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A B S T R A C T

Background: Reversion mutations of somatic BRCA mutations are an important source of resistance within ovarian
cancer. Furthermore, these reversion mutations are known to change over the course of treatment. Better un-
derstanding of the mechanisms leading to reversion mutations and the role of serial ctDNA collection in detecting
changes to overall landscape of resistance mutations over time is needed to guide treatment in the metastatic
setting.
Methods: Here we study a case of metastatic ovarian cancer undergoing multiple lines of treatment with collection
of three serial ctDNA samples. These samples were analyzed by Guardant Health next generation sequencing to
detect somatic alterations and their associated mutant allele frequency (MAF) as % cfDNA.
Results: Analysis of our initial ctDNA collection, taken during PARP-inhibitor therapy, revealed a nonsense BRCA-
1 mutation (c. 2563C > T p. Q855*), consistent with the BRCA 1 somatic mutation detected on tumor tissue
analysis. Initial analysis also revealed a reversion mutation (c.2535_2576del) resulting in an in-frame deletion of
the somatic BRCA-1 alteration. The second collection, taken while still on PARP-inhibitor therapy, re-
demonstrated this indel reversion mutation along with a second indel reversion mutation (c.2546_2587del),
again resulting in an in-frame deletion of the somatic BRCA-1 mutation. The final ctDNA, collected upon initiation
of immunotherapy, revealed 4 novel SNV reversion mutations (c.2564A > C, c.2564A > T, c.2565G > T, and
c.2565G > C). These SNV reversion mutations result in missense amino acid changes rather than insertions or
deletions within the BRCA-1 somatic mutation. The previous indel reversion mutations were no longer detected.
Conclusions: This study illustrates the role of serial ctDNA analyses in the detection of resistance mutations and the
dynamic nature of reversion mutations with multiple lines of treatment. While other studies have described both
indels and SNVs that occur in tandem, a change in the types of reversion mutations detected across changing
therapies has never before been described. Further studies regarding the unique selective pressures arising from
use of multiple types of therapy is needed to fully explain this phenomenon.
1. Introduction

Within ovarian cancer, BRCA1& BRCA2 are two of the most common
and best studied tumor suppressor genes [1, 2]. Mutations in these genes
can affect DNA repair by homologous recombination (HR), allowing
mutations that drive carcinogenesis [3]. Ovarian cancers with BRCA1 &
BRCA2 mutations are sensitive to PARP-inhibitors and platinum-based
therapies. These therapies harness the defective DNA repair by creating
Y.K. Chae).

rm 19 March 2020; Accepted 21
is an open access article under t
double strand DNA breaks and “staling” of the PARP protein at the
replication fork, preventing progression of mitosis [4, 5, 6, 7, 8, 9, 10].

There are multiple mechanisms of PARP-inhibitor resistance
including the development of drug efflux pumps, loss or mutation of
PARP1 target protein binding site, and changes to enzymes involved in
down-stream metabolites of PARP resulting in unrestrained replication
[11, 12, 13, 14, 15]. Changes in overall replication fork biology with
mutations in PARP-independent protein pathways also protect stalled
replication forks and allow their progression [16, 17, 18, 19, 20, 21].
April 2020
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Another important mechanism is reversion mutation in the BRCA gene
which restore previously absent BRCA function and ability of cells for
homologous recombination [22, 23, 24, 25]. Reversion mutations have
been described in several studies of ovarian cancer after exposure to
platinum-based therapies and PARP-inhibitors [23, 24, 25, 26, 27, 28].
They are the most common cause of PARP-inhibitor resistance, and are
generally single nucleotide variations (SNVs) or point dele-
tions/insertions (indels) causing frameshifts near the original mutations
[21]. They restore the open reading frame of the BRCA gene, leading to
functioning proteins that cause PARP-inhibitor and chemotherapy
resistance by reinstating down-stream DNA repair [22, 24]. They are
usually late events that reflect changes to sub-clonal populations and can
occur in anywhere between 25-70% of ovarian cancers following
platinum-based chemotherapy and PARP-inhibitors [24, 26, 27, 28].
Previous studies have reported the existence of reversion mutations in
circulating-tumor DNA (ctDNA) in patients with advanced ovarian,
prostate and breast cancer [29, 30]. Our group has previously reported
detection of BRCA2 reversion mutations, using serial ctDNA in a patient
with prostate cancer [31].

The detection of reversion mutations allows identification of those
patients who will later progress on therapy. In fact, rates of progres-
sion can reach up to 33.3% in 36 months on olaparib and 50% in 12.8
months on rucaparib [32, 33]. In a study of patients with BRCA-mu-
tated ovarian cancer, patients with no ctDNA reversion mutation
detected prior to initiation of rucaparib had significantly longer me-
dian PFS on rucaparib compared to those with ctDNA reversion mu-
tations identified (9.0 vs 1.8 months, respectively) [34]. For patients
that have developed PARP-inhibitor resistance, evidence exists for the
use of immunotherapy as next line treatment [35]. The use of serial
ctDNA has allowed detection of acquired resistance mutations over
time, especially given the clinical infeasibility of performing serial
tumor tissue sampling to detect resistance [30, 36]. In some cases,
ctDNA analysis allowed detection of reversion mutations that were not
present on tumor pathologic samples [27]. Current models of reversion
mutations focus on individual mutations [21] however, with the use of
ctDNA analysis to capture heterogeneity, multi-clonal reversion mu-
tations for PARPi resistance within the same individual have been
described [30, 34, 37].

Here we present a case illustrating the dynamic landscape of rever-
sion mutations within one patient with ovarian cancer who underwent
several treatments, including PARP-inhibitors and immunotherapies.
This patient also underwent serial ctDNA analyses that demonstrated a
dynamic landscape of reversion mutations.

2. Methods

During routine clinic visits, the patient underwent ctDNA analysis
with blood draws on three separate occasions. 2 samples of 10 mL of
peripheral blood were collected in Streck tubes and submitted for
clinical plasma ctDNA analysis using Guardant360 (Guardant Health,
Redwood City, CA) as previously described [38, 39]. The
next-generation sequencing (NGS) testing was performed in a
CLIA-certified and College of American Pathologists accredited labora-
tory. Guardant360 plasma ctDNA NGS testing detects SNVs, indels, copy
number amplifications, and fusions in up to 74 genes, including full
exonic sequencing of BRCA1. The average sequencing depth of the
platform is approximately 15,000x and it uses oligonucleotide barcodes
with up to 30ng for library preparation. These barcodes and sequencing
libraries are used to reconstruct molecules while minimizing error.
Previous validation studies of the platform revealed clinical sensitivity
of �85% and ability to detect SNVs and indels down to a mutation allele
frequency (MAF) of 0.01% [39]. Clinical testing reports somatic alter-
ations and their associated MAF as % ctDNA. Patient written and verbal
consent was obtained prior to analyses of these results. Given that this
was a study of a single case and consent was obtained, further IRB
approval was waived.
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3. Description of case and results

The patient is a 71-year-old with diagnosis of recurrent stage IIIC
papillary serous adenocarcinoma of the ovary. BRCA1 positive somatic
mutation was detected using Foundation One sequencing of metastatic
tumor tissue. The patient was negative for germline BRCA1 mutation.
The patient initially underwent resection and 6 cycles of adjuvant
paclitaxel/carboplatin. About one year later, she was shown to have
progressive disease on CT scans and biopsy-confirmed liver and cecal
metastases. Over the next seven years she underwent resection of
abdominopelvic disease and chemotherapy including abraxane/bev-
acizumab, gemcitabine/carboplatin, topotecan, navelbine, pemetrexed,
altretamine, capecitabine.

Seven years after diagnosis, the patient was treated with the PARP-
inhibitor olaparib 400mg BID (Figure 1). At this time, she had known
metastases to the right pleura, two abdominal masses and CT scan with
new liver and splenic metastases. She was subsequently treated with 3
cycles of carboplatin AUC5 q 21 days. Repeat scan showed progressive
disease (PD) with increasing size of hepatic and splenic lesions and pa-
tient was started on a second PARP-inhibitor, rucaparib 600mg BID. At
this point, blood was sent for plasma ctDNA analysis (Guardant360,
Guardant Health) which identified multiple somatic genomic alterations
(Table 1), including two in BRCA1: the patient's known nonsense muta-
tion, c.2563C > T (p.Q855*) at 33.3% MAF, as well as a reversion mu-
tation comprising a 42-nucleotide deletion, c.2535_2576del, at 0.3%
MAF. The original non-sense mutation in BRCA1 (c. 2563C> T p. Q855*;
Figure 2) was an SNV in codon 855 resulting in premature truncation,
loss of function and resultant malignant phenotype. This mutation is
consistent with the BRCA1 somatic mutation detected on tumor tissue
analysis. The MAF of 33.3% is of clinical significance as several studies
have shown it to be a surrogate marker of tumor burden [40, 41, 42]. The
reversion mutation detected (c.2535_2576del) resulted in an in-frame
deletion within the BRCA1 transcription domain (Figure 2), resulting
in a loss of the original mutated codon 855 and restoring transcription.

The patient was continued on rucaparib and 6 months later another
ctDNA analysis was obtained. This was due to increasing CA125 from
145.6 to 271.7 and progression of hepatic metastasis on imaging, again
indicating progressive disease (PD). In this sample, three BRCA1 muta-
tions were detected: the previous c.2563C > T (p.Q855*) nonsense
mutation at a MAF of 50.7% (increased from 33.3% as depicted in
Figure 3A), the previous c.2535_2576del at 0.1% (decreased from 0.3%
as depicted in Figure 3B), and a new reversion, another 42 nucleotide in-
frame deletion encompassing the original non-sense BRCA1 mutation,
c.2546_2587del at 0.2% MAF.

After 1 year, patient was transitioned from rucaparib to nivolumab/
ipilumumab and after a fewmonths of therapy, a third ctDNAwas drawn.
At this point, CT scan showed stable disease (SD) in hepatic, splenic and
abdominal metastases (1.17% change from prior scan per RECIST
criteria). Results from this third ctDNA analysis, after the initiation of
immunotherapy, are very distinct. The MAF of the original BRCA1
nonsense mutation decreased from 50.7% to 27.2% (Figure 3A). Notably,
the previously detected in-frame deletions were no longer detected and
instead, 4 previously undetected single nucleotide variants (SNVs)
emerged (Figure 3B): c.2564A > C, c.2564A > T, c.2565G > T, and
c.2565G> C at 2.2%, 1.8%, 1.8%, and 0.8%MAF, respectively. All of the
subclonal BRCA1 SNVs (c.2564A > C, c.2564A > T, c.2565G > T, and
c.2565G > C) occur within the same codon as the original nonsense
mutation (c.2563C > T). Given this configuration, the original p.Q855*
nonsense mutation, in conjunction with the sub-clonal SNVs c.2564A >

C, c.2564A> T, c.2565G> T, and c.2565G> C, are predicted to result in
missense amino acid changes p.Q855S, p.Q855L, p.Q855Y, and p.Q855Y,
respectively, and continuation of BRCA1 transcription (Figure 2).

In addition to the described mutations in BRCA1, several other al-
terations and amplifications were detected on ctDNA over the three time
points (supplemental Tables 1-2, Supplemental Figures 1-3). The alter-
ation with the next highest MAF was an alteration in TP53 (V216M). This



Figure 1. Lines of therapy with corresponding ctDNA collections.

Table 1. Mutant Allele Frequencies of Detected BRCA1 ctDNA by Collection.

ctDNA 1 2 3

c.2563C > T (original BRCA1 mutation) 33.3% 50.7% 27.3%

c.2535_2576del 0.3% 0.1% 0

c.2546_2587del 0 0.2% 0

c.2564A > C 0 0 2.2%

c.2564A > T 0 0 1.8%

c.2565G > T 0 0 1.8%

c.2565G > C 0 0 0.8%

There are the two reversion mutations prior to initiation of immunotherapy.
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mutation followed a similar pattern to the BRCA1 mutation with an in-
crease from 23% to 46.8% between the first and second collection. It
subsequently decreased to 27.2% on the third collection after initiation of
immunotherapy. All other alterations had significantly smaller MAF but
showed similar dynamic changes between types of therapy (Supple-
mentary Figures 1-2).

4. Discussion

This novel case report demonstrates a dynamic landscape of BRCA1
reversion mutations from indels to SNV with multiple lines of treatment.
While other studies have described both indels and SNVs that occur in
tandem, this difference in types of reversion mutations detected across
changing therapies has never before been described. While we focused on
BRCA1 which had the highest MAF, these dynamic changes were seen
with the other alterations detected on ctDNA. The cause of these changes
Figure 2. Genomic representation of d
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is unclear, however they may be related to differing selective pressures
introduced by the unique mechanisms of PARP-inhibitors, which rely on
defective DNA repair mechanisms, in contrast to immunotherapy, which
rely on activation of T lymphocytes against tumor antigens [43, 44]. For
example, the subclones carrying the initial in-frame deletions observed
within the initial two ctDNA analyses may have disappeared because
while they were particularly successful against evading PARP-inhibition,
the lack of continued PARP-inhibitor therapy no longer selected for them.

The mechanism for emergence of SNV reversion mutations, rather
than the previous indel reversion mutations observed in this patient, is
not clear. One possible explanation is that these mutations were present
previously at undetectable levels and the changing treatments allowed
for proliferation of these sub-clones over others. However, notably, these
new mutations arose in the setting of decreasing MAF of the original
BRCA1 mutation, presumably indicating decreasing overall tumor
burden. Another possible explanation is varied shedding of ctDNA from
metastatic sites, which is known to be affected by tumor location, size
and vascularity [45, 46]. It is possible that as metastatic disease sites
grew, and presumably experienced changes in vascularity, the passive
release of ctDNA changed to favor certain sub-clones over others. Further
investigation regarding the selective pressures induced by immuno-
therapy is required to better understand this unexpected change to
ctDNA milieu observed in this patient. This is of particular importance as
immunotherapy is being used more widely across tumor types in clinical
trial settings and in conjunction with PARP inhibition to potentially in-
crease efficacy of checkpoint inhibition.

Increase in the original BRCA1 mutation between first and second
ctDNA collections points to overall increasing disease burden, as
confirmed by progression of metastatic sites on imaging. This
etected ctDNA BRCA1 mutations
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Figure 3. A. Original somatic BRCA1 mutation (Q855*) over three serial ctDNA analyses. B. Dynamic landscape of reversion mutations over three serial
ctDNA analyses
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proliferation of the original nonsense mutation points to resistance
mechanisms apart from the reversion mutations described above. These
resistance mechanisms may be due to development of efflux pumps,
changes to the PARP1 protein binding site, changes in enzymes pro-
cessing down-stream metabolites or changes to overall replication fork
biology as previously mentioned. Our study of ctDNA is limited in
detection of these alternative resistance mechanisms.

This case study illustrates the role of serial ctDNA analyses in the
detection of resistance mutations, the dynamic nature of reversion mu-
tations and the development of multiple mutations within the same in-
dividual. The novel shift to SNV reversion mutation clones detected in
the reversion mutation landscape are previously undescribed and could
possibly be related to differing selective pressures between treatment
types. Further studies regarding the unique selective pressures and
resistance mechanisms arising from use of multiple types of therapy is
needed to fully explain this observed phenomenon.
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