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Abstract

Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells
(NSCs) would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage.
Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received
whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain
atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated
brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were
significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic
mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the
restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the
migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF
signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of
NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional
loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a
highly promising therapeutic option for patients with various brain diseases.
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Introduction

For many central nervous system diseases including brain

tumors [1,2] and arteriovenous malformations [3], treatment

options are very limited. Surgical intervention is not viable due to

the limited accessibility of the disease location, as well as the high

risk of disturbing vital normal brain functions. The use of systemic

chemotherapeutics is also ineffective because of the largely

impermeable blood-brain barrier (BBB). For example, recent

advances in chemotherapies have led to a relatively better control

of primary tumors, but they still fail to treat metastasis to the brain

since they do not cross the BBB [1,2,4,5,6]. Since new systemic

treatment options become available that increase the longevity of

patients with advanced disease [1], the current annual incidence

rate of 170,000 new brain metastases in the United States [7] is

likely to increase rapidly. High-dose brain radiation therapy is the

primary choice for treating both primary and metastatic brain

tumors [1,2,4,5]. Taken together, radiation therapy remains as the

only remaining indispensable treatment modality.

In contrast to chemotherapy, radiation therapy has the advantage

of being local and organ-specific. Recent technical advances such as

three-dimensional conformal radiotherapy (3DCRT), intensity-

modulated radiation therapy (IMRT), and gamma knife radiosur-

gery (GKS) allow even further localized and concentrated

treatment. Despite these advances, however, exposure of normal

brain tissues to detrimental effects of radiation is still unavoidable

[4,5]. Furthermore, certain cases, such as diffuse primary brain

tumors or brain metastases with multiple lesions, require the use of

whole-brain radiation therapy (WBRT) that would inevitably lead

to the exposure of normal tissues to high-dose radiation. Normal

brain tissues are sensitive to radiation [4,8–10], and the consequen-

tial brain damage is a severe drawback for the use of radiation
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therapy – one study reported eleven percent of patients receiving

high-dose WBRT suffered radiation-induced dementia [11], while

others reported significant visual defects, dysarthria, and gait

disturbances [4,8,10]. Therefore, treatment modalities that can

lessen or even prevent radiation-induced brain damage are

imperative to make radiation therapy more appealing for clinical

use and to improve the quality of life of patients.

It is reported that endogenous neural stem cells (NSCs) provide

regenerative potential to irradiated brain tissues [12–14]. An

attractive hypothesis states that NSCs restore the lost functions of

damaged tissues. However, the scarcity of the endogenous NSCs

and the extensive degree of damage due to radiation make

endogenous restoration impractical. It is therefore necessary to

transplant substantial amount of exogenous NSCs to make the cell-

based therapy a viable treatment option. Since NSCs are one of the

most amenable cell sources for neural transplantation [15,16], are

endowed with extensive functional stability and plasticity [12–14],

and can be expanded long-term in vitro [17], we hypothesized that

exogenous supplementation of NSCs could rescue irradiated brains

from functional loss. First, we focused on the WBRT since radiation

exposure of normal brain tissue is higher than those of focused

radiation therapies. It is also clinically relevant since it is the

common procedure for treating the increasing number of brain

metastasis patients. Here, we demonstrated the beneficial effects of

NSC supplementation and elucidated its potential therapeutic

mechanisms. Then, we employed animal models that had focused

radiation therapy, i.e. GKS, and confirmed the therapeutic

mechanisms of NSC supplementation.

Results

1. Primary culture of mouse fetal NSCs expressing green
fluorescent protein (GFP+ NSCs)

GFP+ NSCs were primarily cultured from brains of 13.5 day old

GFP transgenic C57BL/6 mouse embryos [18]. In the NSC

culture condition without serum (NeuroBasal Media supplemented

with N2, B27 and EGF), they grew as neurospheres that expressed

NSC markers such as Nestin, Musashi, Sox2, and CD133 (Fig.

S1A, B). When NSCs were maintained in 10% FBS/DMEM for

two weeks, they showed differentiated neural cell morphologies,

lost the expression of the NSC markers, and expressed specific

markers of differentiated neural cells such as Tuj1 (neuron), GFAP

(astrocyte), or Olig2 (oligodendrocyte) confirming their differential

potential (Fig. S1C, D, E).

2. Protective effects of NSCs against the radiation-
induced brain damage

To make animal models representing the radiation-induced

brain damage, 465 Gy whole brain X-irradiations (total 20 Gy,

Day 0, 4, 7, and 11) were applied to C57BL/6 mice (Fig. 1A) using

a device shielding the rest of the animal body from irradiation.

The chronic inflammatory response of microglia after brain

irradiation [19] was observed in our animal models by

immunohistochemistry against CD68 (Day 60, n = 5, Fig. S2),

confirming the effects of irradiation on the brain. CD68-positive

cells were observed throughout the irradiated brains. To replenish

the irradiated brains with NSCs, 16106 GFP+ NSCs in 100 ml

PBS were systemically administrated (tail vein injection) at

24 hours after each irradiation (Cont, no irradiation with PBS

injection, n = 7; IR, irradiation with PBS injection, n = 7; IR +
NSC, irradiation with NSC supplementation, n = 6, Fig. 1A).

Eight weeks after the final NSC supplementation, the Morris

water maze test [20] was performed on the Cont, IR, and IR +
NSC groups to analyze short term memory change (Day 67–71),

and corresponding brain structural alterations were examined

(Day 71, Fig. 1A). The IR group mice had significantly reduced

depths of both the granular layer of the dentate gyrus of the

Figure 1. Effects of exogenous NSC supplementation on the
brain structure and function after whole brain irradiation. (A)
Experimental schedules. (B, C) At eight weeks after the last NSC
supplementation, the depth of the granular layer of the dentate gyrus
of the hippocampus (B) and the cerebral cortex (primary somatosensory
cortex, C) were compared. The depth was measured at three random
positions in a section (3 sections for each animal). Bars (B) or arrows (C)
represent examples of the measurements. Cont = no irradiation with
PBS injection (n = 7), IR = irradiation with PBS injection (n = 7). IR + NSC
= irradiation with NSC supplementation (n = 6). * P,0.05. (D) Short
term memory alteration was tested by measuring the length of time to
locate the designated platform in the water bath everyday for five days
(water maze test). * P,0.05. (E) The platform was removed and the time
that the mice stayed at the platform area in one minute was measured
and compared at Day 5 (probe trial). * P,0.05.
doi:10.1371/journal.pone.0025936.g001

NSC Supplementation to Irradiated Brain
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hippocampus and the cerebral cortex than the control group mice

[65.264.0 mm vs 83.065.5 mm (Fig. 1B) and 815.9683.7 mm vs

949.0638.0 mm (Fig. 1C), respectively; P,0.05]. They also

showed significantly poorer short term spatial memory acclima-

tion, indicated by their inability to shorten their latency locating

the designated platform even at Day 5 [Fig. 1D; 48.569.2 seconds

(sec) in Day 1 and 40.3611.1 sec Day 5; compare with Cont’s

46.566.3 sec in Day 1 and 15.3610.6 sec in Day 5]. In addition,

they responded poorly to the probe trial (Day 5), indicated by the

significantly shorter time of staying at the platform area after

platform removal [Fig. 1E; 16.3614.5 sec in one minute (min) vs

37.866.1 sec in one min; P,0.05]. In contrast, the mice with

exogenous NSC supplementation had comparable depths of

granular layer of the dendate gyrus of the hippocampus (Fig. 1B,

78.166.3 mm; P = 0.22) and the cerebral cortex (Fig. 1C,

939.4679.8 mm; P = 0.83) with the control, with comparable

latency in finding the platform (Fig. 1D, 41.4611.0 sec in Day 1

and 20.0613.8 sec in Day 5) and time of stay at the platform area

(Fig. 1E, 32.366.5 sec in one min). Taken together, these data

suggest that the exogenous NSC supplementation preserved both

the brain structure and function after the whole brain irradiation.

3. Neuro-protective mechanisms of supplemented NSCs
in the irradiated brains

Supplemented NSCs could make their neuro-protective effects

by either secreting various cytokines (paracrine effects) or replacing

damaged neural cells (replacement effects) [16]. Specific effects of

NSC supplementation could be deviated in the animals with

multiple injections of NSCs (Fig. 1A). Therefore, to find out

therapeutic mechanisms of NSCs, PBS or 16106 NSCs were

systemically injected to the mice that had one time 5 Gy whole

brain irradiation at 24 hours before the injection (IR and IR + NSC,

n = 5 for each group). 16106 NSCs were also systemically injected

to the mice that did not have whole brain irradiation (NSC group,

n = 5). When several neurotrophic factors such as Ang1, CXCL12,

FGF2, IGF1, and NGF were compared between the IR and IR +
NSC groups by quantitative PCR at 72 hours after the NSC

injection, NGF was significantly increased in the brains of the IR +
NSC group (Fig. 2A, right hemispheres of the mice were utilized,

P,0.05), indicating paracrine effects. To determine the fate of

injected GFP+ NSCs, the brains of the IR + NSC group were

dissociated into single cells, and the expression of differentiated

neural cell markers (GFAP, Olig2 and Tuj1) of GFP+ cells were

analyzed by flow cytometry [left hemispheres (rostral half) was

utilized]. Seventeen, 21, and 17% of GFP+ cells of the IR + NSC

group expressed GFAP, Olig2, and Tuj1, respectively (Fig. 2B),

indicating in vivo multi-potent differentiating potential of NSCs.

GFP+ cells showed similar GFAP, Olig2, or Tuj1 positivity in the

five IR + NSC mice. Co-localization of GFAP, O4 (for

oligodencrocytes), or Tuj1 with GFP was also confirmed immuno-

histochemically in the brains of the IR + NSC mice [arrow heads in

Fig. 2C; left hemispheres (caudal half) of the IR + NSC mice were

Figure 2. Neuro-protective mechanisms of NSCs against the radiation-induced brain damage. (A) Levels of Ang1, CXCL12, FGF2, IGF1
and NGF were compared between the IR and IR + NSC group by real-time PCR. Reference bar (1.0) = IR group. * P,0.05. (B) To determine the fate of
injected GFP+ NSCs, brains of the IR + NSC mice were dissociated into single cells at 72 hours after the injection and expression of GFAP, Olig2, and
Tuj1of GFP+ cells was analyzed by flow cytometry. (C, D) Brain sections were prepared from the IR + NSC or NSC mice, and immunohistochemistry
against GFP (green) and GFAP, O4, CD31, vWF, or CD146 (red) was performed. Blue = nuclei.
doi:10.1371/journal.pone.0025936.g002
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utilized]. In contrast, few GFP+ cells were observed in the brains of

the NSC group (Fig. 2C). Therefore, neuro-protective effects of

supplemented NSCs in the irradiated brains could be mediated by

both paracrine and replacement effects.

4. Trans-differentiation of NSCs into brain endothelial
cells

While supplemented GFP+ NSCs were differentiated into

astrocytes, oligodendrocytes, or neurons in the irradiated brains,

GFP+ vessel-like structures were also observed (arrows, Fig. 2C).

Interestingly, these tube-like structures did not co-express GFAP

(Fig. 2C), indicating that they did not originate from GFP+

perivascular astrocytes. Immunohistochemistry against specific

endothelial markers such as CD31, von Willebrand factor (vWF),

and CD146 (Fig. 2D) confirmed that anti-GFP immunoreactivities

co-localized with the specific markers of endothelial cells. In

contrast, co-localization of GFP with CD31, vWF, or CD146 was

not identified in the NSC group (Fig. 2D). Therefore, injected

NSCs trans-differentiated into brain endothelial cells in the

irradiated brains. It is possible that endothelial cells and/or

endothelial progenitor cells (EPCs) might have contaminated the

primarily cultured NSCs. However, we found few cells positive for

endothelial (CD31) or endothelial progenitor cell markers (CD34

and Sca-1) among our primarily cultured NSCs (Fig. S3),

excluding such possibility. CD31 expression was observed in

11% of GFP+ cells in the brains of the IR + NSC mice by flow

cytometry (data not shown).

Next, we examined the effects of the whole brain irradiation

and the supplementation of NSCs on the cerebral blood flow to

observe the functional consequences of the trans-differentiation of

NSCs. Positron emission tomography (PET) provides an excellent

in vivo imaging technique for cerebral blood flow measurements

[21,22]. In the PET imaging, 15O labeled water (H2
15O) was

utilized as a tracer. The injected tracer distributions in the brain

and the heart were measured in vivo as a function of time, and the

cerebral blood flow was calculated with an arterial input function

[23]. The H2
15O PET imaging showed that the cerebral blood

flow was reduced significantly at 96 hours after 5 Gy whole brain

irradiation (Fig. 3, Cont = 1.1160.17 ml/100 g min, n = 3;

IR = 0.6760.17 ml/100 g min, n = 5, P,0.05), and the reduc-

tion was reversed when 16106 NSCs were systemically

supplemented at 24 hours after the irradiation (Fig. 4,

0.9960.22 ml/100 g min, n = 3). These data demonstrated that

endothelial cells differentiated from NSCs could take part in the

restoration of the cerebral blood flow reduced by the whole brain

irradiation.

5. Trans-differentiation and migration of NSCs in the
animal models with focal brain irradiation

Although WBRT is widely used to treat brain metastases, the

use of focal brain radiotherapy such as 3DCRT, IMRT, or

radiosurgery, is more popular and increasing. To confirm the

trans-differentiation of NSCs in the brains of animals with focal

brain radiotherapy, we applied focal irradiation to the right

cerebral cortex of C57BL/6 mouse using a GKS apparatus which

can concentrate 50% of the maximal irradiation dose (50%

isodose) within 1 mm (Fig. 4A, Fig. S5). The migration of NSCs to

irradiated brain regions could be additionally analyzed in the

animal models with GKS, since NSCs could be transplanted into

the brain tissues of the opposite hemisphere that had low exposure

to the radiation. Therefore, 16105 GFP+ NSCs in 10 ml HBSS

were stereotactically injected into the opposite brain hemisphere at

24 hours after the focused irradiation (Fig. 4A). When GKS was

not applied, injected NSCs remained in the injected site up to

72 hours (NSC group, Fig. 4C, n = 5 for each time point). In the

IR + NSC group (n = 5 for each time point), NSCs left the

injection site (arrowheads, Fig. 4C), migrated along the subven-

tricular zone (arrows, Fig. 4C), crossed the midline in the

subventricular zone beneath the corpus callosum at 12 hours

after the injection (arrows in Fig. 4C), and formed GFP+

microvessels in the irradiated hemisphere (immunohistochemistry

against GFP, Fig. 4B).

Figure 3. Restoration of the cerebral blood flow by supplementation of NSCs. 5 Gy whole brain irradiation was applied to mice, and NSCs
were systemically supplemented at 24 hours after the irradiation. (A) H2

15O was injected into the tail veins of the mice at 72 hours after the injection,
and the injected tracer distributions in the brain and the heart were measured by H2

15O PET imaging. (B) The cerebral blood flow (ml/100 g min) was
determined by analyzing heart and brain signal. Cont, n = 3; IR, n = 5; IR + NSC, n = 3. Height = average. Error bar = standard deviation. * P,0.05.
doi:10.1371/journal.pone.0025936.g003
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6. Involvement of the VEGF signaling in the migration
and trans-differentiation of NSCs

VEGF is a critical force that drives adult vasculogenesis and one

of the most potent molecules triggering an EPC release from the

bone marrow [24]. We checked the expression of VEGF receptors

on NSCs using semi-quantitative RT-PCR, immunocytochemistry,

and flow cytometry. The expression of the VEGF receptor 2 (Flk-1)

was prominent in NSCs (Fig. S4A–C). VEGF expression and

secretion of NSCs were significantly increased by in vitro irradiation

(Fig. S4D, E). In addition, levels of VEGF were significantly

increased in the irradiated brains (5 and 10 Gy, n = 5 for each

group) compared to the control brains (n = 5, Fig. S4F). Therefore,

VEGF signaling could be hypothesized to have an important role in

the endothelial cell repopulation process of NSCs.

At 24 hours after the focused irradiation (Fig. 4A), followed by a

systemic administration of ZD6474, a specific Flk-1 inhibitor (Fig.

S6, ZD6476 group, n = 5 for each time point) [25], 16105 GFP+

NSCs in 10 ml HBSS were stereotactically injected into the

opposite brain hemisphere. Compared with the IR + NSC group,

inhibition of the VEGF signaling made the injected NSCs to

Figure 4. Trans-differentiation and migration of NSCs in the animal models with focal brain irradiation and effects of the VEGF
signaling on the migration of NSCs. (A) GFP+ NSCs were injected into the right brain hemisphere stereotactically at 24 hours after focused brain
irradiation to the left hemisphere using a GKS apparatus (50% isodose = 3 Gy). The dosimetry for GKS was calculated and presented. The irradiation
focus could be within 0.5 mm of the planned target. (B) Immunohistochemistry against GFP was performed. Injected GFP+ NSCs migrated into the
contralateral irradiated brain hemisphere and made GFP+ vessels. (C) The migration route and velocity were analyzed by immunohistochemistry
against GFP (green) at various time points after the injection. NSC = NSC supplementation without GKS (n = 5 for each time point), IR + NSC = NSC
supplementation at 24 hours after GKS (n = 5 for each time point). Arrowheads = injection tract. Arrows = GFP+ NSCs migrating in the subventricular
zone. (D) Systemic treatment with a specific Flk-1 inhibitor (ZD6474, 50 mg/kg, oral administration 12 hours after the irradiation) inhibited the
migration of injected GFP+ NSCs in the focally irradiated brain (n = 5 for each time point). Arrows = GFP+ NSCs migrating in the subventricular zone.
doi:10.1371/journal.pone.0025936.g004
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remain in the injection site until 12 hours after the injection

(Fig. 4D). Even at 24 hours after the injection, NSCs could not

cross the midline (arrows, Fig. 4D).

The effects of Flk-1 inhibition on the trans-differentiation of

NSCs were also analyzed by co-culturing GFP+ NSCs with human

umbilical venous endothelial cells (HUVECs) on the matrigel [26].

HUVECs made numerous tubes in the differentiation condition,

while NSCs remained as spheres (Fig. S7). When they were co-

cultured, GFP+ tubes were made effectively (Fig. 5A). However,

treatment of ZD6474 specifically and dose-dependently inhibited

the formation of GFP+ tube and made GFP+ NSCs to remain as

spheres (Fig. 5B, P,0.05). Morphologically, the viability of NSCs

on the matrigel was not affected by the treatment of ZD6474, thus

excluding the possibility that the reduction of GFP+ tube

formation originates from toxic effects. These data suggest that

signaling through the Flk-1 is important in both the migration and

trans-differentiation of NSCs.

Discussion

In this study, we provide in vivo translation data indicating that

exogenous NSC supplementation can be a novel preventive and/

or therapeutic modality against the radiation-induced brain

damage. Most radiation-induced brain damage originates from

medical treatments, yet the unfortunate reality is that the

frequency of radiation therapy for the brain is expected to further

increase in the future. Therefore successful combination of brain

radiation therapy and NSC supplementation would provide a

highly promising therapeutic option for patients with brain

diseases. In addition, accidental exposure to large doses of

irradiation could result in neurological effects and rapid death

[27]. Exogenous NSC supplementation could also be considered

in these cases with other supportive cares. Previously, neuro-

protective effects of NSCs were reported to be mediated by the

secretion of various neurotrophic factors (paracrine effects) and/or

the replacement of damaged neural cells (replacement effects) [16].

In our animal models with radiation-induced brain damage, NGF

was significantly increased in the brain by the supplementation of

NSCs. In addition, transplanted NSCs differentiated into various

neural cells such as neurons, astrocytes and oligodentrocytes in the

irradiated brains. These results suggest that both the paracrine and

replacement effects were implicated in the preventive and/or

therapeutic outcome of NSCs against radiation-induced brain

damage.

Figure 5. Effects of the VEGF signaling on the trans-differentiation of NSCs. (A) GFP-positive NSCs and GFP-negative human umbilical
venous endothelial cells were co-cultured on the matrigel in the differentiation condition of endothelial cells. Effects of Flk-1 inhibition on the trans-
differentiation of NSCs were analyzed by the treatment of ZD6474. (B) Relative GFP+ tube length (%) and percent of GFP+ tube of total tube length
were measured and compared * P,0.05. n = 3 for each group.
doi:10.1371/journal.pone.0025936.g005
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Interestingly, NSCs supplemented into irradiated brains trans-

differentiated into brain endothelial cells. The reduction of the

cerebral blood flow by irradiation was reversed by NSC

supplementation. Therefore, the trans-differentiation into endo-

thelial cells would be one of the preventive and/or therapeutic

mechanisms of NSCs against radiation-induced brain damage. In

the resting state, the brain receives 15–20% of the body’s blood

flow since it is one of the most metabolically active organs [28].

Moreover, the brain is highly dependent on the sufficient blood

supply for its survival and functions [29]. One microvessel

supports numerous neural cells; therefore, the replacement of

damaged endothelial cells could be much more important than the

regeneration of lost neural cells for the maintenance of brain

structures and functions. Since the report about the trans-

differentiation potential of NSCs into endothelial cells [26], its

physiological and clinical implications have remained to be

elucidated. Recently, it was reported that glioblastoma stem-like

cells, which could originate from NSCs and maintain the key

molecular properties of NSCs, show endothelial differentiation in

vitro and in vivo [30,31]. Here, we also demonstrated that NSCs

indeed replace damaged endothelial cells in pathological condi-

tions to prevent structural and functional alterations of the brain.

More importantly, the replacement activity was functionally

relevant, evidenced by the restoration of the cerebral blood flow.

Active vascularization induces and supports the development of

the brain [32]. Therefore, EPCs and/or differentiated endothelial

cells could be included in the NSCs primarily cultured from brains

of 13.5 day old mouse embryos. To exclude this possibility, we

examined the CD31, CD34 and Sca-1 expression of cultured

NSCs, but there were few CD31, CD34, and Sca-1-positive cells.

In addition, NSCs could not make tubes on matrigels in the tube

formation assay, whereas endothelial cells could. This indicates

that cultured NSCs contain, if any, few EPCs or endothelial cells.

VEGF is a critical force that drives vasculogenesis and one of the

most potent molecules triggering EPC release from the bone

marrow [24]. We demonstrated that the VEGF signaling is also

essential in the migration and trans-differentiation of NSCs, which

suggests that VEGF would be a common mediator that recruits

stem cells for the repair of damaged vessels.

In the brain parenchyma, NSCs are closely related with their

niche, of which the endothelial cell is one of the most essential

components [32–34]. Traditionally the niche has been reported to

regulate the self-renewal and fate of NSCs using various kinds of

signaling pathways [32–34]. However our data provoked the

possibility that NSCs might reciprocally have the potential to

reconstruct their niche by themselves. This would further support

the self-renewal and regeneration potential of NSCs, although the

exact functional implications still need to be elucidated.

In vitro long-term expansion capacity [17] and extensive

functional stability and plasticity [12–14] of NSCs have provoked

the possibility of regenerative medicine for various neurological

diseases, such as stroke, spinal cord injury and neurodegenerative

diseases, which currently have few effective therapeutic modalities

[35]. The survival of injected NSCs could be increased when

endothelial cells derived from NSCs would secrete various survival

factors for NSCs. In addition, therapeutic effect could be

potentiated when damaged endothelial cells and neural cells could

be replaced simultaneously by NSCs, because endothelial cells are

also affected by those diseases [36]. Therefore, novel therapeutic

methods which utilize the trans-differentiation capacity of NSCs

would maximize the therapeutic effects of regenerative technolo-

gies using NSCs.

In summary, our data demonstrate that exogenous NSC

supplementation could recover radiation-induced functional losses

of the brain. Although the brain is sensitive to radiation, radiation

therapy remains as an indispensable therapeutic modality for

various brain diseases. Therefore, successful combination of the

brain radiation therapy and NSC supplementation would provide

a highly promising therapeutic option for patients with brain

diseases.

Materials and Methods

1. Primary culture of mouse fetal GFP+ NSCs
All animal experiments were approved by the appropriate

Institutional Review Boards of the Samsung Medical Center

(Seoul, Korea, approval ID = C-A7-220-3) and conducted in

accord with the ‘National Institute of Health Guide for the Care

and Use of Laboratory Animals’ (NIH publication No. 80-23,

revised in 1996). Brains obtained from 13.5 day old GFP

transgenic C57BL/6 mouse embryos (C57BL/6-Tg(UBC-

GFP)30Scha/J, The Jackson Laboratory) [18] were mechanically

dissociated into single cells. Dissociated cells were cultured in the

NeuroBasal Media (Invitrogen) supplemented with N2, B27

(Invitrogen) and recombinant EGF (50 ng/ml; R&D Systems).

To differentiate cultured cells, cells were plated onto poly-L-lysine

(PLO)-precoated culture dish (Invitrogen) and were subject to

growth in DMEM with 10% fetal bovine serum (10% FBS/

DMEM; Cambrex).

2. Immunocytochemistry
Immunocytochemistry was performed using a standard method.

Briefly, cells were fixed in ice-cold methanol/acetone (1:1) for

10 minutes. After incubation in 0.2% Triton X-100/PBS cells

were treated with primary antibodies; Sox2 (R&D Systems),

Nestin, Musashi, CD133, Tuj1, GFAP, Olig2 (Millipore), and Flk-

1 (Cell Signaling Technology).

3. Whole brain irradiation and systemic supplementation
of NSCs

Four serial whole brain X-irradiations, each with 5 Gy, were

applied to C57BL/6 mice using a blood irradiator (IBL-437C,

CIS-US, Inc.). Mice bodies were shielded with a custom-made

lead shielding device. At 24 hours after each irradiation, 16106

GFP+ NSCs in 100 ml PBS were administrated into the tail vein.

4. Morris water maze test
Mice were trained on Morris water maze [20], three trials per

day for five days. At the start of each trial, one mouse was gently

placed into the water with its head facing the outside of the tank.

The start location was randomized, while ensuring no location was

used repeatedly in consecutive trials. A total of eight start locations

were used for the test, which were evenly spaced around the maze.

SMART video-tracking system (Panlab s.l.u.) was used to measure

the length of time to locate the designated platform in the water

bath. A trial lasted either 60 sec or until the mouse reached the

platform and remained on the platform for 10 sec. If a mouse did

not reach the platform within 60 sec, it was gently guided there by

hand. Mice were placed back in their cage and allowed to rest for

30 sec between trials. One hour after training on Day 5, the

platform was removed and mice were tested with a probe trial; the

time that the mice stayed at the platform area in one minute was

measured.

5. Specimens and immunohistochemistry
The animals were anesthetized, and perfusion fixation was

performed by transcardially perfusing 4uC cold PBS containing
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heparin (1 IU/ml), followed by ice-cold 4% paraformaldehyde in

PBS. The brains were immediately removed, postfixed in the same

fixative overnight and processed for paraffin and frozen embed-

ding using standard experimental procedure. H&E staining was

performed for paraffin sections, and the thickness of the granular

layer of the dentate gyrus of the hippocampus and the cerebral

cortex (primary somatosensory cortex) was measured using a slide

scanner (ScanScopeH CS, Aperio Technologies, Inc.) and an

image analyze software (ImageScope, Aperio Technologies, Inc.).

The thickness was measured at three random positions in a

section, and three sections were analyzed for each animal. Mean

thickness was calculated for each animal and compared. The

frozen blocks were cut into 40 mm coronal sections. Immunohis-

tochemistry was performed with the free-floating method using the

following antibodies: CD68, von Willebrand factor (Abcam), GFP

(Invitrogen), Tuj1, GFAP, O4, CD146 (Millipore) and CD31 (BD

Pharmingen).

6. Quantitative RT-PCR
Total RNAs were isolated from mouse brains, GFP+ NSCs, and

HUVECs using Total RNA Purification Kit (Qiagen) according to

the manufacturer’s protocol. Equal amounts of RNA were

subjected to cDNA synthesis by using SuperscriptTM III First-

Strand Synthesis System (Invitrogen). One microliter of the first-

strand cDNA reaction mixture and 0.2 mM of each primer set [37]

were used for semi-quantitative RT-PCR (35 cycles for VEGF

receptors, 18 cycles for GAPDH). In real-time quantitative PCR,

relative amount of each mRNA was evaluated by Roche LC480

real-time quantitative PCR detection system (Roche) and

calculated following normalization to the GAPDH mRNA. The

primer sequences were described in Table S1.

7. Flow cytometry
Primary antibodies against Sox2 (R&D Systems), Musashi,

Olig2, Tuj1 (Milipore), and GFAP (Santa Cruz biotechnology)

were conjugated with PerCP-Cy5.5 using a conjugation kit (AbD

Serotec). PerCP-Cy5.5 conjugated anti-Nestin, Flk-1 (BD Phar-

mingen), and Sca-1 (eBioscience) antibody and PE conjugated

anti-CD31 and CD34 antibody (BD Pharmingen) were utilized in

the flow cytometry. Brains were enzymatically dissociated into

single cells, and red blood cells were removed by differential

centrifugation. Dissociated cells were fixed and permeabilized by

the Cytofix/CytopermTM kit (BD Biosciences), labeled with

antibodies, and then analyzed by a FACS Calibur machine (BD

Biosciences).

8. H2
15O positron emission tomography (PET) imaging

The PET experiments were performed according to methods

reported previously [23]. An InveonTM preclinical small animal

PET system (Siemens Medical Solutions), which allows simulta-

neous imaging of brains and hearts of two mice in one scanner

field of view, was used. Anesthetized animals were moved to the

scanner bed and placed in supine position. The 15O labeled tracers

(H2
15O) were produced by an on-site PETtrace cyclotron (GE

Healthcare) and delivered to the PET room for each PET scan. A

dynamic PET scan (2465 sec frames) was started with the

simultaneous initiation of H2
15O administration (bolus injection

into tail veins, 1 mCi in 0.2 ml saline). The cerebral blood flow

was calculated with an arterial input function by numerically

solving the equations reported previously [23]. The brain regions

of interest were defined as regions with elevated signals in the

control mice (yellow in Fig. 3A). The signals for the same regions

of the IR and IR + NSC mice were analyzed.

9. Focused brain irradiation and orthotopic NSC injection
Focused brain irradiation was applied to the right cerebral

cortex of C57BL/6 mouse using a gamma knife surgery apparatus

(Leksell Gamma KnifeH 4C, Elekta AB). A stereotactic frame

(Leksell frame) for the mouse was made (Fig. 4A), and the

irradiation accuracy and concentrating capacity were tested using

radiosensitive films (Fig. S5). At 24 hours after the focused

irradiation, 16105 GFP+ NSCs suspended in 10 ml HBSS were

stereotactically injected into the mouse brains (2 mm left and

1 mm anterior to the bregma, 2 mm deep).

10. In vitro trans-differentiation of NSCs
HUVECs (American Type Culture Collection) were cultured in

endothelial cell growth medium (EGM) supplemented with EGM

SingleQuots (EGM complete media, Lonza). BD BioCoatTM

Angiogenesis System (BD Biosciences) was used for the tube

formation test. 26104 HUVECs, 26104 GFP+ NSCs, or 16104

HUVECs + 16104 GFP+ NSCs in 500 ml EGM complete media

supplemented with 10% FBS were cultured on matrigel in 96-well

plates for 16 hours according to the manufacturer’s protocol. 100,

250, or 500 nM of ZD6474 (LC Labs) was treated to the co-

culture wells. Picture of each well was taken, and the sums of total

tube length were calculated. In parallel, GFP+ tubes were

quantified. Relative GFP+ tube lengths and percent of GFP+ tube

(length of GFP+ tube/length of total tube) were calculated and

compared.

11. Statistical analysis
Statistical comparisons between groups were performed using

the Student’s t-test. Values of P,0.05 were considered statistically

significant.

Supporting Information

Figure S1 Fetal mouse NSCs expressing GFP were primarily

cultured from brains of 13.5 day old GFP transgenic C57BL/6

mouse embryos. Expression of NSC markers (Nestin, Musashi,

Sox2, and CD133) and differentiated neural cell markers (Tuj1 for

the neuron; GFAP for the astrocyte; Olig2 for the oligodendrocyte)

was examined by immunocytochemistry (A, C, D, E) or flow

cytometry (B). NSCs forming neurospheres in the NSC culture

condition without serum were utilized (A, B). NSCs maintained in

10% FBS/DMEM on PLO-coated slides for overnight (C), 4 days

(D), and 2 weeks (E) were analyzed.

(DOC)

Figure S2 The chronic inflammatory response of microglia after

the brain irradiation was observed in the irradiated mice by anti-

CD68 immunohistochemistry at seven weeks after the last

irradiation. There were few CD68-positive cells in the brains of

the control mice. CD68-positive cells (arrowheads) were magnified

in the insets.

(DOC)

Figure S3 Expression of endothelial or endothelial progenitor

cell markers (CD31, CD34 and Sca-1) of primarily cultured GFP+

NSCs was analyzed by flow cytometry and compared with those of

endothelial cells (bEND.3). Few primarily cultured GFP+ NSCs

expressed the endothelial or endothelial progenitor cell markers.

(DOC)

Figure S4 Expression of VEGF receptors in NSCs was analyzed

by semi-quantitative RT-PCR (A), immunocytochemistry (B), and

flow cytometry (C). The VEGF receptor 2 (Flk-1) was predom-

inantly expressed in NSCs while all VEGF receptors were highly

expressed in endothelial cells. GAPDH = internal control. VEGF
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concentration in the culture medium (D) and VEGF expression of

NSCs (E) were analyzed by ELISA and Real-Time PCR,

respectively, at 24 hours after 0, 2, 4, or 8 Gy in vitro irradiation.

n = 3 for each group. * P,0.05. (F) Changes in VEGF

concentration of the brain were examined by ELISA at 24 hours

after 0, 5, or 10 Gy whole brain irradiation (n = 5 for each group).

* P,0.05.

(DOC)

Figure S5 The gamma knife surgery device can concentrate

50% of the maximal irradiation dose (50% isodose) within 1 mm.

The concentration capacity was tested using radiosensitive films.

Blue spots represent the intensity of the irradiation and the

intensity is presented as graphs.

(DOC)

Figure S6 Detailed experimental schedule to test the effects of

KDR inhibition on the migration of NSCs is illustrated.

(DOC)

Figure S7 GFP-negative human umbilical venous endothelial

cells (HUVECs) made numerous tubes in matrigels when given

differentiation conditions, while GFP-positive NSCs remained as

spheres.

(DOC)

Table S1 Oligonucleotide primers and probes used for mRNA

expression analysis by real-time PCR.

(DOC)
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