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Abstract

Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited
because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials
water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we
describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a
natural occurring amino acid that alleviates the environmental and health hazards associated with traditional
functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM),
High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and
morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show
that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the
cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which
revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result
of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the
first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use
of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.
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Introduction

Nanowires of Group IV elements (Si, Ge) have attracted

significant interest due to their size dependent physical properties.

They have well established uses in Field Effect Transistors [1], as

lithium ion battery anodes [2], and as components of photovoltaic

cells [3]. Common group IV inorganic materials have also shown

advantageous results for biomedical applications [4–8]. Most of

this work has been done using silicon nanowires as they integrate

well with complementary metal oxide semiconductor (CMOS)

systems. As well as this, silicon nanowires play a central role across

biomedical platforms including; single cell probing [1], gene

delivery mechanisms [9], cell adhesion platforms [5,8], enhanced

biomarker detectors [10] and as carriers for other nanomaterial’s,

which can promote hypothermia of cancer cells [11].

Silicon nanowires have been shown to support mammalian

tissue [6,7]. Post modifications of the wires render them

compatible as synthetic bone coatings [12]. The use of

nanowires in biological applications requires that they be non-

toxic and must not adversely affect biological activities [13]. A

complication with most synthetic nanomaterials is that they

contain heavy metal catalysts or functional ligands which

although are required for material dispersibility, can be

adversely toxic to cells. Several studies on the surface chemistry

of silicon nanowires have highlighted the importance of the

functional group interaction with the cellular environment

[7,9,14]. Silicon nanowires with an oxide surface functional

group have decreased adverse effects on biological reactions

when compared to silicon nanowires with other common

ligands with hydrophilic head carboxyl groups [14]. The

orientation of the material can also directly impact the

behaviour of the cellular response, for example, vertically

aligned wires and suspended wires have been shown to

differentially affect cell adhesion, cell spreading and overall cell

morphology [6,7,9]. The formation of a protein corona on the

surface of the nanomaterials can determine the possible

biological interactions different materials may have in a cellular

setting [15,16]. Aspect ratio plays an important role in cellular

repose, work done on CeO2 nanowires and rods highlight the

relationship between aspect ratio and frustrated phagocytosis

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e108006

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0108006&domain=pdf


and lysosome rupture [17]. These works highlight that any

nanomaterial for biomedical application use must be considered

for its orientation and surface chemistry to assess the conditions

which render it biocompatible. However the downstream effects

of the material must also be evaluated for environmental impact

if they are to be commercially exploited [18–22].

Studies into the use of germanium nanowires in biological

applications have been neglected. However, it is documented

that Germanium nanoparticles (GeNPs) of 4.261.2 nm display

cytotoxicity in CHO cells [23]. The GeNPs at low concentrations

(,5 mM) promote necrotic cell death. In order to make GeNPs

water dispersible, ligands such as alkyamines are employed on

their surface [23]. However, as seen with silver nanoparticles

[24], the GeNPs may only be acting as carriers of the toxic

ligand. The use of ligands brings its own complications; studies

indicate that most ligands that promote water dispersibility are

toxic to cells, stimulating cell damage and growth arrest.

Polyethylene glycol (PEG) has been used to render germanium

nanowires polar solvent dispersible, through micelle formation

[25], however, little has been done to assess the cytotoxicity

associated with that treatment.

Recently we developed a route to germanium nanowires

using the vapour phase of a high boiling point solvent (HBS) as

a growth medium facilitating the high density growth of ligand

free, seedless pristine wire [26–28]. The HBS method produces

three distinct populations of wires categorised based on their

fault distribution [28]. Wires are typically between 7–40 nm in

diameter and micrometres in length giving them a high aspect

ratio with population distributions based on their respective

faults. These pristine wires have a thin ,5 nm oxide coating,

which unlike silicon oxide is not stable in an oxidising

environment [29,30]. The unstable oxide readily breaks down

to form Ge(OH)4 in an aqueous environment [29]. Passivation

methods require specialized equipment, elevated temperatures

and pressures under controlled atmospheres. This has typically

been done using harsh chemicals such as HCl or HF. The

passivation process can either chlorinate the surface of the wire

(Ge-Cl) for later Grignard reaction, or (Ge-H) terminated

surfaces can be used to promote hydrogermeylation with some

alkene or alkyne [31,32]. These approaches solve issues for the

device industry but offer little solution for biocompatibility.

Work on silicon oxide surfaces with amino acids and

biomolecules have indicated that amino acids on the surface

of the metal show strong adhesion selectivity [33,34]. The polar

charged amino acids have shown strong selectivity for silicon

oxide with a pH dependency.

Here we describe a facile approach to make seedless and ligand

free Germanium nanowires (synthesised in a high boiling point

solvent) water dispersible. Our findings indicate that not only have

we produced a water dispersible Germanium nanowire, we have

also produced a non-toxic germanium nanowire that exhibits

exciting properties such as a ligand free surface chemistry and the

presence of an etched surface. We include a comprehensive

characterisation of the properties of the nanowires together with a

series of complimentary and synergistic cellular and molecular

approaches to highlight the potential use of these wires in

biological platforms to promote cell adhesion and proliferation.

Materials and Methods

Synthesis of Germanium nanowires
Germanium nanowires were synthesised by the high boiling

point method as previously described [26–28]. In a typically

reaction Squalane (7 mL, $99% Aldrich) is added to a long neck

round bottom flask. The flask is heated under vacuum to 125uC
for 1 hr to remove any residual moisture. The flask is then purged

with Argon and ramped to 425uC and allowed to stabilise.

Diphenylgermane (DPG) (0.2 mL, .95% Gelest) is then rapidly

injected into the refluxing Squalane. Reactions are allowed to run

for 15 min and then cooled. Toluene is added to flask and the

wires are dispersed with the aid of sonication. Several washes are

performed to insure the purity of the wires before samples are used

for post treatment.

Post treatment and characterisation of Germanium
nanowires

Pristine wires suspended in toluene are centrifuged in weighed

glass vials at Beckman Coulter microfuge 22R for 20 min to form

a pellet. The wires are left at room temperature for 24 hrs to

remove any excess toluene. Vials are then reweighed and total

nanowire mass is calculated. Since the surface is ligand free, this is

the true mass of the wires. Samples are then sterilized under UV

for 40 min, before adding D-Glutamic acid (0.008 g/L, $99%

Sigma) which had been sterilized by filtering through a 0.22 mm

disposable filter. Germanium nanowires are then sonicated for

5 min in EMAG 20 HC sonicator to produce a (purple/brown)

clouded dispersion of nanowires. The surface morphology of the

nanowires was characterised using a transmission electron

microscope (TEM) JEOL-2010; a scanning electron microscope

(SEM) Hitachi SU-70 at 10 KV; and X-ray photoelectron

spectroscopy (XPS) Kratos AXIS-165.

Cell culture
MCF-7 cells (human epithelial breast adenocarcinoma, origi-

nally sourced commercially from ATCC) and L929 cells (murine

aneuploid fibrosarcoma, originally sourced commercially from

ATCC) were cultured in DMEM media supplemented with 10%

Fetal bovine Serum FBS (Sigma), 1% L-glutamine (Sigma), 1%

Penicillin streptomycin (Sigma) at 37uC in a humidified incubator

of 5% CO2 as described previously [35–37], For all experiments,

MCF-7 cells were seeded at 27,000 cells/well (unless otherwise

indicated) in a 96 well plate and incubated with nanowires for

24 Hr before endpoint testing. L929 were seeded at 10,000 cells/

well in a 96 well plate and incubated with nanowires for 24 Hr

before endpoint testing was performed. Where used, glass

coverslips were coated with nanowires at high concentrations

mixed into 10 ng/mL collagen (collagen type 1 C7661 Sigma).

MTT Assay
Cell metabolic activity was assessed using Millipore MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium kit (Millipore

CT02). For all MTT assays and experiments, MCF-7 cells were

seeded at 27,000 cells/well (unless otherwise indicated) in a 96 well

plate and L929 were seeded at 10,000 cells/well in a 96 well plate

before incubating with wires and endpoint testing. Cells were

exposed to nanowires at indicated concentrations before incuba-

tion for 24 hr and endpoint analysis as per kit instruction. All

readings were performed on an ELx808 absorbance microplate

reader BioTek, wavelength of 570 nm and a reference wavelength

of 630 nm. The outer wells of the plate were excluded from testing

and filled with sterile PBS to reduce the edging effect.

WST assay
Cell viability was recorded using the cell proliferation reagent

WST-1 (Roche 11644807001), in which the tetrazolium salt is

cleaved to form a soluble formazan. For all WST assays and

experiments MCF-7 cells were seeded at 27,000 cells/well (unless

Biocompatibility of Water Dispersible Germanium Nanowires
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otherwise indicated) in a 96 well plate and L929 were seeded at

10,000 cells/well in a 96 well plate. Cells were exposed to

nanowires for 24 Hr and endpoint analysis was performed as per

kit instructions all readings were performed on a Thermo

scientific multiskan FC microplate photometer, using wavelengths

between 420–480 nm with a reference of 600 nm. The outer

wells of the plate were excluded from testing and filled with

sterile PBS to reduce the edging effect.

Figure 1. TEM image comparing the surface of pristine unseeded Germanium nanowires and water dispersible Germanium
nanowires (WDW) taken on an Electron Microscope JEOL JEM 2100F. (A, B) the high aspect ratio of the pristine Germanium nanowires
(GeNW) which span for micrometres. (C, D) the complex surface morphology of water dispersible Germanium nanowires (WDW) after treatment with
Glutamic acid, the wires still maintain their aspect ratio span for micrometres. (E) The HRTEM of WDW after 3 hours at 21uC in treatment solution, in
comparison to the HRTEM of the pristine wires (F).
doi:10.1371/journal.pone.0108006.g001
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Figure 2. Water dispersible Germanium nanowires promote
the proliferation of MCF-7 cells. (A) MCF-7 cells were seeded at
27,000 cells/well, before MTT were carried out over 24 hr as described
in the Materials and Methods. Data analysis to determine the level of
significance was performed using Welch’s t test to determine the level
of significance between treatments and control, results were consid-
ered to be significant with P,0.05. The results for the above indicate a
high degree of significance ***P#0.001. (B) The normalised viability of
MCF-7 cells seeded at 10,000 per well (N.3), was measured after
24 hours of exposure to wires at varying concentrations and measured
by WST-1 test. Data analysis was performed using Welch’s t test to
determine the level of significance.(C) MCF-7 cells were seeded at
10,000 cells/well on increasing concentrations of WDW’s for 4 days.
Organic cell growth was determined by trypan blue exclusion (n = 5 for
each time point and n = 3 for each experiment).
doi:10.1371/journal.pone.0108006.g002

Figure 3. Water dispersible Germanium nanowires promote
the proliferation of L929 cells. (A) L929 cells were seeded at 27,000
cells/well, before MTT were carried out over 24 hr as described in the
Materials and Methods. Data analysis to determine the level of
significance was performed using Welch’s t test to determine the level
of significance between treatments and control, results were consid-
ered to be significant with P,0.05. The results for the above indicate a
high degree of significance ***P#0.001. (B) The normalised viability of
L929 cells seeded at 10,000 per well (N.3), was measured after
24 hours of exposure to wires at varying concentrations and measured
by WST-1 test. Data analysis was performed using Welch’s t test to
determine the level of significance. (C) L929 cells were seeded at 10,000
cells/well on increasing concentrations of WDW’s for 4 days. Organic
cell growth was determined by trypan blue exclusion (n = 5 for each
time point and n = 3 for each experiment).
doi:10.1371/journal.pone.0108006.g003
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Cell proliferation assay
Cells were cultured in DMEM media supplemented with 10%

Fetal bovine Serum FBS (Sigma), 1% L-glutamine (Sigma), 1%

Penicillin streptomycin (Sigma) at 37uC in a humidified incubator

of 5% CO2 as described previously.MCF-7 and L929 cell were

seeded in a 24 well plates with 10,000 cell per well in multiple wells

and grown in triplicate plates for 4 days. To monitor the cell

growth of cell exposed to 2 mM, 4 mM and 7 mM of water

dispersed germanium nanowires relative to an untreated control,

attached cells were removed in triplicate using 100 mL of trypsin-

EDTA for 5 min. After trypsinizing 200 mL of complete media

was added and mixed thoroughly before 50 mL sample was then

taken from each triplicate and mixed with equal volume of trypan

blue exclusion assay in a 96 well plate. Trypan blue exclusion assay

samples were then pipetted several times to insure even mixing of

the sample before 10 mL of each sample was loaded onto the

hemocytometer and cell counts were performed. Data is presented

as a mean and S.D of counts in triplicate wells (n = 3).

Western blotting
Cells were cultured on 10 cm dishes, with a typical seeding of

1.5 million/plate. Nanowires were either coated over the surface

of the plate or suspended into the culture media and allowed to

precipitate onto the cells. Cells were cultured for 24 hr before

lysing by scraping into lysis buffer (20 mm Tris, 50 mm Nacl,

50 mM NaF, 1% Npa O, Aprotinin 0.15 U/ml, Leueptin

20 mM, PepstatinA m1 g/ml, PMSF 2 mM, Na3Vo4 0.5 mM),

incubating on ice for 10 min before being centrifuged for 15 min

at 14,000 rpm on a Beckman coulter microfuge 22R centrifuge.

The protein concentration of the samples was determined using

the Bradford assay. Equal protein amounts were resolved on a

12% SDS polyacrylamide gels before being transferred to a

nitrocellulose membrane. The membrane was then blocked for

1 Hr at room tempratue in Tris-buffered saline with 0.05%

Tween 20 (TBS-T) and 5% milk (W/V). The primary antibodies

were all incubated overnight at 4uC, the primary antibodies used

were pERK (Cell Signaling Tec.), actin (Santa Cruz), RACK1

(Santa Cruz), FAK (Santa Cruz), Secondary antibodies were

incubated at room temperature for 1Hr, the use of Alexa Flour

680 nm and 800 nm coupled anti-rabbit and anti-mouse

antibodies were used for detection (Li-COR biosciences Cam-

bridge, UK). Western blot analysis was performed on an

ODYSSEY inferred imaging system (Li-COR Biosciences, Cam-

bridge, UK).

Fluorescent imaging
Glass cover slips (VWR) were autoclaved and using sterile

tweezers were placed into 24 well culturing dishes (Sigma-

Corning). MCF-7 and L929 cells were added to the wells (50,000

cells/well) and cultured as described above in the presence or

absence of nanowires. After 24 hr, the cells were moved onto ice

were they were washed 3 times with PHEM 1X (10 mM EGTA,

25 mM HERPS, 2 mM MgCl2, 60 mM PIPES and adjusted

using NaOH to 6.9) before fixing over night at 4uC with 3.7%

PFA. Samples are then rinsed with 1X PHEM 3 times before

permeabilising with 0.1% Triton-X in PHEM for 15 min.

Samples are then blocked with 5% Goat serum (Sigma) for

30 min and then rinsed 3 times with PHEM before staining with

pFAK 397(Santa Cruz Biotechnology). Secondary dyes for Actin

and the nucleus were then added for 2 hr before the coverslips

were mounted onto a microscope slide and securing with vinyl

(Sigma). Con-focal fluorescent imaging was performed using a

Zeiss LSM 710 and processed using ZEN lite software.

SEM analysis of cells grown on WDWs
The silicon wafers were coated by drop casting a thin film of

WDWs onto the surface. Cells were cultured on the wafers under

standard culturing conditions for 24 hr. The wafers where than

rinsed with PBS and placed in 4% PFA for 30 min at 37uC. They

were than rinsed with PBS and immersed in 0.5% Osmium

tetroxide (Sigma- ReagentPlus) in PBS for 1 hr at room

temperature. A dehydration step followed by submersing the

sample in (20%, 50%, 75%, 90%, 100%) of ethanol and PBS for

20 minutes at room temperature. Next, samples where immersed

in HDMS (Sigma- Corning) for 3 min before gently blotting and

storing in a desiccator. Samples were coated with a thin film of

gold using a sputter Emitech K550 at 20 mA for 10 sec before

viewing on the SEM Hitachi SU-70 at 3 KV.

Real-time Cell monitoring
Continuous cell monitoring was performed using the xCELLi-

gence system (ACEA) which facilitates label free real-time cell

analysis by measuring impedance-based signals across a series of

interdigitated gold electrodes. Using E-plates, 100 mL of complete

media DMEM was added to each well and the electrodes were

allowed to stabilise for 30 min. The plates were then moved into

the xCELLigence DP analyzer to set a base line without cells or

treatments. MCF-7 cells and L929 cells were then added at

relevant seeding numbers (see figure legends) to the plate with

varying water dispersible germanium nanowires concentrations.

Cells on the electrodes were monitored by reading and recording

the cell impedance every 30 min through 100 sweeps.

LDH assay
MCF-7 and L929 cells were cultured on 96 well plates at 27,000

and 10,000 cells per well respectively. Cells were allowed to adhere

to the plate over 8 hr before the media was changed to serum free

media to reduce test interference. The membrane integrity was

evaluated in the presence or absence of water dispersible

nanowires. We used LDH test kits (TOX7 Sigma-Aldrich) and

measured membrane integrity by detecting LDH release into

serum free media at 1 hr and 24 hr +/2 exposure of the cells to

nanowires.

Statistical analysis
Data presented is expressed as mean 6 SD. The statistical

significance between groups (concentrations and controls) was

evaluated using welch t-test and for multiple groups one-way

Anova was performed with post hoc test Newmans-Keuls multiple

comparison test. All assumptions were tested before performing

the statistical tests to insure test significance and compliance.

Statistical software R� version 2.15.2.

Results and Discussion

Generation and characterisation of water dispersible
Germanium nanowires (WDWs)

Our objective here was to functionalise the wire surface using

cell friendly amino acids to facilitate both the dispersion of the

wires in aqueous solutions and to increase their biocompatibility

over other toxic ligand materials. Figure 1A and 1B show

Transmission electron microscopy (TEM) images of pristine wires

illustrating the wires are associated with a high aspect ratio.

Pristine wires were then sterilized under UV before adding D-

Glutamic acid as described in the Materials and Methods. Similar

to pristine wires, the treated wires demonstrate a comparable

aspect ratio with long undamaged wires extending the length and

Biocompatibility of Water Dispersible Germanium Nanowires
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breadth of the TEM image (Figure 1C and 1D). The images

confirm the conservation of high aspect ratio after treatment,

suggesting that although the treatment changes the wires surface, it

does not degrade the material nor etch it to the point of extensive

fragmentation. When the surface of the wires is examined more

closely, it is apparent that the treated wires display a distinct

surface characteristic which occurs within the first hour of

exposure to the amino acid that does not significantly change

within the first 24 hr after the treatment (Figure 1E). High

resolution TEM (HRTEM) image reveals that after treatment, the

wires develop a saw tooth etch surface roughness visible through

the increased amorphous coating on the surface (Figure 1E). This

surface roughness is dramatic when contrasted against the pristine

wire surface which displays a smooth crystalline surface and a

notably thinner amorphous coating.

Our observations with the pristine wires showed an inherent

tendency for the pristine nanowires to aggregate, however, after

treatment this behaviour is significantly reduced, allowing for

relatively large areas (cm2) to be covered (see scanning electron

microscope (SEM) drop casts, Figure S1). These behaviour

changes suggest that it is possible to generate a distinct

nanomaterial, and not an aggregated nanomaterial, which may

prove important as a potential applications of the treated wires.

Using X-ray photoelectron spectroscopy (XPS), we next

analysed the surface composition of both pristine wires and the

Water Dispersible Nanowires (WDW’s). The Ge 2p orbital

(Figure S2 A, C) has a higher binding energy than the Ge 3 d

orbital (Figure S2 B, D) and was determined to be more

representative of the amorphous surface given the lower associated

kinetic energy, the Ge 3 d orbital was thus more indicative of the

crystalline surface of the material given its higher associated kinetic

Figure 4. Confocal microscopy to study the morphological features of MCF-7 cells exposed to WDWs. (A) MCF-7 control cells cultured
on a 10 mg collagen glass cover slip and stained with phosphorylated FAK (pFAK397), Hoechst and Phalloidin TRICI under a 63X oil immersion lens
using a Zeiss LSM 710. (B): MCF-7 cells cultured on a 10 mg collagen glass cover slip exposed to 4 mM of Germanium nanowires for 24 hours and
stained with phosphorylated FAK (pFAK397), Hoechst and Phalloidin TRICI under a 63X oil immersion lens using a Zeiss LSM 710. (C) Dispersible
Germanium Nanowires were added to cultures of MCF-7 cells for 24Hr. Lysates were prepared and the lysates ran on 12% SDS PAGE gels before
probing with antibodies against Actin (Santa Cruz Biological) pERK (Cell signalling technology phosphor-p44/42 (ERK1/2)), RACK1 (BD Transduction
Laboratories) and FAK (Santa Cruz Biotechnology FAK(C-20):sc558). Results were presented as a Histogram of relative FAK expression, RACK1
expression and pERK expression.
doi:10.1371/journal.pone.0108006.g004
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energy. When WDWs samples were analysed, XPS data revealed

that the ratio of germanium oxide to crystalline germanium on

WDWs increased after treatment with the amino acid (Figure S2

C, D). However with increased washes with distilled water to

remove the amino acid, the oxide to crystalline ratio increased

(data not shown). This result highlights the importance of the

amino acids to the stability of the surface chemistry of the wire as

they prevent the accelerated oxidation of the wires surface in an

aqueous environment. The exact affiliation of the amino acid and

the wires surface is not clear as any attempts we made to reduce

the efficiency of the functional groups on the amino acid by

adjusting the pH to the pKa values saw a rapid increase in

oxidation ratio (data not shown).

Water dispersible Germanium nanowires promote cell
proliferation and are non-toxic to MCF-7 and L929 cells

We next set out to validate the use of WDWs as a novel

biomaterial and a suitable surface to culture cells. A comprehen-

sive series of state-of-the-art proliferative, cytotoxic, cell viability

and behavioural studies were performed as the cells were exposed

to bio- relevant concentrations of the WDWs. Previous work with

GeNPs used concentration ranges spanning 0–5 mM which we

used as the basis for this work [23]. Two well established cell lines;

MCF-7 (human breast carcinoma cells) and L929 (murine

fibroblasts) were employed for this study as their behaviour has

been well studied in our laboratory [35–37]. MTT assays were

performed using 5 replicates for each concentration of nanoma-

terial as described in Materials and Methods. To insure that

several sets of independent results were obtained, experiments

Figure 5. Confocal microscopy to study the morphological features of the L929 cells exposed to WDWs. (A) L929 cells cultured on a
10 mg collagen glass cover slip and stained with phosphorylated FAK (pFAK397), Hoechst and Phalloidin TRICI under a 63X oil immersion lens using a
Zeiss LSM 710. (B): L929 cells cultured on a 10 mg collagen glass cover slip exposed to 4mM of Germanium nanowires for 24 hours and stained with
phosphorylated FAK (pFAK397), Hoechst and Phalloidin TRICI under a 63X oil immersion lens using a Zeiss LSM 710. (C) Dispersible Germanium
Nanowires were added to cultures of MCF-7 cells for 24 Hr. Lysates were prepared and the lysates ran on 12% SDS PAGE gels before probing with
antibodies against Actin (Santa Cruz Biological) pERK (Cell signalling technology phosphor-p44/42 (ERK1/2)), RACK1 (BD Transduction Laboratories)
and FAK (Santa Cruz Biotechnology FAK(C-20):sc558). Results were presented as a Histogram of relative FAK expression, RACK1 expression and pERK
expression.
doi:10.1371/journal.pone.0108006.g005
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were repeated independently (n = 5) using several different stocks

of raw chemical precursors, different nanowire preparations and

different cell passages. MCF-7 and L929 cells were grown in the

presence of increasing concentrations (2 mM, 4 mM, and 7 mM) of

WDW’s. The MTT results revealed an increase in the cell viability

over control for both MCF-7 cells (Figure 2A) and L929 cells

(Figure 3A). The MCF-7 and L929 cells cultured in the presence

of WDWs displayed a significant increase in cell viability over

respective controls (both with P,0.0001). This increase in viability

shows promise towards the use of WDW’s as a biocompatible

nanomaterial for regenerative applications. The increase in

viability may be attributed to the WDWs surface chemistry and

topography having an oxide surface with no associated ligands

(Figure S2), together with a roughed surface (Figure 1E).

Although the MTT is considered to be the state-of-the-art

standard in viability assays, to test the findings further, a series of

other well established techniques were employed. The WST-1 test

is a colorimetric measurement of cell viability and proliferation.

The WST-1 tests were performed in a similar manner as the MTT

for both MCF-7 and L929 cells by culturing the cells with

increasing concentrations of WDW’s for 24 hr before endpoint

analysis. The results indicate that when normalised against the

controls (showing mean 6 SD) that both MCF-7 cells and L929

cells display a significant increase in cell viability against the

control when treated with WDWs (Figure 2B, 3B). Data was

statistically analysed using a two tailed welch t-test as described in

Materials and Methods. In addition to the MTT and WST-1

assays, we performed cell counts on MCF-7 (Figure 2C) and L929

cells (Figure 3C) cultured with increasing concentrations of

WDWs (0, 2 mM, 4 mM, 7 mM) for 24 hr before endpoint analysis.

To do this, cells were trypsinised from the plate and cell number

and cell viability were assessed by the traditional trypan blue

exclusion method revealing increased proliferation upon exposure

to the WDW’s. As well as this, we employed immunofluorescence

to examine MCF-7 and L929 cells cultured with increasing

concentrations of WDWs (0, 2 mM, 4 mM, 7 mM) for 24 hr before

endpoint analysis and staining the nucleus with Hoechst stain

(Figure S3, Data shown for MCF-7 cells only). Images clearly

show an increase in the number of cells present when treated with

increasing concentrations of WDWs. Collectively, these results

indicate that WDW’s are non-toxic and promote cell proliferation.

Water dispersible Germanium nanowires promote cell
adhesion and increased FAK expression

Cellular morphology and cell membrane integrity are an

important indicator in cytotoxicity and a good indicator of cell

health. Studies have shown a decrease in cell adhesion and adverse

changes in cell morphology when cells are cultured with silicon

nanowires [6,7]. We performed a series of studies using confocal

microscopy to study the morphological features of the cells

exposed to WDWs for 24 hr in comparison to respective controls.

The MCF-7 and L929 cells were cultured on a glass cover slip

coated with 10 mg of collagen I in the presence or absence of

WDWs. After 24 hr’s, cells were fixed and prepped for staining as

described in Materials and Methods. As expected, both MCF-7

cells (Figure 4A control, B WDW’s) and L929 cells (Figure 5A

Control, B WDW’s) display a spread and migratory morphology.

We stained with phosphorylated Focal Adhesion Kinase

(pFAK397) to show that cells grown on collagen/WDWs substrates

have increased numbers of focal adhesion. To investigate the

changes inside the cell as a result of culturing cells on WDWs, we

examined the expression levels of FAK, and phosphorypated

ERK1/2, two proteins associated with Integrin and growth factor

mediated signalling pathways [35–37], and indicators of increased

proliferation. The MCF-7 and L929 cells were grown on a 10 cm

plate in the presence of wires at different concentrations (see

Materials and Methods). The cells were lysed and the protein was

separated on a 10% SDS-PAGE gel and transferred to nitrocel-

lulose membrane before probing for FAK and pERK (p42/44).

Actin was used as an endogenous control to confirm equivalent

amounts of protein were run on the gel. Protein levels of both FAK

and RACK1 were expressed at higher levels when the cells were

cultured on WDWs (Figure 4C and 5C). High expression of these

proteins is associated with increased adhesion and increased

proliferation. We also observed consistently increased activation of

pERK in cells grown on WDW’s. The protein ERK1/2 is a

member of the MAPKs family which is involved with several

biological process. Increased phosphorylation of Erk is a well-

established indicator of cell proliferation. This increased expres-

sion and activity of proteins associated with cell adhesion, cell

spreading and cell proliferation is further confirmation of the

biocompatible properties of the WDW’s and provides further

confirmation of the MTT and WST-1 assays.

Figure 6. Measuring LDH release into the serum free media
when cells are exposed to wires for 1hr. (A): The MCF-7 results at
varying concentrations after 1hr, seeded at 27,000 cells/ well, N.3. (B):
The L929 results at varying concentrations after 1hr, seeded at 10,000
cells/ well, N.3. Data analysis was performed using one way Anova and
Student-Newman-Keuls post hoc test to determine the level of
significance between treatments and control, results were considered
to be significant with P,0.05. The results for the L929 cells above (B)
indicate a significant decrease in the LDH release into the media in
which 4 mM displays a mean of 97.6860.5237 N = 12 **P#0.01 and
7 mM displays a mean of 94.8360.3497 N = 12 *P#0.5.
doi:10.1371/journal.pone.0108006.g006
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We observed that cells cultured on WDWs show an increased

tendency to be directional in growth in comparison to control cells

which suggests that the WDW’s have potential as to be used as a

biomaterial to control directional cell migration. Results shown are

representative of hundreds of cells examined (and n.5). We next

performed SEM analysis on MCF-7 cells on silicon wafers coated

in WDWs (Figure S4). The images suggest that the cells make

direct contact with the wires in their surroundings and anchor to

the wires. WDWs can be seen all along the base of the MCF-7 cells

further illustrating the biocompatibility of the WDWs for the

cellular environment. These morphological studies highlight that

WDWs are not adversely affecting the cultured cells. It is

important to note that we did not detect any membrane blebbing

or nuclear ‘break up’ that are associated with cells exposed to

toxins and undergoing apoptosis. Long term exposure of the cells

to WDW’s (up to 72 hr) revealed no further adverse effects on the

cells (data not shown).

MTT and WST-1 results and suggests that the WDWs are not

toxic to the cells and provide a biocompatible surface material. In

fact, we believe that the WDWs may provide a more suitable

surface for spreading than collagen alone. However, with high

aspect ratio material there is always a concern that the material

will cause membrane damage. To test this, lactate dehydrogenase

(LDH) release assays was carried out to evaluate the membranes

integrity. The presence of LDH in the growth media is indicative

of cell stress caused by cell membrane damage. We recorded the

LDH activity present in the growth media after exposure of the

cells to the WDW’s. The data for both MCF-7 (Figure 6A) and

L929 (Figure 6B) are presented as a normalised LDH release

against the respective controls. The data plotted clearly shows that

for both the MCF-7 cells and L929 cells, LDH release does not

increase above the control suggesting that the membrane integrity

of the cells is maintained throughout the treatment with WDWs

(n = 3). We used two tailed welch t-test, a one-way Anova with post

hoc test Newmans-Keuls multiple comparison test which con-

firmed that these results and findings were statistically significant.

Interestingly, for concentrations from 4 mM to 7 mM in L929 cells

(Figure 5B) we consistently observed a decrease in the amount of

LDH released into the media. This indicates that there is less

Figure 7. Using live cell impedance based platforms to monitor cell behaviour. xCELLigence (ACEA) platforms were used to monitor cells
cultured under the same conditions as those performed in the MTT, WST and LDH assays. All experiments were carried out using E-plates following
the ACEA manual protocol where N = 3. (A) Shows MCF-7 cells seeded at 27,000 cells, with and without the presence of WDW (with appropriate
controls and blanks). The data indicates that there is an increase in the cell index number a measure of increased impedance across the surface of the
plate. (C) Shows L929 seeded at 10,000 cells with and without the presence of WDW (with appropriate controls and blanks). The data indicates that
there is an increase in the cell index number a measure of increased impedance across the surface of the plate. (B), (D). MCF-7 cells and L929 cells
grown on separate E plates together with increasing concentrations of WDW’s to show how the Germanium nanowires themselves have no effect on
the impedance as measured by the electrodes.
doi:10.1371/journal.pone.0108006.g007
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The data presented in (Figure 4,5) strongly correlates with the



membrane damage than normal occurring under these conditions

suggesting that the WDWs may have a protective effect.

Real time monitoring of cell behaviour on Water
dispersible Germanium nanowires

The results to date provide comprehensive evidence that

WDWs are a biocompatible material that promotes cell adhesion

and proliferation. We next investigated the changes in the

behaviour of the cells as they are grown on WDWs in real-time.

To execute this, we employed the xCELLigence system for label-

free and real-time monitoring of cell behaviour as cells are grown

in the presence or absence of WDW’s. This system measures cell

adhesion, cell spreading and cell proliferation in real-time by

recording cell activity on gold electrodes and correlating the

impedance changes as cell index measurements (see materials and

methods and [38–40]).

Results for both MCF-7ccells (Figure 7A) and L929 cells

(Figure 7C) were plotted as the mean cell index 6 SEM over a

27 hr period. In all cases, samples were run in triplicates and

included wells with cells +/2 WDWs. We included experiments to

control for any effects the nanowires alone might have on the

electrode (Figure 7B, D). When MCF-7 cells were grown with

WDWs, there is a dramatic increase in the rate of cell proliferation

across the surface of the electrode and the cells deviate quickly

from the control group with two distinct populations clearly

evident after 18hours in culture. This data strongly suggests that

the WDWs promotes cell proliferation and correlates well with

results seen with the MTT and WST-1 tests (Figure 2 and 3). The

increase in adhesion is also correlated to the increase in FAK

protein expression seen in (Figure 4C) and a visual increases in

morphological adhesion that we observed (Figure 4B) compared to

the control in (Figure 4A). The L929 cells (Figure 7C) quickly

adhere to the electrode and spread more rapidly than the MCF-7

cells (Figure 7A). Similarly to the MCF-7 cells, there in a dramatic

increase in cell index when the L929 cells are grown with WDWs

(Figure 7C) correlating well with the MTT, WST-1 and protein

data. Taken together, the results provide strong evidence that

WDWs promote adhesion, spreading and proliferation of MCF-7

and L929 cells. At no stage did we observe adverse effects of the

WDW’s on the cells response during our live monitoring (n = 3).

This is the first data published using live, label-free cell monitoring

to record the behaviour of cells on nanowires.

Conclusion

As the ever-expanding arena of inorganic nanomaterials

primarily focuses on cell tracking and drug delivery, the use of

high aspect ratio inorganic nanomaterial has been neglected for

bio-regenerative applications. Heretofore, the biocompatibility of

nanowires was limited not by the primary material but the

associated toxicity of the metal catalysts used in synthesis and/or

the organic ligands required during growth or for subsequent

dispersion. This work highlights that an appropriate nanowire

synthetic strategy that eliminates organic ligands and metal

catalysts combined with a benign post synthesis treatment allows

for significant benefits in the biological response. Through this

body of work we have been the first to show that there are no

adverse cytotoxic effects of self-seeded germanium nanowires on

mammalian cells. We used a series of synergistic cellular and

molecular approaches as well as a series of complimentary

cytotoxicity assays to highlight that the WDW’s are non-toxic to

cells and provide a biocompatible material. To the best of our

knowledge, this is also the first paper to show real-time impedance

based monitoring of cells on a nanowire surface. These live cell

assays indicate that not only have we created a novel biocompat-

ible material, we have produced a material that promotes the

adhesion and proliferation of cells.

Supporting Information

Figure S1 SEM images are taken on a Hitachi SU-70 at
10KV. WDWs on a silicon wafer covering a bio relevant area with

a simple drop cast with a reduced aggregation.

(TIF)

Figure S2 XPS results performed on a Kratos AXIS-165.
(A) The 2p binding energy associated with Germanium performed

on pristine wires. (B) The 3D binding energy associated with

Germanium performed on pristine wires. (C) The 2p binding

energy associated with Germanium performed on treated wires.

(D) The 3 d binding energy associated with Germanium

performed on treated wires.

(JPG)

Figure S3 Hoechst staining of cells treated with WDWs.
(A) MCF-7 cells control stained after for 24. (B) MCF-7 cells

treated with 2 mM WDWs for 24 hours before staining. (C) MCF-

7 cells treated with 4 mM WDWs for 24 hours before staining. (D)

MCF-7 cells treated with 7 mM WDWs for 24 hours before

staining.

(TIF)

Figure S4 SEM images of an MCF-7 cell cultured on a
silicon wafer for 24 hr coated with WDW taken on a
Hitachi SU-70 at 3KV.

(JPG)
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