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Introduction

Vaccines are a main tool of current global health strategies
against infectious agents. Continuously improving vaccine
formulation and designs is therefore of crucial importance
in light of current global events. As a cautionary tale, one
can take the recent dengue vaccine,1 and, to a certain
extent, the suboptimal results of the global immunization
campaign against SARS-CoV-2. After the seemingly huge
initial success of the worldwide SARS-CoV-2 vaccination,
the virus is still spreading across the human population,
and the active immunization might not confer adequate
protection against new variants.2 Why have such intense
scientific and economic efforts produced suboptimal
results? Searching for answers, this review explored the
possible factors to keep producing better and safer vac-
cines on a mass scale.

Fact 1: Molecular Mimicry between
Microbial and Human Proteins can Lead to
Cross-reactivity

Microbial proteins are mostly composed of peptide sequen-
ces that are also present in humanproteins.3,4A consequence
of such a peptide sharing is that cross-reactive autoanti-

bodies (AAbs) can be generated following exposure to infec-
tious agents by infection or vaccination.5 Indeed, if
antibodies against a pathogen protein hit sequences that
are also present in human proteins, then it is logical to
conclude that hitting the pathogen protein might also imply
the possibility of targeting human proteins. Depending on
the number and functions of the targeted human proteins,
various clinical consequences might occur.5 Therefore, an
intrinsic property of vaccines based on full-length pathogen
proteins is their capability of inducing harmful AAbs that
cross-react with human proteins, thus possibly causing
diseases in the human host. Said with a metaphor, hitting
the infectious enemymight cause collateral damages as well.

SARS-CoV-2 vaccines are no exception. As amatter of fact,
SARS-CoV-2 proteins consist of peptide fragments that re-
peatedly occur and recur throughout human proteins, with
only a part of them being exclusively present in the viral
antigens and absent in the human proteome.6 Hence, it is a
noteworthy fact that adaptive humoral immune response to
infection/vaccination directly correlates with severe dis-
eases, also known as Coronavirus Disease 2019 (COVID-
19), in symptomatic SARS-CoV-2 infection.7–11 Indeed,
COVID-19 appears to be largely an autoimmune disease12

withmolecularmimicry as a crucialmechanism suspected to
drive autoimmunity.6,13
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COVID-19 comprehends a wide spectrum of disorders6,13

including the following:

• Thromboses and hemostasis diseases.
• Pneumonia and pulmonary hypertension.
• Lymphomas and cancer of the lung and other organs.
• Cardiovascular disorders and sudden death.
• Multisystem inflammatory syndromes.
• Skin leukocytoclasia, hyperkeratosis, and parakeratosis.
• Neurodegeneration and neurological disorders from

memory impairment, disturbances of higher cognitive
functions such as working memory and executive func-
tion, to temporal lobe epilepsy, schizophrenia, Alz-
heimer’s disease, and Parkinson’s disease, inter alia.

Such vast and heavy pathological cross-reactivity sequelae
hadalreadybeen foreseen in20206at theverybeginningof the
SARS-CoV-2 pandemic and have been lately confirmed.14

Fact 2: Codon Usage Controls Pathogen
Latency and (re)Activation

The human body is home to thousands of microbial organ-
isms that silently inhabit our organs. Such a regimen of often
completely asymptomatic coexistence is ruled by the human
codon usage that represents a basic frontline instrument of
the innate immunity against infectious agents.15,16 Human
codon usage does not allow the translation of pathogengenes
that are characterized by codon usages that do not conform
to the human codon usage.15,16 Hence, the following events
occur in the human host: 1) the synthesis of pathogen
proteins is inhibited, 2) the pathogen load is low in that
the pathogen replication does not occur, and 3) the infection
acquires a chronic latent asymptomatic status characterized
by low or zero protein synthesis, without pathologic con-
sequences. In fact, in absentia of pathogen proteins, immune
responses and the consequent autoimmune cross-reactions
cannot obviously occur.

Conversely, pathogen gene sequences that have been
optimized for human preferred codons are efficiently trans-
lated to proteins in the human host, where they induce
immune responses that, because of molecular mimicry, are
mostly associated with cross-reactivity against human pro-
teins. In brief, vaccine formulations based on codon optimi-
zation of pathogen genes increase pathogen replicative
fitness and pathogen protein load in the human organism,
thus inducing harmful autoimmune cross-reactive
responses.

With regard to the anti-SARS-CoV-2 vaccines, codon-
optimized sequences encoding full-length SARS-CoV-2 spike
glycoprotein (gp) havebeen used,17,18 so that the synthesis of
the spike gp protein increased. Such a codon optimization
with consequent increased protein synthesis can activate
effective antispike gp immune responses after vaccination
but potentially can also induce harmful autoimmune cross-
reactions, leading to COVID-19.6,13 Said with an additional
metaphor, codon optimization is equivalent to opening the
doors to COVID-19.

Fact 3: Nonhuman Primates are Inadequate
in Preclinical Tests

As already observed by Hogan,19 the Rhesus macaque model
is of limited utility in preclinical tests, while onlymicemight
represent a correct animal model for testing immunothera-
pies to be used in humans.20,21 In particular, preclinical
animal trials based on nonhuman primates are inadequate
to reveal potential autoimmune cross-reactions following
infection or immunization, in that molecular mimicry is high
between pathogens and Homo sapiens but not between
pathogens and nonhuman primates.22,23 As a consequence,
autoimmune cross-reactions cannot occur in primates at the
high extent they do in humans.

Coherently with such data, nonhuman primates infected
with SARS-CoV-2 develop a mild infection resembling
asymptomatic human infection.24 Nevertheless, it has to
be highlighted that nonhuman primates have been used in
testing anti-SARS-CoV-2 vaccines,18,24–26 whereas valid ani-
malmodels had to be rats ormice, that is, animalswith a level
of molecular mimicry with pathogens comparable to the
level of molecular mimicry present in humans.22,23 To use a
metaphor once more, using nonhuman primates in preclini-
cal tests is a swimming test in an empty swimming pool.

Fact 4: Are Monoclonal Antibodies Really
Monoclonal?

By canonical definition, a monoclonal antibody (MAb) is an
antibody that recognizes a unique antigenic epitope. In
conflict, scientific research has documented that such MAb
definition does not correspond to the reality, in that, de facto,
MAbs are not exempt from cross-reactivity. As clearly proved
already in 1981 by Dulbecco et al27 and others,28–38 cross-
reactivity andmultiple organ reactivity associatewithMAbs.
Here, a visual representation of the cross-reactivity burden
that can associate with a MAb is offered in ►Fig. 1.32 ►Fig. 1

illustrates that MAb GD3, a MAb raised against the disialo-
ganglioside GD3 melanoma antigen, cross-reacts with

Fig. 1 Anti-GD3MAbMG22cross-reactswithnumerousproteins fromcellsof
various origins. Lanes: 1) reticulocyte lysate; 2) wheat germ extract; 3) whole
rat serum; 4) lymphoma cell lysate; 5)melanoma cell lysate. Molecular weight
markers are on the left. (From Willers et al32, and further details therein).
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numerous melanoma proteins, the molecular weight of
which range from 240 to 70 kDa (►Fig. 1, lane 5). In addition,
MAb MG22 also cross-reacts with proteins from a human
lymphoblastoid cell line (►Fig. 1, lane 4), which does not
express GD3, and with proteins from normal cells of various
origins (►Fig. 1, lanes 1 to 3).

Such experimental scientific data27–38 legitimate a crucial
question: are MAbs really monoclonal and their effect pre-
dictable enough to be used in immunotherapies? Actually,
MAbs might present unexpected consequences. Recent pro-
posals for using MAbs to fight the current SARS-CoV-2
pandemic39,40 must be weighed with extreme caution.

Conclusion

Using SARS-CoV-2 infection/vaccination as a paradigmatic
example and moving on from the etiology of the numerous
diseases that can associatewith infection, this reviewoffers a
unified theoretical basis for designing safe andmore effective
vaccines.

Indeed, from a scientific point of view, peptide sharing,
that is, molecular mimicry, and the consequent potential
cross-reactivity, provide the molecular platform and the
basic mechanism that link infections to harmful autoimmu-
nity, thereby supporting the concept of peptide uniqueness
in designing safe immunotherapies exempt from cross-reac-
tivity risks. As amatter of fact, since 1999,32 it was suggested
that only peptidemotifs unique to the antigen of interest and
absent in the human proteome have the potential to evoke
safe, specific, and efficacious immune responses to fight
infectious agents, cancer, and autoimmunity,41–43 thus
allowing for improved vaccine design and avoiding vaccinal
failures.1,44–62
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