
the conflation of statistical significance with biological significance. 
To ameliorate these, we report effect sizes (in the form of R2 values) 
alongside significance tests and highlight results where effect sizes 
are statistically significant, but notably small.

3  | RESULTS

3.1 | Experiments 1–3: Impact of niche availability 
on species richness

In Experiment 1, which took place in the PS environment, ANOVA 
indicates that species richness is predicted well by a linear func-
tion of energy level with four segments (p < 2.2 × 10-16, F = 20,046, 
df = 7, R2 = 0.9964) (Figure 2; Table S3). In both the first and last 
segments (energy level less than 676.826  ±  5.229 and energy 
level greater than 1,199.998  ±  29.516, respectively), the slope of 
the relationship between energy level and species richness is low; 
not significantly different from zero in the first segment (coeffi-
cient = 0.66628 ± 0.71872) and marginally greater than zero in the 
last segment (coefficient = 0.18364 ± 0.103258). In the intermediate 
segments, species richness has a strong positive relationship with 
energy level (coefficient  =  32.127  ±  1.607 and 4.2118  ±  1.6072, 
respectively; Table  S3). Given that it is clear that species richness 

Experiment # Environment Duration n
Intended to determine the 
impact of…

1 PS 45,000 116 Energy level and niche 
availability on species 
richness

2 PS 2x2 45,000 116 Energy level and niche 
availability on species 
richness

3a PS 4x4 45,000 116 Energy level and niche 
availability on species 
richness

3b PS 4x4 450,000 116 Energy level on time 
to species richness 
equilibration

4 Lights 45,000 208 Environmental disturbance 
and energy level on total 
community abundance

5 Lights 90,000 5 Species size on species 
extinction risk

6 Lights 90,000 5 Parent species size 
on daughter species 
production rate

7 Lights 90,000 1,552 Total community abundance 
on mean species size

8 Lights 90,000 1,168 Energy level on community 
evenness

TA B L E  1   A summary of experiments 
1–8. “Duration” is the last iteration 
number at which sampling occurred. “n” 
is the number of independent simulations 
run in the experiment



     |  8929FURNESS et al.

saturates above a certain energy level, the slight positive relation-
ship between energy level and species richness in the 4th segment 
is likely the result of that segment capturing some of the impact of 
energy level on species richness from before this saturation occurs. 
The relationship between energy level and mean individual fitness 
parallels the relationship between energy level and species richness 
(Figure 3).

In Experiment 2, which took place in a modified PS environment 
with 25% of the number of niches of Experiment 1, species rich-
ness shows a similar relationship to energy level as in Experiment 
1 (Figure  2). However, in Experiment 2, species richness becomes 
saturated at approximately 2,500 species, rather than the 10,000 
in Experiment 1. Furthermore, there is a peak in equilibrium species 
richness at intermediate energy levels in Experiment 2, rather than 
an increase with energy level up to a point, followed by saturation, 
as in Experiment 1 (Figure 2). Unlike species richness, mean individ-
ual fitness does not display a peak at intermediate energy levels in 

Experiment 2 (Figure 3). Mean individual fitness saturates at a higher 
value in Experiment 2 than it does in Experiment 1.

In Experiment 3, which took place in a different modified PS en-
vironment from Experiment 2 and which possessed 1/16th of the 
number of niches of Experiment 1, species richness shows a simi-
lar relationship to energy level as in experiments 1 and 2 (Figure 2). 
However, in Experiment 3, species richness becomes saturated at 
approximately 625 species, rather than the higher values in exper-
iments 1 and 2. As in Experiment 2, the highest species richnesses 
in Experiment 3 are found at intermediate energy levels. However, 
the results of Experiment 3 differ from those of Experiment 2 in that 
species richnesses at high energy levels in the former fall more no-
tably below the apparent saturation point of approximately 625 spe-
cies. Similarly to Experiment 2, mean individual fitness in Experiment 
3 does not peak at intermediate energy levels (Figure 3). Mean indi-
vidual fitness saturates at a higher value in Experiment 3 than it does 
in experiments 1 and 2.

F I G U R E  2   Plot of species richness 
against energy level in experiments 1–3, 
under four scenarios with approximately 
known niche availability (PS, and modified 
PS environments). The y-axis is log-
transformed for ease of interpretation. 
Species richness values of zero are hidden 
by the log-transformed axis. At low 
energy levels (e.g., 500), species richness 
is zero in environments with many, 
smaller niches, but greater than zero in 
environments with fewer, larger niches. 
The output of the segmented linear model 
is also plotted, for comparison

F I G U R E  3   Plot of mean individual 
fitness of organisms against energy level 
in experiments 1–3, under four scenarios 
with variable niche sizes. Unlike species 
richness, mean individual fitness does not 
peak at intermediate energy levels in any 
of the scenarios. Mean individual fitness 
plateaus more rapidly, and at a higher 
value, in environments with fewer, larger 
niches
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When Experiment 3 was rerun with species richness sampled 
after 450,000, rather than 45,000, iterations, species richnesses at 
high energy levels typically no longer fall far below the apparent sat-
uration level (Figure 2). However, the highest species richnesses still 
occur at intermediate energy levels.

3.2 | Experiment 4: Impact of disturbance and 
energy level on total community abundance

In Experiment 4, which includes environmental disturbance, energy 
level has a significant positive impact on total community abundance, 
regardless of the disturbance level (p < 2.2 × 10−16, F = 2.51 × 105). 
However, environments with lower levels of environmental distur-
bance have slightly (but consistently) higher community abundances 
for any given energy level (p < 2.2 × 10-16, F = 766.93), an effect that 
is more pronounced at lower energy levels (p =.000992, F = 11.164; 
Figure 4) (Table S4). At low energy levels, disturbed environments 
sometimes display lower total community abundance than a linear 
relationship would predict. Otherwise, the relationship is linear.

3.3 | Experiments 5–6: Impact of species size on 
speciation and extinction

In Experiment 5, the probability of a species becoming extinct 
within 500 iterations is negatively related to its population size at 
time of sampling (p < 2.2 × 10−16, F = 302.56, R2 = 0.5428; Table S5; 
Figure 5a). However, this extinction risk is much better predicted if 
species population size is first divided by energy level (p < 2.2 × 10−16, 
F = 2001.3, R2 = 0.8873; Tables S6 and S7; Figure 5b). In this case, 
the model predictor is the proportion of total community abundance 
accounted for by the focal species. However, even this model has 
some nonrandom error: A simple log-linear model (Table S6) under-
predicts extinction rates of species with small absolute population 
sizes. Predictions are significantly improved, specifically for these 

rare species, by the addition of absolute species size as a variable 
(Tables S8 and S9).

In Experiment 6, the rate of daughter species production is pos-
itively related to the population size of the parent species at time 
of sampling (p  <  2.2  ×  10-16, F  =  132.59, R2  =  0.4042; Table S10; 
Figure  6a). However, as with extinction rate, the rate of daughter 
species production is much better predicted if species size is first 
divided by energy level (p < 2.2 × 10−16, F = 345.99, R2 = 0.6401; 
Tables S11 and S12; Figure 6b).

3.4 | Experiment 7: Impact of energy level on 
species size

In Experiment 7, mean species size can be expressed as a positive 
linear function of total community abundance (p  <  2.2  ×  10−16, 
F = 1,250.6, df = 1, R2 = 0.4462; Table S13; Figure 7a). However, 
ANOVA indicates that a linear model with three segments, split-
ting the graph at total community abundances of 97,978 ± 13,290 
and 332,763  ±  1,419, provides a significantly better prediction of 
mean species size than a single linear regression (p < 2.2 × 10−16, 
F = 34.401, ddf = 4, R2 = 0.4901) (Table S14). In this three-segment 
model, total community abundance has a significant positive impact 
on mean species size in all three segments (Table S15), but segments 
containing regions of higher total community abundance show a 
stronger positive impact of total community abundance on mean 
species size (Figure 7b).

In Experiment 8, evenness is very variable in high energy simula-
tions. High energy simulations take longer to equilibrate (as demon-
strated by Experiment 3); this translates, in dynamic environments, 
into a reduced species richness and potentially misleading evenness 
score. For this reason, simulations with energy levels greater than 
2,000 were excluded from the final analysis in Experiment 8, leaving 
a sample size of 1,168. In this sample, community evenness could be 
modeled as a positive linear function of energy level (p =.0002637, 
F = 13.395, R2 = 0.01052; Table S16). This fit, while significant, is not 

F I G U R E  4   Plot of total community 
abundance (individuals) after 45,000 
iterations against productivity (energy 
level) in Experiment 4. Total community 
abundance is a linear function of energy 
level and is reduced by environmental 
disturbance. The output of the linear 
model is also plotted, for comparison
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strong (the model explains a very small proportion of the variance in 
the data). ANOVA indicates that a linear model with three segments, 
splitting the graph at energy levels of 624.4 ± 8.3 and 1,019.9 ± 68.8, 
provides a significantly better fit to the data (p  =  4.679  ×  10,-10 

F = 12.621, ddf = 4, R2 = 0.04849) (Table S17), although this fit is still 
not strong. In this model, energy level has a significant positive im-
pact on mean community evenness in the first and second segments, 
and no significant impact in the third segment (Table S18).

F I G U R E  5   Plot of the probability of a species becoming extinct within 500 iterations in Experiment 5 against (a) species size class or 
(b) species size class divided by energy level. Individuals are not permitted to hybridize with other species regardless of whether or not the 
individuals are sufficiently genetically similar. Each point is calculated as a mean of binary outputs (1 = extinction, 0 = no extinction) for 
every species in every logging iteration (every 50 total model iterations) between 60,000 and 90,000 total model iterations. Each species 
size class (p) contains all species of size greater than (p–1)*20 and less than p*20 + 1. Larger species are less likely to go extinct, and higher 
energy level simulations have higher extinction rates for species of any given size. y-axis scaling is log(10). The x-axis is artificially truncated 
in both graphs, as small sample sizes produce substantial random noise as size class increases
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4  | DISCUSSION

4.1 | Assumptions: Ecological limits theory

In our simulations, variables such as species richness, total community 
abundance, and mean species size are all measured at equilibrium. In 

suggesting that these values are useful for making inferences about 
the real world, we make the implicit assumption that these variables 
are at, or close to, equilibrium in environments in the real world and, 
therefore, that the ecological limits theory is accurate.

Ecological limits theory states that real-world ecosystems tend 
to be at equilibrium in terms of species richness. This equilibrium 

F I G U R E  6   Plot of mean number of daughter species produced by each species of (a) a given size, or (b) a given proportion of the total 
community abundance, in Experiment 6. Each point is calculated as the mean number of daughter species for every species in every logging 
iteration (every 50 total model iterations) between 60,000 and 90,000 total model iterations. Each species size class (p) contains all species 
of size greater than (p–1)*500 and less than p*500 + 1. Species that make up a greater proportion of the total community abundance of 
the simulation produce more daughter species. The x-axis is artificially truncated in both graphs, as small sample sizes produce substantial 
random noise as size class increases
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reflects a state where species richness has increased to the point 
that the addition of further species to the ecosystem accelerates 
extinction by reducing the resources available to them (Rabosky & 
Hurlbert,  2015). This theory is controversial: Opponents argue 
that fossil evidence in favor of ecological limits is flawed (Benton & 
Emerson,  2007), that apparent slowdowns in diversification rate 
over time are not good evidence of limits to diversity (Moen & 
Morlon, 2014), and that experimental evidence, including that from 
biological invasions (Sax et al., 2002), supports the idea that diversity 
is not, in practice, limited by simple equilibria, but that ecosystems 

tend to be able to accommodate more species than they naturally 
contain (Harmon & Harrison,  2015). Nevertheless, proponents of 
ecological limits argue that it is supported by both paleontological 
and modern ecological evidence. Paleontological support comes 
from slowdowns in diversification rate (Cardillo et  al.,  2005), re-
bounds in species richness following extinction events (Erwin, 2001), 
and the relative constancy of species richness through time (Alroy 
et al., 2008; Benson et al., 2016; Close et al., 2019, 2020). Ecological 
support comes from correlations between ecological variables and 
species richness (MacArthur & Wilson,  1963; Wright,  1983), the 

F I G U R E  7   Plots of mean species size against total community abundance in Experiment 7. Each point is calculated as the mean species 
size of species at 90,000 iterations. Segmented regression indicates that mean species size increases significantly with total community 
abundance throughout, but that the rate of increase is higher at higher total community abundances. (a) All points, (b) points with total 
community abundance less than 200,000, and mean species size less than 2,500. This view better displays the increase in the slope of the 
positive relationship at low total community abundances
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relative resistance to biological invasion of diverse communities 
(Tilman, 1999), and the demonstrable explanatory power of other 
ecological theories that attribute patterns to diversity equilibria 
(Rabosky & Hurlbert, 2015), such as the widely supported theory 
of island biogeography (MacArthur & Wilson, 1963; Wright, 1983).

Resolution of this debate is beyond the scope of the present 
study, although we note here that ecosystems could be influenced 
by ecological limits without ever reaching them (Cornell,  2013). 
Nevertheless, the MIH also makes the assumption that ecological 
limits act in the real world (Storch et al., 2018) and, therefore, by the 
addition of this assumption we are adding no further conditions to 
the scenarios in which our results support the MIH.

4.2 | The shape of the species–energy relationship

Regardless of environment, simulated species richness increases 
with energy level at first, but this relationship disappears above some 
threshold energy level. In those experiments in which the number of 
simulated niches is approximately known (experiments 1–3), species 
richness saturates when it is approximately equal to the number of 
available niches (Figure 2). This implies that niche limitation controls 
species richness above a certain threshold energy level by restrict-
ing diversification through ecological speciation (Rabosky,  2013; 
Rabosky & Hurlbert, 2015). Because organisms have a limited lifes-
pan, repeated failures to breed as a result of genetic incompatibility 
might result in loss of all reproductive success. In REvoSim, the abil-
ity of a pair of organisms to breed is determined by the number of 
pairwise differences between their genomes (Garwood et al., 2019). 
Consequently, organisms are selected to have a similar genome to 
other organisms in the same cell, a process that opposes genetic 
drift. As such, ecological speciation is likely to be the main process 
facilitating speciation and, therefore, loss of this process via niche 
saturation results in a decoupling of species richness from energy 
level.

The observed initial positive relationship between species 
richness and energy level supports the productivity hypothesis of 
species richness. Furthermore, it supports the more-individuals hy-
pothesis (MIH) as the underlying mechanism (Storch et  al.,  2018), 
as the ecological interactions required to test the “trophic-levels” 
hypothesis (Evans et  al.,  2005; Pontarp,  2020) are not present in 
our simulations. However, it also suggests that there are limits to 
the MIH: Additional productivity has no positive impact on species 
richness when the latter is limited by other factors, such as niche 
availability. Whether or not these other limitations commonly act 
in nature is unclear (Cornell & Lawton, 1992; Olivares et al., 2018): 
Evidence suggests that diversification slowdown due to niche 
saturation does exist (Brockhurst et  al.,  2007; Ghosh-Harihar & 
Price,  2014; Price et  al.,  2014), although in some cases additional 
energy can ameliorate this saturation (Ghosh-Harihar & Price, 2014). 
Furthermore, the hypothesis that niche saturation reduces diversifi-
cation rate is at the heart of the theoretical framework of adaptive 
radiations (Brockhurst et al., 2007; Stroud & Losos, 2016). However, 

other workers have argued that measurements of diversification 
slowdown are problematic (Harmon & Harrison,  2015) and that 
niche availability does not constrain speciation in practice (Harmon 
& Harrison, 2015; Jetz & Fine, 2012; Ricklefs & Bermingham, 2001; 
Wiens, 2011).

While we can confidently rule out any influence of trophic levels 
in REvoSim, we cannot immediately rule out the influence of “evolv-
ability”; that is, that higher productivity simulations display higher 
species richness not because of differences in species extinction risk 
but because a larger number of individuals leads to a greater number 
of mutations in the population as a whole, increasing the opportu-
nities for adaptive evolution to occur (Olson-Manning et al., 2012). 
However, our results suggest that this mechanism is not the driv-
ing force behind our observed patterns: higher energy levels led to 
relatively low speciation rates in Experiment 6 (Figure 6a), and this 
pattern persisted even if species population size was measured rela-
tive to the total community abundance rather than in absolute terms 
(Figure 6b).

Apparent peaks in species richness at intermediate energy lev-
els in more structured environments (i.e., experiments 2 and 3, with 
modified pure spatial heterogeneity environments) almost certainly 
reflect the simulation speciation system. REvoSim's species identifi-
cation algorithm identifies new species through an exhaustive search 
of genomes within existing species. It then partitions daughter spe-
cies from parent species if a group of individuals can be identified 
where no member of that group is genetically able to breed with 
any member of the parent species outside of that group. One con-
sequence of this is that when species have larger populations (and, 
therefore, greater genetic variability), it is less likely that a daughter 
species will be identified, because strict genetic isolation is harder 
to achieve. This artifact explains the following two phenomena. 
Firstly, species richness exceeds environmental niche diversity at 
intermediate energy levels because ephemeral species (Rosenblum 
et al., 2012) are more likely to be labelled as new species by REvoSim 
when they are daughters of low-population species. This can be 
observed in both experiments 2 and 3 (Figure  2), where species 
richness exceeds the hypothetical niche richness of 2,500 and 625, 
respectively, at intermediate energy levels. Notably, this does not 
occur in Experiment 1, presumably because niches in Experiment 
1 consist of single cells and, therefore, multiple species cannot co-
exist for an extended period of time within the same niche due to 
the substantial risks of breeding failure. Secondly, species richness 
takes longer to reach equilibrium at higher energy levels due to the 
increased time required for daughter species of larger species to be 
detected. This can be observed in Experiment 3 (Figure 2), where 
allowing longer for equilibration to occur largely removes cases of 
high energy level simulations with species richnesses substantially 
below the hypothetical niche diversity of 625. These interpretations 
are supported by the observation that mean individual fitness does 
not display peaks at intermediate energy levels, or reduced rates of 
equilibration at high energy levels, which implies that neither the in-
termediate energy level peaks, nor the high energy level drop-offs 
in species richnesses, are informative about the degree to which 
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organisms are adapted to their environment in experiments 2 and 3 
(Figures 2 and 3). This implies that the effects of energy on species 
richness, excepting the initial positive relationship and subsequent 
plateau, are not real, biological effects. Rather, they are artifacts re-
sulting from the inherent difficulty in detecting incipient species in 
populations of individuals (Rosenblum et  al.,  2012). However, this 
difficulty is not unique to REvoSim; similar difficulties exist in the 
real world (Mallet, 2008), and so while these effects might reason-
ably be considered artifacts, that does not imply that they have no 
relevance to the interpretation of empirical data.

In those environments in which the number of niches is approx-
imately known (i.e., experiments 1–3), there is a clear, positive rela-
tionship between the number of niches in the environment and the 
energy level required to reach saturation in both species richness 
and mean fitness (Figures 2 and 3). This implies that species richness 
should correlate strongly with energy level over a wider range of pro-
ductivity values in an environment with a higher diversity of niches, 
whereas species richness should saturate quickly as productivity in-
creases in a niche-poor environment. In the real world, all species 
occupy niche space, but they can also create it (Jones et al., 1994). 
Furthermore, the fitness landscape is substantially more complex in 
the real world than in our simulations. As such, it might be possible 
for species richness to scale with energy in the real world over a 
large range of energy levels, as niche diversity can be expected to 
increase as the number of species increases.

An additional effect of niche diversity is observed at the low-
est energy levels. Under these circumstances, species richness is 
inversely proportional to niche diversity (i.e., simulations with fewer, 
larger niches can support more species at lower energy levels than 
simulations with more, smaller niches: Figure 2). This could be be-
cause simulations with more niches result in a higher probability of 
organisms either failing to find a compatible mate (due to greater 
immigration of genetically incompatible organisms from neighboring 
niches) or failing to establish after initial dispersal (due to a higher 
probability of dispersing into a niche to which they are not adapted), 
that is, an “edge effects” phenomenon (Razafindratsima et al., 2017). 
This is a biologically realistic phenomenon: It is well established that 
small habitats can result in extirpation of species due to their loss of 

recruits by dispersal out of the habitat (Haddad et al., 2015), and that 
highly heterogeneous habitats can reduce species richness by failing 
to provide sufficient resources for specialists to survive (Allouche 
et al., 2012). This hypothesis is supported by the observation that 
mean individual fitness plateaus at a higher value in environments 
with fewer, larger niches than in environments with many, smaller 
niches (Figure 3).

4.3 | Prediction verification—the more-
individuals hypothesis

The MIH, as formalized in Storch et al.  (2018), attributes the rela-
tionship between species richness and energy level to the impact of 
species size on extinction rate. Our experiments recover a clear link 
between species size and extinction rate: Species with small popula-
tion sizes are more likely than species with large population sizes 
to become extinct within a given period of time. However, contrary 
to the predictions of the MIH, absolute species population size is a 
worse predictor of extinction risk than relative species population 
size (i.e., species population size as a proportion of total community 
abundance) (compare Figure 5a and b). We hypothesize that this is 
the result of a combination of disruption of breeding in rarer spe-
cies and ecological drift. The higher the energy level, the more non-
conspecific individuals will be present in the environment alongside 
a focal species of any given size. As such, individuals of the focal 
species face a greater risk of trying, and failing, to breed with mem-
bers of another species, unless the focal species is large enough to 
monopolize a cell. There is also a heightened risk of extinction by 
ecological drift, which can drive one of two ecologically equivalent 
species to extinction due to random fluctuations in population size 
(Svensson et al., 2018; Figure 8).

Both of these mechanisms have real-world analogues. While a 
greater risk of failing to breed is a product of the REvoSim breeding 
mechanism, it can occur in certain scenarios in nature (e.g., species-
blind “mating” attempts mediated by pollen transfer by a generalist 
pollinator, or production of nonviable hybrid offspring by matings 
between a focal species and a related species). A greater risk of 

F I G U R E  8   Illustration of the 
conditions experienced by a focal 
species of a constant size (orange) under 
conditions of (a) relatively low energy 
or (b) relatively high energy. When the 
energy level is relatively low, the focal 
species encounters a lower proportion of 
individuals from other species (blue) with 
which it cannot breed. As such, it is more 
likely to succeed in breeding attempts 
when paired with a random individual in 
its cell
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competitive exclusion by an ecologically equivalent species is the 
mechanism of species extinction described in the Neutral Theory 
of Biodiversity (NTB) (Hubbell, 2001). Although the importance of 
ecology is clear in our simulations generally and, therefore, the NTB 
is of limited applicability herein, it applies locally within our simu-
lations when multiple species are equally well adapted to the con-
ditions within a single cell. While studies have suggested that the 
NTB is generally considered to be oversimplified (e.g., Chave, 2004; 
McGill, 2003; Rapacciuolo & Blois, 2019), it does make accurate pre-
dictions about certain aspects of community ecology (Chave, 2004; 
Li & Ma,  2020). Similar mechanisms could explain the equivalent 
relationship in rate of daughter species production (Figure  6). In 
lower-energy environments, a focal species of a given size will tend 
to be spread over a greater number of cells (as each cell has a lower 
carrying capacity); as such, it will have more opportunity to become 
geographically fragmented and locally adapted, leading to ecological 
speciation. Furthermore, daughter species can only be detected in 
our simulations if they survive until the next logging iteration. As 
such, mechanisms that reduce the extinction rates of new species 
will also increase the apparent production rate of daughter species. 
Storch et al. (2018) also predicted that the rate of daughter species 
production by existing species should be either unrelated to, or a 
positive function of, species population size. The latter is clearly 
the case in our simulations: more abundant species speciate more 
(Figure 6).

Increased extinction rates in species of a given size in higher 
energy ecosystems should, all else being equal, manifest in the 
real world as higher mean species sizes in higher energy ecosys-
tems. There is corroborating real-world evidence for this pattern 
(Kaspari et al., 2000; Stoner et al., 2018), although the studied eco-
systems must be at an eco-evolutionary equilibrium (Rabosky & 
Hurlbert, 2015). Regardless of whether population size is measured 
in absolute terms or as a proportion of total community abundance, 
extinction risk in our simulations is a negative declining function of 
population size, as predicted by ecological theory (Evans et al., 2005).

The key prediction of the strictest formulation of the MIH is that 
mean species size should not vary as a function of total community 
abundance (Storch et al., 2018). Our results do not support this predic-
tion: Although the slope of the relationship between mean species and 
total community abundance is not constant, it is always significantly 
positive (Figure 7). Our results divide the relationship between mean 
species size and total community abundance into three segments: 
one at low community abundances, one at intermediate community 
abundances, and one at high community abundances. Fundamentally, 
increases in total community abundance must result in some combi-
nation of increases in species richness and/or mean species size. At 
low community abundances, species richness increases as a function 
of energy level (Figure 2), but so does mean species size (Figure 7). 
At intermediate community abundances, species richness no longer 
increases as a function of total community abundance (Figure 2); as 
such, mean species size must increase more rapidly to compensate 
(Figure  7). At high community abundances, some simulations have 
anomalously high mean species sizes. This is likely an artifact produced 

by the species concept used by REvoSim, which takes more iterations 
to identify distinct populations as sister species if those populations 
are larger (hence the difference between standard duration and long 
duration 4x4 simulations in Figure 2). Because the environment in this 
experiment is dynamic, new populations of potential sister species are 
constantly being produced and, as such, simulations with high total 
community abundances will always have some large species in them 
that the algorithm has been so far unable to split. The segmentation 
analysis responds to this by suggesting a significant increase in the 
rate at which mean species size increases with total community abun-
dance at high total community abundances, although this might not be 
biologically meaningful.

At equilibrium, species extinction rates must equal species orig-
ination rates (assuming a closed system, as in our experiments). 
The MIH states that increases in total community abundance 
should allow for division of individuals between a greater num-
ber of species without an increase in per-lineage extinction rates 
(Storch et  al.,  2018). However, our experiments suggest that, for 
species of any given size, per lineage extinction rate will be higher 
in more populous communities (Figure  5a). If both log(extinction 
probability) and daughter species production rate were perfectly 
linear functions of the proportion of total community abundance 
accounted for by the focal species, then equilibrium species rich-
ness would be independent of total community richness, and in-
creases in total community richness could be compensated for only 
by equivalent increases in mean species size (Equations S1). Clearly, 
this is not the case, as increases in total community abundance (fol-
lowing increases in energy level) lead to an increase in species rich-
ness (Figure 2). This discrepancy can be explained by two factors. 
Firstly, log(extinction probability) is not a perfectly linear function 
of the proportion of total community abundance accounted for by 
the focal species (Table S9): Absolute species population size also 
contributes to reducing extinction risk. Secondly, it is not only mean 
species size but also the distribution of species sizes within a sim-
ulation that controls mean extinction rate. Because it is the loga-
rithm of extinction risk, rather than simply extinction risk, that is a 
function of species population size, small decreases in the popula-
tions of large species will have very little impact on their extinction 
risk, whereas an increase in population size of the same absolute 
magnitude can greatly reduce the extinction risk of a rare species. 
As such, mean extinction risk can be expected to be reduced, re-
gardless of mean species size, in simulations with higher community 
evenness (i.e., more equitable distribution of individuals between 
species). In our simulations, community evenness is higher in simu-
lations with higher energy levels, at least over the range of energy 
levels where species richness is a function of energy level. The mag-
nitude of this effect is quite small and, as such, it is unlikely that it 
is the sole driver of differences in species richness in our results. 
Nevertheless, higher energy level simulations contained more even 
community abundances and, as such, higher energy level simula-
tions should have lower per-lineage extinction rates at any given 
mean species size and, consequently, higher equilibrium species 
richnesses.
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Species richness ceases to scale with energy level above a cer-
tain threshold in all of our simulations. This implies that, beyond a 
certain energy level, some other factor limits species richness. It is 
clear from the simulations in which maximum niche diversity is ap-
proximately known (i.e., experiments 1–3) that this factor is avail-
ability of unoccupied niches, which facilitate diversification through 
ecological speciation (Rundle & Nosil, 2005), at least to the degree 
allowed by disturbance in the environment (Grant et al., 2004). Our 
simulations predict that, in real-world environments where niche 
space is saturated, increasing productivity should not produce an 
increase in species richness. However, this is a challenging predic-
tion to test using real-world data; it is difficult to determine the level 
of niche occupancy in an ecosystem, although many studies have 
attempted to do so (e.g., McClain et al., 2018; Pellissier et al., 2018; 
Price et  al.,  2014). It is even more difficult to do this in multiple 
areas that are ecologically similar, but that exist along the gradient 
of energy required to test the explanatory power of the productiv-
ity hypothesis. Furthermore, there are mechanisms that we have 
not tested in our simulations, such as the trophic-levels hypothesis 
(Evans et  al.,  2005), which could operate at energy levels beyond 
those at which we have observed the MIH to operate. Nonetheless, 
there is evidence from the real world that increasing energy levels 
can result in more densely packed niche space (McClain et al., 2018; 
Pellissier et al., 2018), and that the latter can become saturated once 
species richness grows to a sufficient level (Price et al., 2014), result-
ing in species richness no longer increasing as a function of energy 
level (Carnicer et al., 2007), as found in our simulations.

5  | CONCLUSION

Our work finds support for certain core aspects of the productivity 
hypothesis: Extinction rates are higher in less abundant species, and 
daughter species production is higher in more abundant species. As 
the more-individuals hypothesis predicts, this results in higher spe-
cies richness in environments with greater total community abun-
dance. However, increases in total community abundance are also 
accompanied by increases in mean species size that compensate 
for the increased risks of breeding failure and increased pressures 
from ecological drift. This increase in mean species size significantly 
dampens the positive effects of total community abundance on spe-
cies richness. Furthermore, changes in community evenness can 
cause changes in species richness independent of the effects of total 
community abundance, and limits to niche diversity can cap the spe-
cies richness produced by the mechanisms of the more-individuals 
hypothesis. Our results highlight the importance of niche theory in 
controlling species richness, even with respect to mechanisms such 
as the more-individuals hypothesis, which are not intuitively depend-
ent on ecological differences between species. Finally, these experi-
ments provide further evidence that the REvoSim eco-evolutionary 
system can reproduce real-world patterns, and can be used to test 
specific evolutionary hypotheses.
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