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Background:Better outcome prediction could assist in reliable classification of

the illnesses in neurological intensive care unit (ICU) severity to support clinical

decision-making. We developed a multifactorial model including quantitative

electroencephalography (QEEG) parameters for outcome prediction of

patients in neurological ICU.

Methods: We retrospectively analyzed neurological ICU patients from

November 2018 to November 2021. We used 3-month mortality as the

outcome. Prediction models were created using a linear discriminant analysis

(LDA) based on QEEG parameters, APACHEII score, and clinically relevant

features. Additionally, we compared our best models with APACHEII score and

Glasgow Coma Scale (GCS). The DeLong test was carried out to compare the

ROC curves in di�erent models.

Results: A total of 110 patients were included and divided into a training set

(n=80) and a validation set (n = 30). The best performing model had an AUC

of 0.85 in the training set and an AUC of 0.82 in the validation set, which were

better than that of GCS (training set 0.64, validation set 0.61). Models in which

we selected only the 4 bestQEEGparameters had an AUCof 0.77 in the training

set and an AUC of 0.71 in the validation set, which were similar to that of

APACHEII (training set 0.75, validation set 0.73). The models also identified the

relative importance of each feature.

Conclusion: Multifactorial machine learning models using QEEG parameters,

clinical data, and APACHEII score have a better potential to predict 3-month

mortality in non-traumatic patients in neurological ICU.
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Introduction

Compared with other critical illnesses, neurocritical illnesses

have their characteristics, which are prominent neurological

failures. Accurate prognostic indicators for neurological

intensive care unit (ICU) patients are urgently needed to

assist clinical management and counseling of patients and

their families. As more and more patients benefited from

intensive care technology and survived in the hospital, we are

increasingly shifting our focus from in-hospital mortality to

post-discharge outcomes.

At present, Glasgow Coma Scale (GCS) has been widely used

for predicting the prognosis in the ICU for its simple, practical,

and economic advantages (1). However, GCS does not reflect

multiple organ damage in critically ill patients. Acute Physiology

and Chronic Health Evaluation II (APACHEII) score (2),

including the GCS score and the twelve physiological variables,

theoretically include more considerations in predicting ICU

patient outcomes. Studies have shown that other physiological

variables excluding GCS in APACHE II are more accurate in

predicting correct outcomes of late mortality (1).

Electroencephalography (EEG) is a non-invasive measure

of cortical activity, especially suitable for sedation or comatose

patients (3–5). Continuous EEG (cEEG) has been used as a

part of routine multimodal monitoring in the neurological

ICU to detect (non-convulsive or electrographic) seizures and

ischemia (6). Quantitative EEG (QEEG), originated from raw

EEG data, provides a quantitative analysis of the data both in the

frequency and in the time domain. It transforms EEG elements

into calculated parameters, simplifying the interpretation and

allowing the analysis to be more objective (7, 8). In recent

years, several studies have been proved that QEEG parameters

could be used to detect the changes and predict prognosis

in neurological ICU disease (9–13). However, more attention

was paid on traumatic brain injury, the detection of epilepsy,

and in-hospital mortality. Few studies have focused on non-

traumatic neurocritical illnesses (which are also a major part of

the neurology ICU) and post-discharge outcomes.

In this study, we used machine learning methods, combined

with basic patient’s characteristics, APACHEII score, and

QEEG parameters, to create a new model. We hypothesize

that a machine learning model for prognosis prediction

Abbreviations: ICU, intensive care unit; QEEG, quantitative

electroencephalography; APACHEII, Acute Physiology and Chronic

Health Evaluation II; LDA, linear discriminant analysis; GCS, Glasgow

Coma Scale; cEEG, continuous EEG; mRS, modified Rankin Scale;

PSD, power spectral density; ADR, alpha/delta ratio; MAD, median

absolute deviation; BSI, brain symmetry index; AMP, mean amplitude;

REG, regularity; FLD, Fisher linear discriminant; ROC, receiver operating

characteristic; AUC, area under the curve; PPV, positive predictive value;

NPV, negative predictive value.

would outperform traditional risk calculators, such as GCS

and APACHEII.

Methods

Study population

We retrospectively analyzed neurological ICU patients from

November 2018 to November 2021, The Second Hospital of

HebeiMedical University. Inclusion criteria were as follows: (14)

patients older than 18 years and (15) patients who were admitted

to the neurological ICU. Exclusion criteria were as follows: (14)

patients who were diagnosed with traumatic brain injuries; (15)

patients who did not receive the EEG monitoring for some

reasons (e.g., agitated patients or the local skull were absent

after the operation or the EEG machine was a failure, etc.); (16)

patient’s pre-onset modified Rankin Scale (mRS) ≥ 2 points;

(17) patients who had significant non-neurological diseases that

seriously affect the prognosis, such as severe heart failure; (3)

patients were conscious who got non-central nervous system

diseases, such as Guillain–Barre syndrome and Myasthenia

gravis. This retrospective study was approved by the Research

Ethics Committee of the Second Hospital of Hebei Medical

University (approval number: 2018-P031).

Outcome assessment

We used 3-month mortality as the post-discharge outcome.

It was performed by the telephone calls by 2 independently

medical graduate students.

Clinical parameters

We retrospectively collected the basic characters of patients

(e.g., gender, age, and past medical history, etc.), GCS and

APACHEII scores on admission, and several physiological

variables which the worst at 24-h admission to ICU (the

body temperature, mean arterial pressure, heart rate, serum

sodium, serum potassium, and hematocrit) from the electronic

medical records. We also collected the diagnoses. In the case

where the patient had two, the “most severe” diagnoses would

be considered.

EEG recordings

Electroencephalography recordings were started as soon

as possible after admission to the ICU. The patients were

monitored using a digital video EEG monitor (Model Neusen.

U) of Boruikang Technology (Changzhou) Co. Ltd, for at
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least 2 h each time, and at least once for each case. Ag/AgCl

electrodes were placed according to the international 10–20

system. The impedance of each electrode was maintained

below 5 kΩ , the sampling rate was 1,000Hz, and the filtering

range was 0.5–70Hz. Data were stored in the European Data

Format (EDF).

QEEG parameters

The selected continuous EEG data with a length of

about 30min which from the first EEG monitoring data

after admission without motion interference were analyzed

quantitatively with the MATLAB R2015a (The MathWorks, Inc.

MA, USA) software and its EEGLAB toolbox. The following

steps were performed: (1) preprocessing: 50Hz notch filtering

was performed to remove power frequency interference; the

third-order Butterworth filter was selected as the high-pass

filter, the −3dB cutoff the frequency was 1Hz; the 8th-order

Butterworth filter was selected as the low-pass filter selects,

and the −3dB cutoff frequency is 30Hz; (2) adaptive noise

reduction: eye electrical interference was removed using the

method provided by the EEGLAB toolbox. All QEEGparameters

were calculated for each 10-min window. For multiple epoch

data, we adopt the method of extracting median, because it is

found that median requires less data cleaning, which is also in

line with common cognition.

Absolute power per band

The absolute power of the frequency bands was calculated

by integration of the power spectral density (PSD) within each

frequency band: delta (0.5–4Hz), theta (4–8Hz), alpha (8–

13Hz), and beta (13–20Hz). Hereby, we estimated the PSD

of each channel using Welch’s method, with an overlap of

50%, and averaged the PSD over the 60 epochs within the

10-min windows.

Total power

The sum of all power bands (0.5–20Hz) resulted in the

total power.

Relative power per band

The relative power of each frequency band was defined as

the ratio between the power within that frequency band and the

total power.

Alpha/delta ratioThe alpha/delta ratio (ADR) was calculated

as the power ratio from the alpha (8–13Hz) and delta (0.5–4Hz)

frequency bands.

Variability per frequency band

Variability in the power of each frequency band was

computed by the ratio of the median absolute deviation (MAD)

to the median power in each frequency band (18), resulting in a

value between 0 (no variability) and 1 (high variability).

Brain symmetry index

The pairwise derived brain symmetry index (BSI) was used

to calculate the symmetry of power between each pair of

electrodes from the left and right hemisphere (19), expressed in

a value between 0 (symmetric) and 1 (highly asymmetric). BSI

was calculated over the frequency ranges 0.5–20Hz (BSI ALL)

and 0.5–4Hz (BSI delta).

Mean amplitude

The mean amplitude (AMP) was defined as the standard

deviation of the signal.

Regularity

Regularity (REG) is a measure for the continuity of the EEG

pattern based on the variance of the amplitude of the signal.

Regularity is normalized between 0 and 1, where a higher value

indicates a signal with more regular amplitude (20).

Multifactorial model

We chose the linear discriminant analysis (LDA), also

known as Fisher linear discriminant (FLD). It is a classical

algorithm of pattern recognition, which was introduced into

the field of pattern recognition and artificial intelligence by

Belhumeur in 1996 (21). The basic idea is to project the high-

dimensional pattern samples into the optimal discriminant

vector space, to extract classification information and compress

the dimension of feature space. After the projection, the

pattern samples have the maximum inter-class distance and the

minimum intra-class distance in the new subspace. Therefore,

it is an effective feature extraction method. It can guarantee

the minimum intra-class distance and maximum inter-class

distance of the projected pattern samples in the new space. That

means the pattern has the best separability in this space.

First, we trained an LDA classifier that combined all QEEG

parameters, APACHEII scores, and other characteristics, such

as gender to predict patient mortality at 3 months. Second,

some important features are selected and used to create a

new model. In addition to the validation set, we also used

5-fold cross-validation to examine the performance of the

machine learning classifiers. To evaluate model performance,

we computed receiver operating characteristic (ROC) curves,

the area under the curve (AUC), sensitivity, specificity, positive
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FIGURE 1

Flow diagram for inclusion and exclusion of eligible patients. mRS, modified Rankin Scale; EEG, Electroencephalography.

predictive value (PPV), and negative predictive value (NPV).

The DeLong test was carried out to compare the ROC curves

in different models.

Statistical analysis

Statistical Package for the Social Sciences (SPSS) statistical

software (version 26.0, SPSS Institute, Inc., Chicago, IL, USA)

was used for data analysis. The measurement data for normal

distribution were expressed as mean ± standard deviation and

compared using the t-test. The skew distribution data were

represented by median and quartile spacing, and a rank-sum

test (Mann–Whitney U test) was used for comparison between

groups. Counting data were represented by frequency and

compared using the chi-square test. The significance level was

set at p < 0.05.

Results

Patient demographics

There were totally 110 patients included in our study. A total

of 80 patients from November 2018 to November 2020 were

enrolled in the training set. A total of 30 patients fromDecember

2020 to November 2021 were enrolled in the validation set. A

flow diagram for the inclusion and exclusion of eligible patients

is shown in Figure 1. Table 1 shows the baseline characteristics

of both training and validation sets. In training set, there were

53 (66.25%) patients in the survival group and 27 (33.75%)

patients in the non-survival group. Patients in the survival

group had lower APACHEII scores (p < 0.001) and higher GCS

scores (p = 0.015). More patients in the non-survival group

had a previous medical history of diabetes (p < 0.001) and the

administration of norepinephrine (p = 0.003). The age, gender,

the diagnoses, the medication of analgesic and sedative drugs,

the ICU stay, and the EEG start in hours after onset did not differ

between the groups.

In validation set, there were 20 (66.67%) patients in the

survival group and 10 (33.33%) patients in the non-survival

group. Patients in the survival group also had lower APACHEII

scores (p= 0.034). There were no significant differences in other

characteristics between the groups.

Model selection and performance in the
training set

Our best model based on all QEEG parameters, APACHEII,

and other features had an AUC of 0.85 (specificity 0.81,

sensitivity 0.81), which was the highest AUC value among

other model and scores. Since GCS and age are included in

APACHEII’s calculation formula, only APACHEII features were

added when training the best model. Models in which we

selected only the 4 best QEEG parameters (delta power rate, beta

power rate, theta power rate, and alpha power rate) had an AUC
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TABLE 1 Baseline characteristics of training and validation sets.

Characteristic Training set p-value Validation set p-value

Total

(n= 80)

Survival

group

(n= 53)

Non-survival

group

(n= 27)

Total

(n= 30)

Survival

group

(n= 20)

Non-survival

group

(n=1 0)

Age, year, Mean± SD 58.0 (38.5, 68.8) 58.0 (31.0, 67.5) 59.8± 13.4 0.107 50.5± 20.6 49.4± 21.3 51.6± 20.7 0.834

Male, n (%) 46 (57.5%) 37 (69.8%) 9 (33.3%) 0.774 18 (60.0%) 10 (50.0%) 8 (80.0%) 0.114

Admission APACHE

II, median (IQR)

17.0 (15.0, 20.8) 16.0 (13.5, 19.0) 20.0 (17.0, 25.0) <0.001 17.0 (15.0, 19.0) 16.5 (15.0, 18.0) 20.7± 5.4 0.034

Admission GCS,

median (IQR)

4.0 (3.0, 6.0) 5.0 (3.0, 7.5) 3.0 (3.0, 5.0) 0.015 6.0 (4.0, 8.0) 6.0 (5.0, 8.8) 5.5± 2.0 0.338

Previous medical history, n (%)

Hypertension 42 (52.5%) 25 (47.2%) 17 (63.0%) 0.181 15 (50%) 9 (45.0%) 6 (20.0%) 0.439

CHD 17 (21.3%) 9 (17.0%) 8 (29.6%) 0.191 7 (23.3%) 5 (25.0%) 2 (20.0%) 0.760

Diabetes 11 (13.8%) 2 (3.8%) 9 (33.3%) <0.001 6 (20.0%) 4 (20.0%) 2 (20.0%) 1.000

Diagnose, n (%)

Hypoxic ischemic

encephalopathy

6 (7.5%) 5 (9.4%) 1 (3.7%) 0.658 3 (8.8%) 2 (10.0%) 1 (10.0%) 1.000

Intracerebral

hemorrhage

9 (11.3%) 6 (11.3%) 3 (11.1%) 1.000 2 (5.9%) 1 (5.0%) 1 (10.0%) 0.605

Cerebral ischemic

stroke

36 (45.0%) 20 (37.7%) 16 (59.3%) 0.067 6 (17.6%) 4 (20.0%) 2 (20.0%) 1.000

Central nervous

system infectious

diseases

25 (31.3%) 19 (35.8%) 6 (22.2%) 0.214 11 (32.4%) 7 (35.0%) 4 (40.0%) 0.789

Other

diseases/Unknown

4 (5.0%) 3 (5.7%) 1 (3.7%) 1.000 8 (23.5%) 6 (30.0%) 2 (20.0%) 0.559

Medication administration, n (%)

Propofol 12 (15.0%) 9 (20.8%) 3 (11.1%) 0.487 6 (20.0%) 3 (15.0%) 3 (30.0%) 0.333

Midazolam 60 (75.0%) 40 (75.5%) 20 (74.1%) 0.891 28 (93.3%) 18 (90.0%) 10 (100.0%) 0.301

Fentanyl 49 (61.3%) 31 (58.5%) 18 (66.7%) 0.478 24 (80.0%) 15 (75.0%) 9 (90.0%) 0.333

Noradrenaline 11 (13.8%) 3 (5.7%) 8 (29.6%) 0.003 3 (10.0%) 1 (5.0%) 2 (20.0%) 0.197

Length of ICU say, d 23.5 (15.0, 40.0) 20.0 (15.0, 29.0) 29.0 (15.0, 52.5) 0.163 26 (17.0, 28.0) 25.5 (17.0, 27.5) 24.4± 6.5 0.522

EEG start in hours

after onset (median

(IQR))

3.5 (1.75, 6.25) 3.0 (1.00, 6.00) 4.0 (2.00, 10.50) 0.141 4 (2.0, 10.0) 4.0 (2.00, 11.00) 3.0 (1.50, 6.50) 0.472

APACHEII, Acute Physiology and Chronic Health Evaluation II; GCS, Glasgow Coma Scale; CHD, coronary heart disease; ICU, intensive care unit; IQR, interquartile range; SD,

standard deviation. The bold values mean P < 0.05.

of 0.77, which was similar to that of APACHEII (AUC=0.75),

and much higher than that of GCS (AUC= 0.64). The results of

the DeLong test indicated that the AUC of the best models was

significantly better than that of GCS (Table 2, Figure 2).

Performance in the validation set

Our best model classified 3-month mortality in the

validation set had an AUC of 0.82 which based on all QEEG

parameters, APACHEII, and other features. It was also the

highest AUC value among other models and scores. Model in

which we selected only the 4 best QEEG parameters had an

AUC of 0.71, which was similar to that of APACHEII. The

AUC of the APACHEII to classified 3-month mortality in the

validation set is 0.73. Both model with 4 QEEG parameters and

APACHEII had the same sensitivity of 0.94. GCS also had the

lowest AUC for classified 3-month mortality (AUC= 0.61). The

results of the DeLong test indicated that the AUC of the best

model, which based on all QEEG parameters, APACHEII, and
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TABLE 2 The diagnosis results of the scores and the models.

Variables AUC Threshold Sensitivity Specificity PPV NPV

Training set

(50%CI)

GCS 0.64 (0.60–0.68) 10 0.57 (0.52–0.61) 0.74 (0.68–0.80) 0.81 (0.79–0.84) 0.47 (0.46–0.47)

APACHEII 0.75 (0.71–0.79) 19 0.77 (0.72–0.81) 0.63 (0.57–0.69) 0.80 (0.78–0.82) 0.59 (0.56–0.60)

Best model (QEEG

parameters)

0.77 (0.73–0.80)* 0.64 0.74 (0.70–0.78) 0.78 (0.71–0.83) 0.87 (0.84–0.88) 0.60 (0.58–0.63)

Best model

(QEEG+APACHEII+other

features)

0.85 (0.81–0.87)* 0.60 0.81 (0.78–0.85) 0.81 (0.75–0.86) 0.91 (0.90–0.97) 0.69 (0.66–0.72)

Validation set

(50%CI)

GCS 0.61 (0.53–0.68) 10 0.83 (0.75–0.88) 0.30 (0.22–0.43) 0.68 (0.67–0.70) 0.50 (0.49–0.51)

APACHEII 0.73 (0.63–0.79) 18 0.94 (0.89–1.00) 0.50 (0.38–0.60) 0.77 (0.74–0.80) 0.83 (0.75–1.00)

Best model (QEEG

parameters)

0.71 (0.63–0.77) 0.68 0.94 (0.89–0.96) 0.40 (0.30–0.50) 0.74 (0.71–0.76) 0.79 (0.71–0.80)

Best model

(QEEG+APACHEII+other

features)

0.82 (0.74–0.86)*† 0.72 0.94 (0.89–1.00) 0.60 (0.50–0.70) 0.81 (0.78–0.84) 0.86 (0.78–1.00)

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; GCS, Glasgow Coma Scale; APACHEII, Acute Physiology and Chronic Health Evaluation II;

QEEG parameters, delta power rate, beta power rate, theta power rate, and alpha power rate.

*DeLong test indicated that there were statistical differences in the AUC from GCS.
yDeLong test indicated that there were statistical differences in the AUC from best model (QEEG parameters).

other features, was significantly better than that of GCS (Table 2,

Figure 2).

Feature contributions

The best models used 19 features (14 QEEG parameters,

past medical histories, APACHEII, and gender), of which each

contribution is shown in Figure 3. The 4 QEEG parameters

(delta power rate, beta power rate, theta power rate, and

alpha power rate) were more important than other features.

Specifically, the delta power rate had the highest feature

importance score of 19.09. However, other features had much

lower feature importance scores. The least relevant was the

previous history of coronary heart disease and hypertension,

2 QEEG parameters (REG and variability all), and gender,

the feature importance score of which were all <0.20. The

APACHEII score is also lower than the part of QEEG parameters

(delta power rate, beta power rate, theta power rate, alpha

power rate, ADR, variability alpha, and BSIALL). The best

model used only 4 QEEG parameters (delta power rate,

beta power rate, theta power rate, and alpha power rate),

of which each contribution is shown in Figure 4. The delta

power rate also got the highest feature importance score

of 11.09. The other 3 QEEG parameters got similar feature

importance scores.

Discussion

More reliable and accurate individual predictions of

mortality through better models may improve clinical decision-

making, leading to better risk-benefit assessments and improved

individual management.

Several studies have attempted to correlate individual QEEG

parameters with patient outcomes in a variety of non-traumatic

neurological disorders (9, 17, 22, 23), and a few studies

have shown that models based on multiple QEEG parameters

and machine learning methods can predict the post-discharge

outcomes of neurological ICU patients who always got non-

traumatic neurocritical illnesses. We developed a model using

a machine learning method that included multiple QEEG

parameters, APACHEII scores, and patient general baseline

data. With both specificity and sensitivity of 0.81, the DeLong

test indicated that it had a higher diagnostic value than GCS

for 3-month mortality in neurological ICU patients (Table 2,

Figure 2). Although the AUCs between the best model based

on all QEEG parameters, APACHEII, and other features and

APACHEII did not reach a statistical difference, we could see

a better trend toward from the machine learning model. At the

meantime, we found that in the contribution score of this model,

the contribution of QEEG parameters was the most important,

which exceeds that of APACHEII score. It can also be seen

from Table 2 that the diagnostic value of the model containing
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FIGURE 2

ROC curves with 50% confidence interval of models and scores for predicting 3-month mortality. ROC curve, receiver operating characteristic

curve; QEEG, quantitative EEG; APACHEII, Acute Physiology and Chronic Health Evaluation II; GCS, Glasgow Coma Scale; AUC, area under the

curve. The red dots indicate the threshold at which the sensitivity and specificity are best.

only 4 QEEG parameters is similar to that of APACHEII in

both training and validation sets (AUC of 0.77 vs. 0.75 in the

training set and 0.71 vs. 0.73 in the validation set). These data

suggest that multifactorial models may benefit from including

QEEG parameters. So, we want to emphasize that machine

learning models that include QEEG parameters may have better

predictive value than traditional models. Our results support

this possibility, and the machine learning model can be further

optimized in the future to improve this possibility.

Delta power rate contributes most to the prediction models,

which has been confirmed in many studies that delta power rate

was a correlation with poor outcomes (24, 25). Interestingly,

the predictive contribution of the 4 basic band power rates

was the most important compared to other QEEG parameters.

This is not consistent with the traumatic brain injury (TBI)

findings (11, 18). In patients with TBI, mean AMP, alpha

power, and variability of the relative fast theta power were

found to contribute significantly among QEEG parameters. In

terms of contribution score, in addition to the 4 basic band

power rates, ADR, variability alpha, and BSIALL rank ahead

of APACHEII score. The possible reason is that the population

in this study includes multiple diseases, and the prognosis of

cerebral hemorrhage, cerebral infarction, and hypoxic-ischemic

encephalopathy (HIE) is correlated with the power of the

4 basic band power rates. But so far, there are few studies

on the prognosis of central nervous system infection using

EEG, and more attention is paid to infection indicators. ADR

and variability alpha are associated with cerebral ischemia,

especially for the recognition of delayed cerebral ischemia after

subarachnoid hemorrhage (26–30). BSI is a good predictor of

stroke prognosis (31, 32). The reasonmay be the cerebrovascular

patients account for more patients in the training set, so

BSIALL has a higher contribution. Patients with HIE are

usually the cases with symmetrical and diffuse brain lesions.

So theoretically, BSI should not be prognostic for HIE. It is

worth mentioning that in the validation set, cerebrovascular

diseases do not occupy the largest proportion of diseases, but

instead central nervous system infection. Even so, our training

models also obtained good verification results, indicating that

our models were generally applicable to the prognosis of patients

in neurological ICU.

Cho et al. (1) found that for prediction of the late mortality,

the APACHE III and II had better accuracy than GCS. Our

results also showed that APACHEII score might have a higher

diagnostic value than the GCS score, but the result did

not reach the statistical difference. APACHEII score had a

higher predictive ability of post-discharge outcome than GCS,

which might be due to the addition of more physiological

parameters. However, between the two models established by

our machine learning method, the predictive value of only 4

QEEG parameters was similar to that of APACHEII score and

higher than that of GCS score, indicating that the diagnostic

value can also be improved by QEEG parameters from the

perspective of brain function. In other words, QEEG parameters

may be more valuable than GCS in evaluating brain function.

Additionally, it suggests that QEEG parameters alone may be
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FIGURE 3

Feature contribution of the best model based on all QEEG parameters, APACHEII, and other features. ADR, alpha/delta ratio; BSI, brain symmetry

index; APACHEII, Acute Physiology and Chronic Health Evaluation II; Mean AMP, mean amplitude; REG, regularity.

a promising alternative to APACHEII score and GCS score

in neurological ICU prognosis prediction for the discharge

outcome, which requires the validation of larger data and

depends on the popularity of QEEG technology in ICU.

Sedative drugs can affect EEG presentation; however, the

effect is likely to reduce the contribution of QEEG parameters

(16). In both training and validation sets, there were no

statistically significant differences in the use of sedatives between
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FIGURE 4

Feature contribution of the best model based on four QEEG parameters.

the two groups. So, sedative drugs may not have a significant

effect on the results. Besides, studies that exclude sedatives

from ICU patients are sometimes unethical. We focused on

quantitative analysis instead of visual EEG analysis, so epilepsy

was not included in the analysis. Quantitative EEG processing is

still carried out to follow the methods, and the epileptic part is

not artificially excluded.

Since the endpoint was the outcome after discharge, the

specific cause of death could not be counted for many patients,

but it was likely that the part of which was caused by non-

nervous system organ failure. So, the optimal model including

multiple parameters had the highest diagnostic value. In

addition to APACHEII and GCS, there is also a difference

between the two groups in the history of diabetes in training set

(Table 1). Additionally, the contribution score of diabetes history

was also slightly higher than that of APCAHEII (Figure 3). So,

the history of diabetes may influence the prognosis. This may

be due to diabetes in ICU patients is associated with non-

nervous system organ dysfunction, such as infection (15) and

acute kidney injury (33).

We also run our models on the patients who included pre-

onset mRS ≥ 2. The results showed that the AUC of GCS

increased, and there was no statistical difference of AUCs among

models and GCS in the training set (Supplementary Figure S1,

Supplementary Table S1). It may be due to the patients, who pre-

onset mRS < 2, at the early onset did not reach a severe GCS.

Additionally, patients with pre-onset mRS ≥ 2 points may have

severe GCS at an early stage, so the prognostic value is higher.

These results should be interpreted with caution because the

patients with pre-onset mRS ≥ 2 were few. Our study more

focused on the population with new brain injury, not on the

population with disability from previous brain injury. Future

studies on this population can be carried out independently for

more reliable results.

While this study showed promising results, there are several

limitations. First, this study had a relatively small sample size,

while we used cross-validation to overcome the limitations

of the small sample size in training set. From the results

of the validation set, our models were also well-verified. In

this proof-of-concept study, we demonstrate the potential of

machine learning models in this regard. These results should

be validated in a larger study. Second, the subjects of our study

were patients in neurological ICU, including several common

diseases, without targeting a specific disease. However, from

the perspective of single-factor analysis, disease diagnosis does

not constitute a risk factor for outcome (Table 1). Since the

proportions of diseases in the training set and the validation

set are different (cerebrovascular diseases in the training set

account for the largest proportion, and central nervous system

infectious diseases in the validation set account for the largest

proportion), our results are not specific to the diagnosis of any

disease, but generally applicable to most of the neurocritical

illnesses in neurological ICU. We believe that EEG ultimately

reflects the level of bioelectrical activity of cortical cells and can

reflect the severity of any disease in which brain function is

impaired. Of course, QEEG can be explained in specific diseases,

and different neurocritical illnesses may have different QEEG

parameters to respond to different needs. We also need QEEG
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parameters for comparing severity among different illnesses.

Müller et al. (34) found that visual EEG can predict the prognosis

of coma patients with different causes. Third, HIE accounts

for a small proportion in both training and validation sets.

Since we focused on quantitative analysis instead of visual EEG

analysis, some EEG characteristics (background continuous and

background reactivity) were not incorporated in our proof-of-

concept study, which are more important for HIE (14, 34).

These deficiencies may reduce the value of our models in

evaluating the prognosis of HIE groups. However, our research

aims to establish a model that is generally applicable to multiple

diseases, rather than a specific disease. Fourth, we did not

select many clinical indicators (many of the clinical indicators

originally selected were removed by dimensionality reduction

in the classifier during modeling), which may exaggerate the

contribution of QEEG parameters. However, our results have

reflected the advantages of machine learning methods and

QEEG parameters compared with traditional scores. Fifth, we

chose only a single machine learning approach, to offer the

possibility. Multiple combinations of machine learning might

improve diagnostic value.

Conclusion

Multifactorial machine learning model using QEEG

parameters, clinical data, and APACHEII score have a better

potential to predict 3-month mortality in non-traumatic

patients in neurological ICU.
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SUPPLEMENTARY FIGURE S1

ROC curves with 50% confidence interval of models and scores for

predicting 3-month mortality with patients included pre-onset mRS ≥ 2.

ROC curve, receiver operating characteristic curve; mRS, modified

Rankin Scale; QEEG, quantitative EEG; APACHEII, Acute Physiology and

Chronic Health Evaluation II; GCS, Glasgow Coma Scale; AUC, area

under the curve. The red dots indicate the threshold at which the

sensitivity and specificity are best.

SUPPLEMENTARY TABLE S1

The diagnosis results of the scores and the models (patients include

mRS ≥ 2).
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