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Abstract

Exposure to chronic stress, either repeated severe acute or moderate sustained stress, is one of the strongest risk factors
for the development of psychopathologies such as post-traumatic stress disorder and depression. Chronic stress is linked
with several lasting biological consequences, particularly to the stress endocrine system but also affecting intermediate
phenotypes such as brain structure and function, immune function, and behavior. Although genetic predisposition confers
a proportion of the risk, the most relevant molecular mechanisms determining those susceptible and resilient to the effects
of stress and trauma may be epigenetic. Epigenetics refers to the mechanisms that regulate genomic information by dynam-
ically changing the patterns of transcription and translation of genes. Mounting evidence from preclinical rodent and clinical
population studies strongly support that epigenetic modifications can occur in response to traumatic and chronic stress.
Here, we discuss this literature examining stress-induced epigenetic changes in preclinical models and clinical cohorts of
stress and trauma occurring early in life or in adulthood. We highlight that a complex relationship between the timing of
environmental stressors and genetic predispositions likely mediate the response to chronic stress over time, and that a
better understanding of epigenetic changes is needed by further investigations in longitudinal and postmortem brain clinical
cohorts.
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Chronic stress and trauma are associated with several

Intreduction: Defining chronic stress lasting biological changes, particularly of the stress endo-

Exposure to chronic stressors across the human lifespan
can multiply an individual’s susceptibility to adverse med-
ical conditions."? In this article, chronic stress refers to (1)
a series of intense traumatic events such as accidents, phys-
ical assault, sexual assault, natural disasters, or combat
exposure, leading to psychopathologies such as complex
post-traumatic stress disorder (PTSD)® or (2) non-
traumatic but major events in life, whereby an individual
is exposed to sustained periods of stress, for example, care-
giving, difficult divorce, or a stressful work environment
leading to burnout.* Chronic stress is a robust risk factor
for many medical conditions including cardiovascular dis-
ease, obesity, cancer, and immune disorders.” Tt is also
highly linked with the development of a broad range of
psychiatric illnesses, including PTSD,® major depressive
disorder,® bipolar disorder,” schizophrenia,” anxiety dis-
orders,? substance abuse disorders,” and addiction.'°

crine systems. For example, enduring stress and trauma
can lead to permanent changes in the structure of several
brain regions important for processing traumatic infor-
mation (e.g. decreased somatosensory field of genital
region after childhood sexual abuse),!" which might be
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an adaptive response to protect an individual from future
adversity.'>"? Interestingly, such adaptive mechanisms
appear to occur in all individuals exposed to similar
levels of stress or trauma, regardless of diagnostic out-
come. Yet, only a fraction (~20%) of people who have
experienced trauma go on to develop PTSD, while some
even experience post-traumatic growth.'® Additionally,
some individuals may not develop PTSD but other psych-
otic, anxiety, or affective disorders—or a combination of
these—highlighting the heterogeneity of responses to
stress.'>'® Considering that the outcomes following
chronic stress exposure differ greatly between individuals,
susceptibility to adversity resulting in psychopathology
might be determined by how efficiently an individual is
able to compensate for adversity at the molecular level.

In addition to genetic factors, some of the most rele-
vant molecular mechanisms that may contribute to risk
or resilience to the effects of stress and trauma are epi-
genetic. For example, DNA methylation profiles in
monozygotic twin pairs diverge as twins grow older,
with the differences between these genetically identical
individuals at least partially explained by differing envir-
onmental exposures such as psychological stress.'’
Further, in genome-wide association studies of stress-
related psychiatric disorders, single genetic variants
explain only a small proportion of disease risk and over-
all do not completely explain heritability.

Epigenetics refers to the mechanisms that regulate gen-
omic information by dynamically changing the patterns
of transcription and translation of genes without altering
the underlying DNA sequence. This occurs by altering
the accessibility of DNA to transcriptional regulators
by: (i) post-translational modifications of histone pro-
teins, (ii) the addition of chemical groups most commonly
at cytosine-phosphate-guanine (CpQG) sites (e.g. methyla-
tion, hydroxymethylation, or other modification), or (iii)
the binding of non-coding RNAs to specific sequences in
DNA. A growing body of evidence convincingly shows
that exposure to adversity can cause long-lasting epigen-
etic changes that lead to widespread alterations of gene
expression. Such alterations are observed in both brain
and peripheral tissues, indicating the widespread effects
of stress throughout the whole organism. Epigenetics thus
provides a mechanism by which the environment can
have a global and lasting influence on the expression of
genes in an individual following stress exposure, with epi-
genetic processes believed to underlie associations of dis-
ease burden, environmental risk, and individual
phenotype.'® Elucidating the interface of gene and envir-
onment interactions can help lead to a better understand-
ing of the development of psychopathologies, and how
they may be prevented or treated. In this review, we sum-
marize preclinical and clinical research findings that sup-
port the existence of epigenetic modifications,
particularly DNA methylation, in response to conditions

of chronic stress, highlighting the effects of chronic and
traumatic stressors occurring at different developmental
time points and how this may lead to vulnerability to
severe psychiatric disorders.

Epigenetics: Overview and Relevance

For environmental exposures to have lasting conse-
quences on biological systems, alterations in gene tran-
scription are required. This can occur by epigenetic
modifications that influence chromatin state, and thus
the accessibility of transcriptional machinery to regula-
tory regions such as gene promoters. Epigenetic modifica-
tions can be long lasting and can elicit either targeted or
genome-wide changes in gene expression by processes
including DNA methylation, post-translational histone
modifications, and non-coding RNA regulation. One of
the best understood epigenetic mechanisms involves the
methylation of cytosine (5-methylcytosine or 5SmC) on
DNA, which occurs most abundantly at cytosines fol-
lowed by guanine residues.'®?® In most instances, the
presence of methylated cytosine recruits repressor
complexes that modulate gene transcription by altering
chromatin and inhibiting accessibility of the promoter to
transcription factors and enhancers.”! Opposite effects
have been reported in a site-specific manner, with inhib-
ition of repressor binding or enhancement of methylation-
specific enhancers.”** DNA methylation is considered to
be a stable epigenetic mark in post-mitotic cells, although
increasing evidence indicates that SmC and 5-hydroxy-
methylcytosine (ShmC; the stable intermediary between
methylation and de-methylation) are dynamic, reversible,
and modifiable under certain conditions.?*!

Patterns of gene expression are also regulated by
histone modifications,?* which involve the covalent modi-
fication of histone amino-terminal tails by, for instance,
methylation, acetylation, phosphorylation, or ubiquina-
tion among others. Histone modifications can alter the
level of chromatin condensation by either modifying
electrostatic charge or recruiting epigenetic “‘readers’ or
“erasers” that bind to histones to, respectively, increase
or decrease histone modifications. Epigenetic modifica-
tions to transcription and translation also extend to the
effects of non-coding RNAs. These are short RNA
species that act post-transcriptionally to repress protein
synthesis, often by inducing degradation of mRNA tar-
gets.”> Patterns of epigenetic modifications are able to
elicit functional effects that result in either gene expres-
sion repression or enhancement.

Several genetic variants are consistently shown to
interact with stress and trauma, with some of these effects
long lasting. For example, in rodents exposed to stress
early in life—such as stress caused by changes in maternal
behavior—the epigenetic landscape of prominent “‘stress
genes” such as NR3CI and CRH can be altered, with
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these effects lasting into adulthood.?**” Similar epigenetic
patterns have been observed in humans exposed to child-
hood maltreatment who develop a mood disorder or
PTSD later in life,”® and epigenetic alterations are
found in adults exposed to periods of chronic stress
including combat exposure,” employment in a high-
stress environment,®® or a high lifetime stress load.'
Thus, chronic stress and trauma are environmental
exposures that can cause lasting epigenetic changes and
lead to the development of psychiatric pathology.

A number of studies, ranging from twin to molecular
genetic studies in large longitudinal cohorts, indicate that
the impact of adverse life events is likely moderated by
genetic variants, in the context gene x environment
(GxE) interactions.*>** The studies describe, however,
only statistical interactions by nature. Epigenetic marks
could provide a mechanism that may link how effects of
genetic variants and environmental stimuli converge to
regulate gene transcription and in consequences change
in brain structure, endocrine responses, or behavior that
have been reported following stress exposure. Control of
gene expression by epigenetic modifications modulates
important cellular processes including neurogenesis,
neurotransmission, and synaptic plasticity, which are all
disrupted in conditions of sustained stress.***> Such
effects may influence an organism at not only a molecular
level but also at circuitry and systemic levels.

Some evidence suggests that epigenetic modifications
may be sustained during cell division and possibly trans-
mitted across generations.**3* This is important in the
context of chronic stress exposure, as progressive but sus-
tained epigenetic changes may be cumulative and could
even be a result of prior chronic stress exposure in the
parent. Several studies based on periods of deprivation,
such as the Swedish famine,’® Dutch Hunger winter,*’
Montreal ice storm,*®* and the Holocaust,* provide
some support for intergenerational transmission of
traits through epigenetics, through investigating the off-
spring of parents who were subject to this trauma.
However, the strongest evidence for epigenetic transge-
nerational inheritance comes from animal studies of
paternal transmission, which show that the offspring of
chronically stressed adult male mice are more vulnerable
to stressful stimuli, have dysregulated stress responses,
and altered hypothalamic-pituitary-adrenal (HPA) axis
activity compared to control mice.**** It has been
hypothesized that these apparently heritable effects may
be underpinned by an epigenetic mechanism transmitted
via sperm.*® However, these studies remain highly con-
troversial in light of currently accepted models that epi-
genetic modifications are erased during meiosis.***’
Further, it remains unclear whether transgenerational
stress-related behavioral alterations are truly epigenetic
imprinting or a post-conception consequence of change
in the uterine milieu or parental behavior.

Several caveats of epigenetic studies should be men-
tioned here. Firstly, human and animal studies investigat-
ing stress-induced epigenetic modifications for the most
part report associative or correlational effects, rather than
causal effects. They also often do not elucidate the mech-
anism by which the epigenetic change is induced nor its
functional consequence. Secondly, while DNA methyla-
tion levels for some CpGs are correlated across brain and
blood or saliva and blood,***® most are not. However,
specific genetic variants or environments that cause the
release of hormones with system-wide effects may have
common effects on DNA methylation across tissues that
may only differ in magnitude.**>° There is also some evi-
dence that overall, DNA methylation derived from
buccal cells may be more closely related to brain, as
both tissues are derived from the ectoderm. However,
compared to the low relatedness between brain and
whole blood, the improvements are small.*®
Additionally, in complex tissues such as the brain, epi-
genetic mechanisms also differ according to brain regions,
sub-brain regions, and cell types.’! Thus, results from
epigenetic studies in peripheral blood or saliva may
have to be interpreted with great care with regard to
their reflection of causal effects on disease risk.

Methylation-wide approaches have the advantage of
giving a broad picture of the methylome, but there are
some important considerations for each method. While
array-based methods are cost-efficient and technically
robust, data pre-processing—including normalization
and batch-correction—can have strong influences on the
data, especially if small changes are expected. Several
publications thus advocate that studies using array tech-
nologies should focus on results that survive multiple cor-
rection methods.”®>* Further, currently used methylation
arrays focus on promoter regions, with lower coverage in
enhancers that appear critical for stress-related impact.
Sequencing approaches may therefore seem optimal,
however, these methods are also subject to limitations.
Firstly, DNA methylation does not vary at the majority
of CpGs in a given tissue and so untargeted sequencing-
based methods may result in lower sensitivity with less
reads per CpG generated, reducing cost-efficiency.
Importantly, a bias can also be observed with bisulfite
conversion.”® Direct sequencing of unmodified DNA
using single molecule real-time sequencing methods
might be a superior approach and is being developed by
a number of companies. In addition, there is a push for
the development of arrays that focus on additional CpGs,
and other bases not covered by current array
technologies.>®

An important requirement of the field is now to thor-
oughly catalog which epigenetic modifications occur in
response to which types of stress (e.g. nature vs. timing
vs. length of stress) in which different cell-types and tis-
sues, and how this characterizes risk profiles and
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psychopathologies. The development of targeted, highly
sensitive DNA methylation detection methods will propel
this effort.

Epigenetic Mechanisms Early in Life and
Lasting Effects of Early Life Adversity

Stress occurring early in development can cause dramatic
effects on physiology and behavior.”” In this context,
early epigenetic changes in the brain are important fac-
tors. Changing methylation patterns have been observed
in promoter regions of many genes across healthy brain
development, especially in the human dorsolateral pre-
frontal cortex, a brain region which is late to mature
and highly implicated in neuropsychiatric disorders.”®
Specifically, a switch from de-methylation to increased
methylation of many genes at the genome level charac-
terize the transition from fetal to childhood time points.>
It is likely that interruption of normal developmental epi-
genetic patterns by stress or trauma early in life may alter
epigenetic trajectories and lead to the development of
psychopathology later in life.

A growing number of associations support the link
between stress or trauma exposure and the occurrence of
widespread epigenetic changes. For example, common
genetic variants in DNMT genes appear to moderate the
effects of daily life stressors and perinatal adversity on
paranoid ideation.®* DNMTs are enzymes required for
the methylation of neurogenic genes, also suggesting that
exposure to chronic stressors early in life might disturb
brain function in adulthood.®' Large methylation changes
at the beginning of the lifespan, particularly on genes
implicated in developing severe psychiatric conditions
(e.g. DLG4, DRD2, NOSI, NRXNI, and SOX10) may
also indicate vulnerability to the effects of stress and psy-
chiatric disorders by epigenetic mechanisms.>

Prenatal Adversity

Even from the first possible window of stress expos-
ure—in utero—organisms may be susceptible to epigen-
etic programming which persists into adult life (Table
1(a)).®° In particular, epigenetic differences in key genes
that regulate the HPA axis are reported in people exposed
to prenatal adversity.®® These effects are hypothesized to
last into adulthood by epigenetic re-programming of the
HPA axis.”” For example, women and their children
exposed to trauma or chronic stress from the war in the
Democratic Republic of Congo reportedly had differen-
tial patterns of methylation on genes associated with
stress; these included hyper-methylation of CRH and
NR3CI in cord blood and CRH, FKBP5, and CRHBP
in the placenta.®®®® Yehuda et al.** additionally showed
that FKBP5, a gene involved in glucocorticoid receptor
(GR) and stress sensitivity, was hyper-methylated in

Holocaust survivors, while hypo-methylation of the
same CpGs occurred in the offspring. An additional
cohort examining pregnant mothers exposed to the
Quebec Icestorm of 1998, prenatal stress caused a wide-
spread change to the epigenetic landscape of offspring,
particularly in genes related to immune function.*®3’

Considering the unequivocal role of the GR in stress
responsivity, several studies have focused on epigenetic
modifications of NR3C! in response to various types of
prenatal stress. For example, in those exposed to intimate
partner violence during the prenatal period, DNA methy-
lation was increased in the NR3C! 1F promoter region.®
Additionally, in offspring of mothers pregnant during the
Holocaust genocide, hyper-methylation of the NR3CI
exon 1F promoter methylation was observed much later
in life, specifically in offspring who had one parent suf-
fering from PTSD.** Methylation was, however,
decreased for offspring with two parents who had
PTSD, presenting what could be a complex mechanism
of potential maternal and paternal effects of PTSD on
epigenetic regulation of NR3CI, although it is possible
that epigenetic changes occurring in offspring were an
effect of living with a parent with PTSD rather than geno-
cide exposure. Together with evidence from animal stu-
dies,®! hyper-methylation of the NR3CI promoter
appears to be a robust epigenetic modification occurring
in response to stress early in life. Altogether, there appear
to be strong and widespread effects of prenatal stress on
the epigenetic regulation of the stress signaling system
that lasts into adulthood, although the intergenerational
mechanisms for some genes (e.g. FKBP5 and CRH) need
to be further explored perhaps using animal models.

Childhood Adversity Assessed During Childhood
and Adolescence

Considering that certain epigenetic markers occurring
during development may set an individual on a path for
developing psychopathology later in life, some studies
have aimed to examine methylation patterns in the
brains of those exposed to chronic stress during child-
hood (Table 1(b)). Some of the effects seen with prenatal
stress are also seen with stress during childhood. In sui-
cide completers exposed to childhood abuse, hyper-
methylated sites were observed in the NR3C/ variant 1
promoter region at a non-canonical binding site for nerve
growth factor-induced protein A. This was further asso-
ciated with down-regulated expression of the NR3CI 1F
splice variant in the hippocampus.®* While these localized
findings for epigenetic regulation of the GR are quite
interesting, the effects of childhood adversity is likely epi-
genome-wide, as methylation profiles in the hippocampus
of suicide completers with a history of childhood abuse
were reportedly bidirectional and dynamic, with both
methylation and de-methylation of numerous genes
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Continued

Table I.

[oo]

Genome-wide methy-

lation study or target

Sample size/relevant

genes

Findings

diagnosis Tissue type Method

Type of trauma

References

Genome-wide methy-

Methylation patterns of gene promoters

25 with history of child- Hippocampal tissue Custom 400K eArray

Male suicide completers

Labonté et al.”’

lation study

between those with childhood

(Agilent Technologies)

hood abuse, 16 con-
trol subjects

with a history of

adversity and those without were

distinct.

childhood adversity

Bisulfite pyrosequencing DNA demethylation in a functional FKBP5

Peripheral blood

76 (30> 2 childhood

PTSD, physical and sexual

Klengel et al.’®

glucocorticoid response element in
FKBP5 in the presence of FKBP5

trauma, 46 no child-
hood trauma)

abuse during child-
hood (CTQ)

functional polymoprhism increased

risk to psychiatric disorder later in

life.
Distinct (95%) gene expression profiles

Genome-wide methy-

lllumina Human

Peripheral blood

Individuals with history of 169 (32 PTSD affected, 77

Mehta et al.”?

lation study

seen in PTSD groups with a history of
childhood abuse compared to those
with no history of childhood abuse,
which appeared to be mediated by

changes of DNA methylation.

Methylation 450K array

PTSD unaffected)

childhood abuse, with
and without PTSD

Note. PTSD: posttraumatic stress disorder; EBV: Epstein—Barr virus; MDD: major depressive disorder; SERT: serotonin transporter; CTQ: childhood trauma questionnaire.

observed.”” Hyper-methylation at promoters of genes
that encode ribosomal RNAs were also reported in
abused suicide victims compared to controls, possibly
indicating widespread effects as ribosomal RNA methy-
lation and transcription directly affect cellular function
and synaptic plasticity associated with fear memory and
cognitive dysfunction.®?

Additional studies have examined epigenome-wide
methylation differences in children exposed to childhood
maltreatment or trauma (e.g. physical abuse, sexual
abuse, neglect, deprivation, emotional abuse, witnessed
domestic violence) compared to non-traumatized individ-
uals.”>""" Weder et al.”® reported that methylation
patterns at the genes ID3, GRINI, and TPPP were
genome-wide significant predictors of depression later in
life. Maltreated children relative to control children had
significantly altered methylation profiles at the BDNF,
NR3CI, and FKBP5 genes, which are all genes that
respond to stress exposure and implicated in psychopath-
ology. In a sample of English and Romanian adoptees,
individuals chronically exposed to severe deprivation
before 43 months of age showed hyper-methylation
across nine CpGs spanning the promoter of the
CYP2E] gene at the age of 15 years. Hyper-methylation
of CYP2E] was also associated with impaired social cog-
nition, a clinical marker of deprivation.73 In addition,
Houtepen et al.”? reported that methylation of the KIT
ligand gene KITLG, which is involved in haematopoiesis
and the cortisol response, strongly mediated the relation-
ship between childhood trauma and cortisol stress
responsivity. This would suggest a link between stress
occurring early in life and epigenetic modifications lasting
into adulthood that may increase risk to psychopath-
ology in adulthood by altering the responsivity of the
stress hormone system.

Another group of studies suggest epigenetic changes in
peripheral tissue at the SLC6A4 locus and the conse-
quences of stress in older children.”* For example, in a
study by Beach et al.,”' children aged 11-13 years with
cumulative exposure to low socio-economic status
showed hyper-methylation at the SLC6A44 locus. A simi-
lar effect was observed in a second study, with increased
methylation of SLC6A44 in bullied twins at age 10 com-
pared to their non-bullied monozygotic twins.®’

Effects of Childhood Adversity Lasting Into Adulthood

The studies assessing epigenetic modifications that occur
in response to prenatal and childhood adversity strongly
support evidence that stress during development leads to
epigenetic modifications that likely influence gene expres-
sion later in life,** especially in genes involved in stress
responsivity. During these critical developmental time
points, changes in expression of “‘stress genes” might
alter an individual’s ability to cope with stress and set



Matosin et al.

the stage for vulnerability to psychopathology later in
life. Some groups have assessed clinical populations of
individuals who were exposed to childhood adversity
and who developed PTSD in adulthood (Table 1(c)).
These investigations collectively support that childhood
adversity is associated with specific epigenetic modifica-
tions in those that develop a psychiatric disorder.

Other groups assessing childhood abuse in adults with
severe psychiatric disorders have focused on stress candi-
date genes. In one report, the severity and number of
exposures to childhood sexual abuse was positively cor-
related with NR3CI hyper-methylation in subjects with
severe psychiatric disorders including PTSD and comor-
bid major depressive disorder.”® In another cohort of
subjects with PTSD exposed to childhood adversity,
DNA de-methylation was found to be decreased in a
glucocorticoid response element in FKBPS, specifically
in the presence of an FKBP)5 functional polymorphism
that increased risk to psychiatric disorder later in
life.”® These data mirror the findings from prenatal
adversity studies, supporting the inference that such epi-
genetic modifications to the stress system occur in
response to early life adversity and may last into adult-
hood to increase development of a severe psychiatric
condition.

Stress and Trauma During Adulthood

In addition to early life adversity, experiencing extreme
levels of stress or trauma during adulthood can also
increase the risk of developing severe psychiatric condi-
tions. However, the mechanism is likely distinct between
these two scenarios. Firstly, early life experiences occur
during a particularly sensitive time, where environmental
influences can have strong effects on the brain and body,
causing molecular, structural, and behavioral disturb-
ances that stay with the individual into adulthood.
While severe stress or trauma occurring exclusively in
adulthood can also result in detrimental biological conse-
quences, body systems are already matured thus possibly
causing a different cascade of events. In fact, we could
show that patients suffering from PTSD with either only
adult trauma or a combination of child abuse and adult
trauma had distinct gene expression and DNA methyla-
tion signatures in peripheral blood.”

Epigenetic Changes in Preclinical Stress Models

Adult animals exposed to severe acute or non-traumatic
chronic stress have shown various epigenetic changes
attributable to stress exposure. Considering a hallmark
of PTSD is the formation of fear memories, many studies
have used fear learning paradigms for exploring the con-
sequences of trauma exposure.®> These studies have
shown that fear conditioning induces the expression

of DNA methyl-transferases type 3A and 3B (Dnmt3A/
3B), leading to altered DNA methylation at genes that
are important for memory formation and plasticity (e.g.
Reelin, Ppl, and Bdnf).*****¥0Others have highlighted a
role for histone acetylation in long-term fear recall and
spatial memory. For example, environmental enrichment
was shown to improve memory deficits in the brain; this
was associated with up-regulation of histone acetylation
and activity of histone deacetylases, which modulate syn-
aptic plasticity via altering the expression of genes includ-
ing glutamate receptor subunits and Bdnf.* ' These
findings have linked stress to brain plasticity and behav-
ior, by long-lasting epigenetic modifications.

Clear epigenetic changes have also been observed in
animal models of chronic stress.”> One of the primary
findings from genome-wide epigenctic studies in rodent
models is that chronic stress induces widespread alter-
ations in histone modifications, particularly in the hippo-
campus.” For example, chronic variable stress caused
alterations to the expression of transcripts that encode
histones or recruit histone writers and erasers.”**> With
regard to methylation, associations between chronic
defeat stress and Dnmt3A expression was shown in the
nucleus accumbens, which is a brain region that plays a
significant role in processing of aversion, motivation, and
rewards.”® Interventions (mainly pharmacological such as
antidepressants), which induce H3K9 di- or tri- methyla-
tion, have been shown to promote resilience to stress and
depressive-like behavior.””*® Chronic stress in adult ani-
mals also exerts epigenetic modifications to key genes
involved in HPA-axis signaling,”” such as Crh,'"%*%!
Hsp90,"% and Bdnf, 103104

Epigenetic changes in response to severe and chronic
stress can clearly be associated with stress exposure in
animal models. While this is more complex in human
studies, clinical studies complement these findings, sup-
porting the existence of lasting epigenetic effects in
response to trauma or prolonged stress within both the
central and peripheral nervous systems. In the following
sections, we will discuss examples of epigenetic changes
observed in humans exposed to acute traumatic events or
non-traumatic chronic stress in adulthood.

Epigenetic Changes Due to Acute Traumatic
Events in Adults

Studies examining the epigenetic effects of traumatic
events in adults have either used genome-wide methyla-
tion approaches or focused on known ‘‘stress genes.”
Most of these studies are cross-sectional studies of
individuals examined post-trauma, derived from
epidemiological cohorts. Additionally, most examine epi-
genetic profiles in peripheral tissues such as blood and
saliva, which may be useful for biomarker identification
(Table 2).
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Table 2. Continued

Target (genome-

wide methylation

Findings study or genes)

Method

Type of trauma Sample size Tissue type

References

Genome-wide

No differences with adjusted

Affymetrix Gene

PTSD due to traumatic 12 PTSD, 12 without Peripheral blood

Chen et al.'?®

methylation study

significance for DNA methy-

lation were found.

Chip Human
Exon 1.0 ST

Array

PTSD but with the

event(s)

similar level of trauma

exposure

DNA methylation of rs7208505  SKA2 methylation at

PTSD due to combat 200 trauma exposed vet-  Peripheral blood lllumina Human

Sadeh et al.'?!

the rs7208505

was associated with reduced

Methylation

erans (+145 with

exposure

locus

thickness in of several cortical

areas; methylation was also
positively associated with
PTSD symptom severity.

450K Beadchip

structural brain image

information)

Genome-wide methylation studies support the exist-
ence of epigenetic differences between trauma-exposed
individuals with PTSD compared to psychiatrically
healthy controls, with cross-sectional differences in
DNA methylation observed in cohorts from Atlanta’®
and Detroit.'®® These studies have shown that epigenetic
differences were able to differentiate those who have
developed PTSD compared to those who did not. Later
studies from longitudinal cohorts of US military person-
nel exposed to combat-trauma further suggested signifi-
cant differences in global methylation in PTSD patients
relative to controls,'”''? particularly in genes involved in
immune'®"'? and nervous system function.''® Such lon-
gitudinal studies allow the dissection of separate contri-
butions of trauma exposure versus disease development,
which is not readily possible in cross-sectional studies.

A larger number of studies have investigated DNA
methylation of specific candidate genes, including genes
involved in the regulation of the stress hormone axis.
Here, studies have focused on NR3C!I (exon 1F) and
FKBPS5. In one study from saliva, NR3CI methylation
at CpG site 42 was increased in men with PTSD;'"® how-
ever, in another study from blood, methylation at CpG
site 28 was reduced in PTSD.? The differences may rep-
resent tissue- or CpG site-specific differences, variability
in the trauma type or its timing, or sex and age.'*? In an
earlier study, veterans exposed to severe war trauma
underwent prolonged exposure therapy and were assessed
pre- and post-exposure treatment.''* The study showed
that methylation of NR3CI exon 1F locus pre-treatment
predicted treatment outcome, but methylation was not
significantly different in responders or non-responders
to the exposure therapy at post-treatment or follow-
up.!'* Methylation of the FKBPS5 exon 1 promoter also
did not predict treatment response, but was decreased in
association with recovery.''* This study provides prelim-
inary evidence that these methylation markers may
underlie the severity of PTSD symptoms, and that rever-
sal of the methylation changes may tract with effective
therapeutic intervention.

The immune system is one of the main effectors of
HPA axis activity, and in turn, changes in methylation
are associated with total life stress, PTSD diagnosis, and
a history of childhood abuse.’® Epigenetic effects to genes
involved in immune function are a consistent finding in
PTSD, supporting that sustained sympathetic nervous
system activity in response to trauma stimulates
immune system activation. For example, DNA methyla-
tion of genes associated with immune function was found
to be largely negatively correlated with traumatic burden
in PTSD.'?> Others consistently reported altered methy-
lation of pro-inflammatory cytokines, such as interleukin
12 and 18, in individuals with PTSD compared to those
without.”®"11® Analysis of histone and DNA methyla-
tion markers suggest that widespread epigenetic changes
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in PTSD, including those in immune genes, might occur
by alterations to DNMT1'"® or miRNAs,""” which are
molecules that induce and maintain global methylation
patterns.

In addition to identification of epigenetic markers
associated with diagnostic outcomes, some studies have
begun to additionally assess associations of DNA methy-
lation to endophenotypes of psychiatric disease, including
neuroimaging phenotypes. For example, a genome-wide
significant variant, rs717947 (positioned in an inter-genic
locus at chromosome 4p15), was identified as a methyla-
tion quantitative trait locus associated with altered cor-
tical activation in response to fearful faces.'”> Another
study showed associations between the methylation
status, a polymorphic site in the 3’UTR of the SKA2
gene—involved in mitosis—with reduced thickness of
several cortical areas and symptom severity in PTSD.'?!
Finally, methylation in peripheral blood samples of
ADCYAPIRI, a gene involved in regulating the cellular
stress response, was associated with PTSD diagnosis and
symptom severity, specifically in females.'® Collectively,
these studies support that epigenetic changes in response
to stress may “‘mediate’ particular stress phenotypes.

Several studies have now investigated DNA methyla-
tion in the context of GxE including candidate genes
involved in neurotransmitter turn-over such as SLC6A44
(encoding the serotonin transporter SERT), SLC6A3
(encoding the dopamine transporter), and COMT
(encoding enzymes that degrade neurotransmitters such
as dopamine). In one study, reduced SLC6A44 methyla-
tion levels were associated with more traumatic events
and increased risk for PTSD, only in those carrying a
specific SLC6 A4 risk allele genotype, while higher methy-
lation appeared protective against the development of
PTSD.'"® In an independent cohort, individuals with
PTSD carrying the SLC6A43 9-repeat allele were at
higher risk to PTSD when also having higher methylation
in the SLC6A43 promoter locus.!'” Finally, increased
COMT promoter methylation was associated with
impaired fear inhibition in individuals with PTSD carry-
ing the COMT met/met genotype; this genotype has been
extensively associated with a range of psychiatric condi-
tions and phenotypes.'** These studies suggest that epi-
genetic changes following trauma often only occur in the
context of specific genetic variation and that genetic risk
may only manifest with concomitant epigenetic changes.

Epigenetic Changes Due to Sustained Non-traumatic
Stress in Adults

It is well established that chronic stress results in adverse
health outcomes, but only a handful of studies exist that
explore the association of non-traumatic chronic stress
(e.g. work- and lifestyle-related stresses) with epigenetic
changes (Table 3). To our knowledge, there are no

genome-wide analyses examining differences in epigenetic
marks in populations exposed to non-traumatic chronic
stress. One study used LINE-I as a proxy for global
methylation, but no differences in LINE-I methylation
were found in subjects exposed to recent life stressors com-
pared to controls.'*” A few other studies have examined
epigenetic changes to candidate genes within populations
of individuals exposed to occupational chronic stress.

For example, in workers employed in the manufactur-
ing industry in environments of high or low stress, Myaki
et al.'*® examined DNA methylation of the tyrosine
hydroxylase (TH) gene. TH encodes an enzyme involved
in synthesis of catecholamines including serotonin, dopa-
mine, epinephrine, and norepinephrine, which are all
altered in rodent models of chronic stress.'?%1%
Methylation of CpG sites in the TH gene and the flanking
5’ region was significantly higher in individuals exposed to
high occupational stress compared to individuals working
in low-stress environments.'”® The same group also
explored altered methylation in the BDNF gene based on
a priori hypothesis that this gene is also epigenetically
affected in a preclinical model of PTSD.'"* Slightly
increased methylation was observed across the whole
gene in subjects exposed to high-stress compared to low-
stress environments, although the groups showed no dif-
ference in promoter-specific methylation.'>> Work-related
stress in this study was assessed using a self-administered
questionnaire, with methylation levels of groups from the
lowest and highest job-strain quartiles compared.'*

Another group focused on methylation of the SLC6A44
gene due to some evidence that methylation differences in
this gene occur in stress-induced psychopathologies such
as PTSD (discussed in section “Epigenetic changes due to
acute traumatic events in adults”) and depression.'*® In
shift-working nurses in high-stress work environments
compared to those in low-stress work environments,
five CpG sites in the promoter region of SLC6A44 were
examined.’® Higher methylation across the tested
SLC6A4 CpGs was found in those working in a high-
compared to low-stress environment, and this was asso-
ciated with burnout and the perception of stress.*
Further investigation into the effects of non-traumatic
chronic stressors, such as work-related stress or caregiv-
ing, is limited. This is likely as the length and severity of
non-traumatic stress is often not as well defined as trau-
matic stress, and many confounding factors make the
results of these studies less clear. These studies might
also be confounded by the number of stressors, which
might have an additive effect, and further studies are
needed to disentangle this.

Future Directions and Conclusions

Studies examining epigenetic changes in response to stress
are providing a potential opportunity to identify
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vulnerable and resilient populations (e.g. based on com-
bined prior exposure, other environmental factors and
genetics) and biomarkers of risk for those exposed to
chronic stress. However, additional studies of how differ-
ent types and lengths of stress lead to epigenetic changes
are required as well as of combined effects of positive and
negative environments. The field of epigenetics is in fact
relatively young, and studies examining epigenetic modi-
fications in conditions of chronic stress are limited. One
example is that, to the best of our knowledge, no studies
have examined epigenectic modifications in postmortem
brain samples derived from individuals with PTSD.
Additionally, human studies are also limited in that
there are few longitudinal studies with repetitive measure-
ments from the same individual at different time points
relative to the stress exposure, and currently, many stu-
dies published are cross-sectional and underpowered.
Changes to gene expression by epigenetic modifications
are prominent gene and environment interactions that are
an important aspect of future chronic stress and trauma
research. Particularly, epigenetic patterns in peripheral
tissues may act as biomarkers that may serve as sentinels
of when genetic predisposition followed by environmen-
tal exposure leads to trajectories of risk to develop psy-
chiatric symptoms and syndromes. For mechanistic
understanding, tissue specificity of these epigenetic
changes must be addressed and understood. Overall,
more research in this area will lead to a better under-
standing of stress-induced epigenetic effects and mechan-
isms as well as their potential moderation, allowing for
their therapeutic exploitation and the development of
new interventions and treatments.
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