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The wealth of high-throughput data has opened up new opportunities to analyze and
describe biological processes at higher resolution, ultimately leading to a significant
acceleration of scientific output using high-throughput data from the different omics
layers and the generation of databases to store and report raw datasets. The great
variability among the techniques and the heterogeneous methodologies used to produce
this data have placed meta-analysis methods as one of the approaches of choice to
correlate the resultant large-scale datasets from different research groups. Through multi-
study meta-analyses, it is possible to generate results with greater statistical power
compared to individual analyses. Gene signatures, biomarkers and pathways that
provide new insights of a phenotype of interest have been identified by the analysis of
large-scale datasets in several fields of science. However, despite all the efforts, a
standardized regulation to report large-scale data and to identify the molecular targets
and signaling networks is still lacking. Integrative analyses have also been introduced as
complementation and augmentation for meta-analysis methodologies to generate novel
hypotheses. Currently, there is no universal method established and the different methods
available follow different purposes. Herein we describe a new unifying, scalable and
straightforward methodology tometa-analyze different omics outputs, but also to integrate
the significant outcomes into novel pathways describing biological processes of interest.
The significance of using proper molecular identifiers is highlighted as well as the potential
to further correlate molecules from different regulatory levels. To show the methodology’s
potential, a set of transcriptomic datasets are meta-analyzed as an example.
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1 INTRODUCTION

Traditional data analytical approaches focus on hypothesis-driven methods to understand specific
and known molecular targets. Alternatively, data-driven approaches are based on high-throughput
methodologies that provide un-biased genome-wide analysis of multiple omics variables which
mirrors the different layers of biological regulation of a system. Undoubtedly, knowledge generated
by traditional approaches through the years is essential to contextualize and properly analyze high-
throughput data (McDermott et al., 2013; Guan et al., 2020). Ultimately, data-driven approaches aim
to provide a number of potential hypotheses that feed into the traditional approach cycle in order to
be validated or refuted (Fernandes and Husi 2019).
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Nowadays, the surge of studies based on high-throughput data
analysis has led to an expansion of public repositories (i.e., GEO,
ArrayExpress) that store and provide access to these data for
further analyses (Clough and Barrett 2016; Athar et al., 2019). As
a consequence, big data production and availability have provided
novel venues/opportunities for data interpretation, data
integration, statistical analysis, and therefore new hypotheses
that might reveal new inferences and provide a higher
molecular resolution of a determined phenotype or disease.
Nevertheless, the lack of a unified system to publish the
different omics data generated and to report, curate and
consolidate all the different identifiers available remains a
challenge (Durinck et al., 2005; McGarvey et al., 2019).
Unique outcomes generated from the different high-
throughput technologies and the lack of standardized
approaches to analyze, integrate and interpret these
heterogeneous and often incompatible data have led to the
emergence of different analytic methodologies that focus on
varying ways of data-interpretation.

Meta-analytic methodologies have been commonly followed
in data science to collate and identify commonalities across
different studies, and to rule out inconsistencies commonly
found in published literature (Waldron and Riester 2016;
Vennou et al., 2020). The statistical basis of these
methodologies provides valuable results and gives strength to
the variables that reflect an association and consistency across
studies. These methodologies are based on the fact that even
amongst heterogeneous studies, associations can be made. Thus,
meta-analysis can lead to the identification of robust and
quantifiable variables shared across studies published by
different groups–despite inherent differences in such
cohorts–generated through different platforms and techniques
that could have been otherwise overlooked (Care et al., 2015; Cho
et al., 2016; Piras et al., 2019; Winter et al., 2019). In the big-data
field, the exponential growth of high-throughput data availability
has highlighted the advantage to follow meta-analysis
methodologies in order to increase the statistical power of the
outcomes and make sense out of the great amount of data shared
within the scientific community (Xia et al., 2013; Kim et al., 2017;
Forero 2019; Jaiswal et al., 2020; Vennou et al., 2020).

The generation and analysis of high-throughput data are
commonly focused on a single biological parameter (e.g.,
transcripts, proteins, or metabolites) and represent only a
snapshot of what is happening in a specific molecular process.
Due to the high density of available studies, several meta-analytic
approaches have been developed and standardized to integrate
transcriptomic data. Effect size (t-statistic combination), rank-
ratio (fold-change ratio combination), Fisher’s (p-value
combination), and vote-counting (VCS–number of reporting
studies) are some of the common methods followed to
perform a meta-analysis on these samples (Rikke et al., 2015;
Goveia et al., 2016; Forero 2019; Shafi et al., 2019; Toro-
Domínguez et al., 2020). Among the many promising
applications of these approaches two stand out; namely,
biomarker discovery and signaling pathway identification. The
premise that biomarkers identified with computational
approaches from a single high-throughput study exhibit little

overlap with other studies indicates that these might represent
false positives and cannot be fully trusted. Thus, meta-analyses
have been long-performed with the goal to discover novel and
robust biomarkers, distinguishable and consistent patterns of
disease-associated deregulated genes. Statistically significant
deregulated genes have been associated with several cancers
and other diseases through the application of different meta-
analytic approaches (Fishel et al., 2007; Xu et al., 2009; Huan et al.,
2015; Cho et al., 2016; Bell et al., 2017; Piras et al., 2019; Su et al.,
2019). Pathway analyses have also dominated the meta-analysis
studies aiming to highlight the main deregulated processes to
some extent (Kröger et al., 2016; Wang et al., 2017; Badr and
Häcker 2019).

Nevertheless, due to the dynamicity of biological systems and
the known crosstalk among the multiple layers of biological
regulation, the orchestrated analysis of the different omics
levels remains essential. Thus, the study of deregulated
pathways and the implementation of integrative systems
biology approaches seems logical and sought after techniques
(Auffray et al., 2010; Norris et al., 2017; Parker et al., 2019; Shafi
et al., 2019; Myall et al., 2021). These approaches have been
highlighted by their potential to better understand the complex,
albeit inevitable, interactions among different omics data.
Ultimately, systems analysis aims to elucidate the regulation of
pathways that might underpin cause and effect factors and
improve the understanding of systems behavior by providing
more accurate models of a determined condition of interest.

Although integrative systems biology approaches have been
applied to individual studies by performing a variety of high-
throughput omics approaches and analyzing multiple layers of
gene regulation data (genetic variants, RNA transcripts, DNA
methylation profiles, protein concentrations, chromatin marks)
(Boeing et al., 2016; Saha et al., 2018; Xicota et al., 2019; Mair et al.,
2020), the possibility to sum-up and analyze publicly available data
generated by different scientific groups from individual omics
approaches through multi-study meta-analyses may not only
increase the statistical power of the outcomes but enhance and
complement the biological knowledge through the re-analysis and
integration of large-scale data; thereby highlighting significant but
previously undetectable molecular links.

Various methodologies are available to pursue systems biology
analyses, each of which follows different strategies, with
associated limitations and outcomes (Table 1) (Xia et al.,
2013; Rohart et al., 2017; Argelaguet et al., 2018; Forero 2019;
Singh et al., 2019;Winter et al., 2019; Zhou et al., 2019; Pang et al.,
2020; Toro-Domínguez et al., 2020; Yang 2020; Zhou et al., 2020).
Here we aim to describe the Harmonized Holistic (HH) meta
method, a simplistic, flexible, adjustable, and scalable
methodology (limited only by the availability of omics data)
that can go from single omics to multi-omics analyses
(Figure 1). Our methodology is not based on a computational
approach, it is a meta-analysis based on case and control
comparisons of pre-processed data per study. The basis of the
data to perform integrative approaches is of importance, and
there is where this meta-analysis approach gears towards allowing
heterogeneous omics data integration. It can integrate unmatched
mRNA, miRNA, DNA methylation profiles, protein, metabolites
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TABLE 1 | Comparison of available integrative systems biology methodologies.

Methodology Strategy Outcome Limitations References

HHmeta method Meta-analysis of Differentially
Expressed molecules from omics
data. Data from different platforms
(e.g. RNAseq, microarray) can be
integrated. Biomarker list generation
by ranking the frequency distribution
and contextualization of molecules
into pathways

- Integration of omics Biomarker lists
and contextualization into pathway
maps

- Depends on availability of the data Cervantes-Gracia et al. (2021);
current paper

- Novel hypotheses from the
Biomarker list

- Relies on previous knowledge

- Novel hypotheses from the Main
deregulated pathways

- Gaps prevail across the pathway
maps

- Better understanding of the
disease/condition of interest

- Molecules without a defined function
or interaction are not mapped

Network meta-
analysis

Meta-analysis of transcriptomics
data by including Differentially
Expressed comparison analysis per
independent study

- Differentially Expressed Gene list
based on meta-analysis of
independent experimental studies

- GSEA.

- Do not focuses on integrate
different omics

Winter et al. (2019)

- Focus on obtaining signatures/
biomarkers

MetaPCA Meta-analysis of transcriptomic or
epigenomic datasets through
identification of a common eigen-
space for dimension reduction

- Clusters and Patterns of gene
expression profile

- Do not focuses on integrate
different omics

Kim et al. (2018)

- Robust to outliers - Focus on obtaining signatures/
molecular patterns

MINT Independent omics studies integration
based on similar biological questions

- Identification of reproducible
biomarker signatures

- It can only include studies with a
sample size bigger than 3

Rohart et al. (2017)

Allows supervised and unsupervised
frameworks. It is a PLS-based method
to model multi-group (studies) data

- Focus on obtaining signatures/
biomarkers

NetworkAnalyst Gene expression profiling, meta-
analysis and systems-level
interpretation

- Creates and visualizes biological
networks

- Format of gene expression profiles
outside the application

Zhou et al. (2019)

- Web-based meta-analysis of gene
expression data

- Integration of transcriptomics
studies

- Comparison of multi gene lists
generated outside the tool

- Identification of shared and unique
genes and processes, through
multi-list heatmaps and enrichment
networks

Mergeomics Multi-omics association data,
pathway analysis and functional
genomics, analysis. It corrects for
dependencies between omics
markers. Based on pathway or
network-level meta-analysis

- Identification of key drivers of a
disease and causal subnetworks
for specific conditions

- Format of gene expression profiles
outside the application

Arneson et al. (2016)

- Single dataset: causal network or key
regulatory genes can be identified

- Based on comparison files: Cases
vs controls

- Multiple dataset (same or different
data type): meta-analysis, causal
networks, key regulatory genes

- Groups of disease associated
genes: key regulators, condition
sub-networks, gene sets
association with other conditions or
organisms

INMEX Meta-analysis of multiple gene-
expression datasets that allows
integration of transcriptomics and
metabolomics datasets

- Data preparation - Limited to integration of
transcriptomics and
metabolomics

Xia et al. (2013)
- Statistical analysis: multiple
datasets combination based on
p-values, effect sizes, rank orders
and other features

- Functional analysis and ID
combination between genes and
metabolites

DIABLO Multi-omics integrative, holistic and
data-driven method

- Identification of known and novel
multi-omics biomarkers

- Batch effect analyses in each
dataset are needed prior to
integration

Singh et al. (2019)

- Identify correlated variables within
omics datasets from the same
samples

- Integration of different omics
dataset from the same biological
samples

- Focus on obtaining signatures/
biomarkers

MOFA Unsupervised identification of
principal sources of variation among
multi-omics datasets

- Identification of factors specific to
data modalities and common within
multiple molecular layers

- Analysis and integration of different
omics datasets from the same
biological samples. Similar to
DIABLO, JIVE, PARADIGMorMCIA.

Argelaguet et al. (2018);
(Subramanian et al., 2020)

(Continued on following page)
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information from independent studies that meet the inclusion
criteria of a specific research question. By considering the
commonalities of the differentially expressed molecules across
studies, the HHmeta method circumvents the variable depth of
data produced by different measurement technologies
(i.e., Microarray, RNAseq), as well as by high and low-
throughput studies. This approach provides a ranking system
that goes beyond the p-value and log2-Fold Change significance
filtering, by defining the molecules with a significant and
consistent trend in regulation among the different studies
analyzed. Ultimately, this approach leads to the identification
of pathways that can be fed and confirmed with the different
omics data analyzed, which validates the outcomes and increase
the significance of the identified targets (see Graphical Abstract in
Supplementary Presentation S1).

We have previously explored our methodology in several
iterations and proved its potential in a variety of disease
settings (Fernandes and Husi 2016; Cervantes-Gracia and Husi
2018; Fernandes et al., 2018), however the ranking system was not
properly established. Here, we 1) consolidate the final optimized
pipeline and 2) apply this framework to 6 DLBCL (Diffuse Large
B Cell Lymphoma) datasets (DS) from different studies and
sources (tumoral tissue vs. b-cells). We aimed to identify the
DS that indeed showed a potential correlation to further identify
altered pathways coming only from B-cell deregulation
(Cervantes-Gracia et al., 2021; Sheppard et al., 2018). The
identified pathways represent the common deregulated
processes found within the different DS included in the
downstream analysis and delimit their significance by the
outlined trend of the pathway identified. The outlined

TABLE 1 | (Continued) Comparison of available integrative systems biology methodologies.

Methodology Strategy Outcome Limitations References

- Linear model, thus, non-linear
associations might be missed

Ingenuity pathway
analysis (IPA)

Multi-omics pathway analysis tool - Building of networks to represent
biological systems

- Commercial Ingenuity Pathway Analysis
tool (IPA; QIAGEN Inc.,
Germantown, MD, USA,
https://www.
qiagenbioinformatics.com/
products

- Pathway analysis and association of
processes activation or inhibition in
a specific condition

- Do not generate meta-analyses

- Identification of novel targets - Un-reproducible results
- Comparison across multiple
analyses. Similar to Pathway studio
(Elsevier)

- Based on computational
approaches

FIGURE 1 | Flowchart comparing conventional (left) vs. our proposed (right) meta-analytic approach. Blue box represents similarities between approaches. Dashed
line highlights the main differences between approaches.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8287864

Cervantes-Gracia et al. Integrative Derivatized Meta-Analysis Approach

https://www.qiagenbioinformatics.com/products
https://www.qiagenbioinformatics.com/products
https://www.qiagenbioinformatics.com/products
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


pathways can be further fed with different omics data by
complementing with the variables that correlate with the
outcomes from the different omics levels. This analysis shows
the potential of the presented methodology to not only identify
potential biomarkers but also deregulated processes with a
notable trend providing data-driven hypotheses that have
either already been validated or that better yet have not been
associated with the disease and need further validation.

2 MATERIALS AND METHODS

The cornerstone of this methodology is for each group of interest
to be compared to their most appropriate controls. Hence, the
integration of large-scale DS from a variety of publications relies
on keeping the study groups per publication intact. Thus, the
basis of the methodology is set on statistically significant
molecules and their ratio-metric values (e.g., log-fold change)
per comparison, identifiers curation through a unifier database,
data-format and structure, outlier detection, as well as group re-
stratification. This methodology has been previously performed
manually (Cervantes-Gracia and Husi 2018). The aim of this
work is to describe and summarize the whole procedure into a
formula that statistically ranks and explains the significance of the
molecules included in the biomarker list. Here, both the manual
approach and the frequency score (FS) index are presented.

The particular molecules under study (e.g., miRs, mRNA,
proteins) are individually processed and meta-analyzed before
the multi-omics integration and analysis is performed. In this
methodology, eachmolecular type has its own comparisonmatrix
where the large-scale studies are merged. Thus, every individual
DS comparison (case vs. control) has the main molecules
included in the analysis facing each other. The output of the
HHmeta method is divided on biomarker identification and
functional analysis. The methodology outline is divided into
four main sections: Data collection, Data correlation and
structure, Grouping and Biomarker discovery and Data
integration and Functional analysis.

2.1 Data Collection
High-throughput DS from publications can be collected from
public repositories such as GEO NCBI, ExpressionAtlas and
ArrayExpress from EMBL-EBI databases for raw and processed
omics data and SRA for raw sequencing data. Specialized databases
exist for the different omics data. PRIDE, Peptide Atlas,
ProteomicsDB, GPMDB, JPOST repository, MassIVE, PAXDB
for proteomics, MetaboLights, MetabolomeExpress,
MetabolomicsWorkbench, GNPS for metabolomics and EGA,
EVA for genomics are examples of available omics databases
(Carroll et al., 2010; Deutsch 2010; Coutant et al., 2012; Wang
et al., 2012; Vizcaíno et al., 2013; Fenyö and Beavis 2015;
Lappalainen et al., 2015; Kale et al., 2016; Sud et al., 2016;
Wang et al., 2016; Wang et al., 2018; Samaras et al., 2020;
Watanabe et al., 2021). Platforms like Omics discovery index
(OmicsDI) exist, where biological and technical metadata from
public omics datasets are stored and standardized through an
indexing system to enable access, discovery and broadcasting of

omics datasets (Perez-Riverol et al., 2017). In terms of cancer
databases TCGA, COSMIC, OCCPR and ICGC are distinguished
high-throughput data repositories. Data can also be collected
directly from the literature. The DS collected can be derived
from entirely unmatched sources (e.g., DNA, RNA, protein),
different platforms (e.g., Microarray, RNAseq), and samples
(e.g., tissue, blood, urine).

Here, the example shows the analysis of DLBCL and the
potential to correlate and find the common and significant
molecules and deregulated mechanisms across expression
profiles from tumoral vs healthy samples. The following DS
(gene expression profiles) were retrieved from GEO (NCBI)
database (Clough and Barrett 2016): GSE9327 (tumoral tissue
vs healthy tissue; CNIO Human Oncochip), GSE32018 (tumoral
tissue vs. healthy tissue; Agilent), GSE56315 (tumoral tissue vs.
healthy B-cells; Affymetrix), GSE12195 (tumoral tissue vs.
healthy B-cells; Affymetrix), GSE2350 (tumoral B-cells vs.
healthy B-cells; Affymetrix), GSE12453 (tumoral B-cells vs.
healthy B-cells; Affymetrix).

2.2 Data Correlation and Structure
This module comprises three steps: DS group comparison, Data
ID harmonization, and Data Merging within and across DS
comparisons.

2.2.1 Datasets Group Comparison
This step represents the first statistical evaluation embedded
within this methodology. Here we rely on pre-processed and
normalized available DS; raw data can also be considered. Raw
samples need to be normalized individually to be further
statistically assessed and generate ratio-metric values.
Differential expression analysis of the GEO DS collected are
performed through GEO2R, a web-based tool that includes
GEO Query and Limma Bioconductor packages and
performs multiple-testing correction through
Benjamini–Hochberg false discovery rate method as a default
(Benjamini and Hochberg 1995; Gentleman et al., 2004; Smyth
2004; Sean and Meltzer 2007). Data collected directly from the
literature already provides ratio-metric values to integrate into
the correlation matrix.

2.2.2 Data ID Harmonization
Given that different experimental platforms (e.g., different
microarray technologies, RNAseq) and functional analysis
tools usually produce and require unique identifiers, there is
a need for standard names for each type of molecule (e.g.,
transcript, protein) under study. In order to be able to correlate
the ratio-metric values of the molecules shared across every DS
comparison included, and reduce data redundancy within
studies, the DS needs to be mapped to a common identifier
(e.g., Uniprot or PADB identifiers). Furthermore, a unifier that
consolidates the different accession numbers and identifiers can
be of great assistance. The PADB database was established by H.
Husi (Husi 2004) as a unifier database for molecular data and it
has been the reference database for several of our studies
(available by request). PADB has been continuously curated
and updated over the last 20 years. It contains old and recent
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identifiers frommultiple databases and platforms that have been
assigned to the molecules through time. This database clusters
identifiers from a variety of databases and platforms (Ensemble,
Genenames, RefSeq, Uniprot, Swissprot, Agilent, Affymetrix,
Illumina, and others), and provides a unique unifier ID that
maps the molecules to all these reliable identifiers, allowing
further data merging and analysis through a variety of tools.
Uniprot database and BioMart also offer the option to retrieve
alternative identifiers (e.g., Ensemble, Genenames) for
molecules of interest or by downloading the complete file to
index by any cross-indexing tool (Smedley et al., 2009;
Consortium et al., 2021).

To cross-index and further merging of accession numbers,
the in-house software AWASH was used. It is a text
manipulation software that performs data cleaning and
merging by using either a single file or multiple files, the
latter based on a parent file as a reference for further
indexing on dependent files. To perform the indexing, a
Master file (containing the identifiers from the common
database chosen and the accession number of the DS in
question) and a Child file (different files for each DS
comparison containing all accession numbers, statistics, and
ratio-metric values) are needed. The input files should be in
Tab- Separated Values (TSV) format. After indexing, each Child
file accession number will be associated with a common unifier
ID and alternative identifiers.

2.2.3 Data Merging Within and Across Datasets
Comparisons
Often within large-scale DS, there is more than one probe-set and
values for the same molecule. Thus, the significant (e.g., FDR/
p-value) and ratio-metric (e.g., Fold change) values from
molecules with the same unifier ID can be either merged or
one can keep only the probe-sets that have the most significant
values, as long as the same method is followed for each DS
comparison merging. Every DS comparison should only
contain one ID for each of the molecules within it. AWASH
software can be used for this purpose based on the common
unifier IDs and a Masterfile containing each of the DS
comparisons.

Once all cleaned, all the DS comparisons from the same
molecular type are merged into a matrix based on a list of
unifiers reported among all the DS comparisons. The
identifiers from all DS comparisons would follow the same
order. Thus, the same molecule would be facing each other
across the different DS comparisons, a fitting format for
further analysis. In the manual approach we only focused on
the molecules below a p-value of 0.05 for all the DS comparisons
included independently of their ratio-metric value. However,
when calculating the FS index score, since it takes care of the
filtering, there is no need of applying cut-off at this step. In case of
a statistically poor dataset, where adjusted p-values were greater
than 0.05, the unadjusted values should be used.

2.3 Grouping and Biomarker Discovery
Dimensionality reduction facilitates analysis and visualization of
high-throughput data. This methodology relies on principal

component analysis (PCA) to cluster and interpret large-scale
DS comparisons. This step represents the 2nd statistical
evaluation within this approach. PCA plots allow the
identification of outliers, but most importantly it provides a
confirmation of the DS comparisons that group together and
can be further integrated to perform further analyses. The latter
will reduce bias and act as batch effects removal. In order to
avoid gaps in the data-matrix and misleading clustering, this
analysis should only include and compare the expression-level
differences of the molecules analyzed and shared among all DS
comparisons.

The 3rd statistical evaluation is founded on pattern
matching and centroid clustering to obtain the biomarker
list. In the manual approach, DS statistical pattern
recognition is based on correlation analysis to generate the
biomarker list. Here, unique thresholds (TH) are applied to
each DS comparison (THs might vary across DS) depending
on the number of their deregulated molecules (where more
than 10% of deregulated molecules can give a hint of
something off being compared within a DS). Only
molecules with significant p-values and log 2 fold-change
(FC) (above 1 or 2 depending on the DS comparison) are
included. A master molecule list (MML) is created containing
all the significant molecules reported within THs per DS
comparison without repetitions. The MML is used to merge
all DS as described above to perform cross-correlation analysis
and obtain the biomarker list.

To calculate an accurate frequency distribution manually per
molecule, the trend in regulation is determined, taking into
account the total count per molecule (TPM), to avoid bias.
The regulation trend is described as “Up” or “Down”;
molecules reported equally “Up” or “Down” regulated
(i.e., 50% up and 50% down regulated) among the DS
comparisons are removed. TPM represents the number of
times a molecule is analyzed across all the DS comparisons
included in the data-matrix. The latter highlights the point
that every platform might have different molecular depth,
thus, if a molecule is not analyzed in one platform it doesn’t
mean it is not significant. Consequently, a biomarker list is
created and can already be validated. This list is the core of
the next functional analysis.

Regarding the FS index, it was developed to generate the
former biomarker list from all values across all DS comparisons,
without the need of applying individual TH (see below). The FS
index is simply based on the log2FC trend per molecule and
whether these are significant or not. The formula is as follows:

FS �
∣∣∣∣∑(up) −∑(down)∣∣∣∣
∑(up) + ∑(down) ×

∑(significant)
∑(all)

From all the DS comparisons, the absolute value of the sum of
DS comparisons with up-regulated values (log2FC > 1) is
subtracted from the number of DS comparisons with down-
regulation (log2FC < -1) and divided by the sum of the number of
times a molecule was up and down regulated (log2FC > 1 and
<−1). This value is then multiplied by the value obtained from the
sum of the number of DS comparisons that have significant
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values (adjusted p-value <0.05) divided by all the DS comparisons
that have the specific molecule in question analyzed.

Additionally, the FS index includes an adjusted p-value and
log2FC calculation. Here, the basis of the approach is centroiding
clustering and it applies to all molecules individually. Molecules
with p-values and FCs for all the included DS can have significant
or non-significant values. To visualize the distribution of the data,
molecule sets −log (10) of the p-values and the log (2) of the FCs
can be plotted to get a Volcano plot (Figure 2). Here, centroiding
clustering brings a logical solution to fuse the data, with the center
being the optimal geometric location that minimizes the distance
to all datapoints. In an ideal situation the graph (Figure 2A)
would have a small group of datapoints close to each other for a
given molecule (similar p-values and similar FCs). The center-
value will then provide a new p-value and FC value. To obtain the
adjusted p-value its easier than the adjusted log2FC value, since it
does not have directionality; in this case an arithmetic mean is
calculated from the −log10 p-values to obtain the adjusted
p-value, since the non-transformed p-values are too small and
here a TH does not apply, therefore significant and non-
significant p-values are included and averaging these can
introduce bias. Regarding the adjusted log2FC, a common
mean calculation might give a biased result due to the possible
large values with opposing trends that the different DS
comparisons can have (Figure 2B). There are still several
options one can follow, such as geometric weighted means,
where a specific value is added to each log2FC, e.g., sample
size; trimmed means where extreme values (outliers) are left
out, and the mean is calculated from the values that remain
(Lawson et al., 2012; Miao and Jiang 2014; Li X. et al., 2015).
However, in this example and regarding the FS index calculation,
only where >50% of the molecules follow the same trend (up or
down regulation) with values above or below 0 molecule value
were averaged, the rest of the molecules were excluded.

These data, plus the calculated FS index value, upgrade
the score system and allow us to rank the molecules from the

most to the least significant based on: total significance, trend
(up/down-regulation), number of times a molecule was
analysed and present an either up or down-regulation,
adjusted p-value and adjusted log2FC, which sums up into
the FS index score. The higher the score, the more significant a
molecule is.

2.4 Data Integration and Functional Analysis
Despite the biomarker list potential to lead to new insights about
the disease in question, the contextualization of these molecules
can be even more informative. In this section of the approach, the
integration of the biomarker list through enrichment analysis is
performed. Functional analysis through Cytoscape plug-ins
ClueGO/CluePedia performs semantic clustering by assigning
gene ontologies and/or pathway terms (KEGG, Wikipathways,
Reactome) to the biomarker list, integrates them into functional
networks and ties-in the molecules associated with each of the
terms on the networks generated (Shannon et al., 2003; Bindea
et al., 2009; Bindea et al., 2013).

This analysis will highlight the main deregulated processes
that will be the center for further analyses. The biomarker list
contains molecules with different frequencies and FS index
scores, and results from the merging of the different DS
comparisons. Several TH are applied to the biomarker list to
determine the main deregulated pathways within it. The THs go
from the most to the least significant and frequent molecules
within the biomarker list. The TH end cut-off goes to a level
where the processes identified through the analysis of the most
frequent molecules are not lost but enriched and interconnected
by the molecules from the different THs applied.

In order to visualize and underlie the main processes
previously identified, pathway mapping is performed. It helps
unravel the regulation and involvement of the molecules by
placing them within their described position in the pathway of
interest. This allows the accurate identification of deregulated
processes by showing specific trends through the molecular

FIGURE 2 | Theoretical and Real centroiding clustering example visualized in a Volcano plot. (A) A and B represent 2 different molecules. Red and gray circles
represent molecule A distribution from the different dataset (DS) comparisons. The majority of molecule A values cluster regarding regulation, log2FC, and p-values (Red
circles). Gray circles represent molecule A with non-significant p-values. Green and Red triangles represent molecule B distribution. All molecule B values are significant
and cluster regarding regulation, log2FC, and p-values (Red triangles) but two DS comparisons (Green triangles). (B) B1629 and B8816 are real molecules within
the DS matrix and represents an example of the distribution of 2 molecules from the biomarker list obtained through the FS index.
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interplay, hence the identification of key players involved in the
pathophysiology of a disease. Pathvisio is a pathway-map editor
of described and pre-assembled pathway maps (KEGG,
Wikipathways, Reactome), it is a fine tool for integrative
analysis since it handles gene, protein, and metabolite data
and allows cross-mapping and integration through Bridgedb
(van Iersel et al., 2010; Kutmon et al., 2015). The pre-
assembled pathway maps will function as the sketch to base
on to get novel pathway maps reflecting their regulation in the
setting of interest. The pathways to be filled-in, edited, and
integrated are the ones identified by ClueGO/CluePedia
analysis. First, the molecules from the biomarker list are
mapped into their specific position within these pathways to
help keep the focus. Afterwards, irrespective of their logFC, all the
molecules from the first data merging with a significant p-value
are mapped as well in order to fill the gaps within the pathway
map of interest and be able to identify trends in regulation.

To enrich and complement the processes of interest identified
through Pathvisio, interactome analyses are performed on the
biomarker list molecules. GeneMANIA (Multiple Association
Network Integration Algorithm) generates networks that
resemble molecular interactions classified into gene-protein
interaction, co-expression, and localization, shared protein
domains, and pathways (Warde-Farley et al., 2010). It
provides the connections of the biomarker list molecules and
predicts molecules associated with the input.

In addition, disease analysis to explore the former outcomes
and their accurate association with the specific disease of interest
is performed. Through DisGeNET, reported gene-disease
associations from the biomarker list are identified (Piñero
et al., 2015; Piñero et al., 2020). This step functions as
validation by detecting the genes that have already been
reported in the disease under study. DisGeNET also provides
genes with gene-disease-association (GDA) scores, and the ones
with a higher score can be used to enrich the pathway model by
identifying their associations with the biomarker list molecules
and thus, provide an extra focus on the pathways where these
molecules play a role.

De novo pathway contextualization is produced by the
integration of all the different results previously obtained.
Since transcriptomic studies populate the databases and
literature, these are the backbone of the methodology. When
analyzing different molecular types, each OMIC layer validate
and reinforce the focus on the deregulated mechanisms identified
through transcriptomics analysis. miRNAs (miRs) and
metabolites do not align with gene/proteins but can also be
integrated into the developed model. In this case, cross-
mapping can be carried out through “mode of action” by
using either their targeted genes as a substitute ID (miR) or
how they are produced (metabolites) using the associated enzyme
to tie them into other OMICS data. By using the common unifier,
it allows their correlation and mapping into the de novo pathway
model described. CluePedia and MetaboAnalyst web-tools can
serve this purpose by enriching miRs andmetabolites respectively
(Pang et al., 2020). In this example, only transcriptomics data is
included.

3 RESULTS

3.1 DLBCL Dataets Comparisons
Correlation and Grouping
A total of 6 DLBCL gene expression profiles from human samples
were identified through GEO, correlated, and meta-analyzed
through the HHmeta method. From 6 GEO DS we ended up
with 10 comparisons: GSE9327–1. DLBCL vs Healthy tissue;
GSE32018–2. DLBCL vs. Healthy tissue; GSE56315–3.
Plasmablast DLBCL vs. Plasmablast Healthy B-cell, 4.
Centroblast DLBCL vs. Centroblast Healthy B-cell, 5.
Centrocyte DLBCL vs. Centrocyte Healthy B-cell, 6. DLBCL
vs. Healthy B-cells; GSE12195–7. DLBCL vs. Healthy B-cells;
GSE2350–8. DLBCL vs. Healthy B-cells; 9. DLBCL CD19 B-cells
vs. Healthy B-cells; GSE12453–10. DLBCL B-cells vs. Healthy
B-cells. All molecules from the DS comparisons were mapped and
indexed to PADB unifier ID. Only molecules/probe-sets with the
most significant p-values were kept among the repeats found
within each DS comparison. For the manual approach, DS
comparisons were filtered by p-value (<0.05), regardless of
their logFC value, and merged. When following the HHmeta
method, no filtering is needed at this stage.

Dimensionality reduction through PCA clustered 2 groups
and identified a potential outlier (Figure 3A). DS 1, 2, 8, 9, and 10
(Group 1) and DS 3, 4, 5, and 6 (Group 2) were clustered together.
Group 1 is composed of comparisons across healthy and tumoral
tissue (DS 1 and 2), as well as healthy and tumoral B-cells (DS 9
and 10), however DS 8 compares both healthy B cells vs DLBCL
tumoral tissue and also groups within this cluster. Group 2
contains 1 solely GEO DS (GSE56315) that is composed
mainly by comparisons among specific tumoral tissue DLBCL
subtypes and their matching healthy B-cell type, as well as the
comparison of all of them together plus some unclassified
DLBCLs and the complete population of healthy B-cells.
Group 2 samples belong to patients under either CHOP or
R-CHOP therapy. The highlighted outlier, DS 7 is composed
of DLBCL tissue samples and healthy tonsillar germinal center,
naive and memory B cells.

3.2 Biomarker List and ClueGO/CluePedia
Functional Analysis
Once grouped, the following analysis focused only on group 1.
For the manual procedure, p-value cut-off (<0.05) from the
previous filtering was kept and log2FC cut-offs (>1 and <−1)
were applied to each DS comparison. When applying the
HHmeta method FS index formula (see above), no threshold
is needed. Data merging allowed the comparison and
consolidation of molecular regulation based on their frequency
distribution. The resultant biomarker list from the manual
procedure contains a total of 3,241 significant molecules, and
from the FS index calculation, a total of 1,638 significant molecule
(Supplementary Table S1). Table 2 represents the top up and
down-regulated molecules from both biomarker lists group 1.

Through DisGENET one can already search for validation of
genes associated with the condition in question within the
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FIGURE 3 | PCA plot grouping and ClueGO/CluePedia focus of our DLBCL cohorts. (A) Blue dots: Group 1; Orange dots: Group 2; White dots: Outliers. (B)
ClueGO/CluePedia network created from the Manual approach biomarker list (66% threshold). (C) ClueGO/CluePedia network created from the FS index Biomarker list
(0.75 Absolute FS index threshold).

TABLE 2 | Top deregulated molecules obtained with the Manual approach and FS Index calculation.

ID Manual approach HHmeta method

CluSO ID Gene name Final Regulation Adj. P.V.
Mean

Log2FC Mean FS Index
Calculation

B2Q85 ITGA9 100 9.130E-23 4.29 1
B2O29 BIRC3 100 2.480E-05 2.19 1
BO058 HLA-DRB1 100 3.320E-03 2.04 1
BO135 BCL6 100 1.210E-04 2.01 1
B8773 LCE2D −100 2.760E-03 −2.24 1
B9009 LPP −100 4.687E-05 −2.25 1
BF875 SYCE1L −100 1.270E-05 −2.29 1
B1137 ATP10D −100 8.127E-08 −2.30 1
BL316 DNM1DN8-2 −100 3.360E-04 −2.40 1
BH305 TSPYL5 −100 4.326E-07 −2.49 1
B5415 FAM208B −100 7.820E-07 −2.55 1
B7596 IGF2 −100 3.810E-08 −2.59 1
BO237 RET −100 1.400E-17 −2.70 1
B8780 LCE5A −100 1.660E-04 −2.87 1
B8612 KRTAP5-3 −100 2.240E-07 −3.00 1
B6621 GPR150 −100 3.360E-07 −3.01 1
B2W20 YES1 −100 2.380E-08 −3.45 1
B7559 IFITM5 −100 3.360E-07 −3.46 1

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8287869

Cervantes-Gracia et al. Integrative Derivatized Meta-Analysis Approach

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


biomarker list generated or target genes obtained from the
functional analysis. In this example biomarker list genes with
a FS index equal to 1 (439 genes) were input into DisGENET. As
shown in Table 3, some have already been reported as related to
DLBCL, either as e.g., biomarker, altered expression or genetic
variants. DLBCL is a highly heterogeneous disease, thus it is
important to bear inmind that in this example we didn’t segregate
DLBCL by type (e.g., GCB, ABC), mainly because it was not
specified in every dataset included. Therefore, the outcome of this
analysis would mirror the core shared mechanisms among the
DLBCLs analyzed in each of the different studies included in the
meta-analysis of group 1. Also, within the genes found to be
associated with DLBCL from the biomarker list, these might have
been significantly deregulated in only one dataset because it was
the only one analyzing this molecule, however this doesn’t rule
out its importance since these can still interact with the main
pathways further identified. For instance, genes involved in NF-
kappa B pathway and TNF signaling, such as overexpression of
BCL2 regulator of mitochondrial apoptotic pathway (Tsuyama
et al., 2017), BCL6 proto-oncogene, essential for GC development
and FBXO11 a tumor-suppressor gene that stabilizes BCL6, have
already been related with DLBCL accelerated development and
poor prognosis (Saito et al., 2007; Duan et al., 2012; Zhang et al.,
2015). These, plus the rest of molecules covered by DisGENET
provide validation of the molecular list we relied on for further
functional analysis, and the meta-analysis itself.

Besides the already described molecules in the DLBCL setting,
the biomarker list contains molecules that have not been related
with the disease yet. As an example, one of the main deregulated
genes with a higher frequency distribution score is TSPYL5,
which was found with a downregulation trend in 4 out of the
5 DS comparisons included in group 1. TSPYL5 has been
attributed a tumor-suppressive function, and its
hypermethylation has been previously linked with several
cancers (Kim et al., 2010; Fan et al., 2020; Huang et al., 2020).
TSPYL5 suppression has been associated with PTEN
overexpression and AKT pathway inhibition (Vachani et al.,
2007; Jung et al., 2008; Kim et al., 2010; Fan et al., 2020).
Interestingly, TSPYL5 inhibition has been attributed to
overexpression of miR-483–5p and miR-629. In prostate cancer
it’s been recently proven that miR-483–5p antagonization through
the long non-coding RNA LINC00908 lead to an upregulation of
TSPYL5, inhibiting prostate cancer progression (Fan et al., 2020).

miR-629 overexpression has also shown the ability to promote
proliferation, migration and invasion in ovarian cancer by directly
inhibiting TSPYL5 (Shao et al., 2017). Although a specific role in
DLBCL has not being described yet, these results open a potential
novel regulation of carcinogenesis in this setting. ATP10D is also
within the genes with a higher FS index score. Although its
association with DLBCL hasn’t been described yet, its
downregulation has been significantly correlated with poor non-
small cell lung cancer survival (Fusco et al., 2018). It belongs to a
subfamily of P-type ATPases that play a role in phospholipids
translocation, and its being specially associated with sphingolipids
and ceramid plasma levels (Hicks et al., 2009). Sphingosine-1-
phosphate (S1P) sphingolipids are considered signaling molecules
involved in activation of carcinogenesis pathways and have been
previously linked to increase lung cancer risk (Furuya et al., 2011;
Alberg et al., 2013). These are interesting hypothesis that haven’t
been explored yet that by following our unbiased method could be
highlighted. Examples like these can already be validated, adding to
the main DLBCL pathway mechanisms.

3.3 ClueGO/CluePedia Functional Analysis
To distinguish the association amongst the biomarker list
molecules and determine their shared pathways and processes,
ClueGO/CluePedia analyses were performed (Figures 3B–C).
The main processes showing interconnectivity between the
molecules from the biomarker list of both, the manual
approach and FS index score were MAPK, PI3K, TNF, Ras
and B-cell signaling pathways, cytokine-cytokine receptor
interaction and chemokine signaling pathways, among others.
These pathways show high interconnectivity and potential
involvement of MMP9, STAT1, TNFRSF1A, NFKBIA, EFNA4,
CCL5, RAP1B. Networks in Figures 3B,C are similar, even
though the HHmeta method does not follow thresholds and
has an extra layer of significance raking through the FS index
score calculation. However, since the most significant molecules
were shared among the biomarkerlists generated through the
manual approach and the HHmeta method, the main deregulated
processes remain.

All the main pathways highlighted through this analysis are
somehow related with pro-survival signaling, and have been
previously associated with DLBCL pathology, as well as with
the heavy involvement and crucial role of the tumor
microenvironment. Pro-survival effects via PI3K-AKT

TABLE 3 | Top genes associated with DLBCL through DisGENET.

Gene GDA Score Association Type Number of PMIDs

BCL2 0.4 Biomarker Altered Expression Genetic Variation 222
FBXO11 0.32 Biomarker Genetic Variation Causal Mutation 2
IRF8 0.32 Biomarker Altered Expression Causal Mutation 2
BCL6 0.1 Biomarker Altered Expression Genetic Variation 224
BIRC3 0.08 Biomarker Genetic Variation 8
HDAC9 0.07 Biomarker Altered Expression 7
ZC3H12D 0.05 Biomarker 5
LIG4 0.04 Biomarker Post-translational modification 4
HLA-DRB1 0.03 Biomarker Genetic Variation 3
PSIP1 0.02 Biomarker 2
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signaling pathway, Ras signaling pathway (Eric Davis et al., 2001;
Davis et al., 2010; Miao et al., 2019), partly B-cell receptor
signaling pathway and cytokine induction have been long
correlated with DLBCL. TNF signaling pathway is known to
be indispensable for survival of transformed B-cells. TNF-
signaling pathway regulates NF-kappa B pathway and MAPK
signaling pathway, which was also determined as significant in
DLBCL (Webster and Vucic 2020).

3.4 Pathvisio Pathway Editing and
Complementation
The main pathways determined by ClueGo/CluePedia are now
involved in the following iteration step, which entails pathway
overrepresentation analysis and visualization in Pathvisio.
Pathways identified through ClueGO were displayed within
the significant pathways determined by Pathvisio. In order to
determine consistencies, inconsistencies, interconnected events,
and fill the gaps within the signaling pathways visualized, the
complete list of molecules with a significant p-value is used as an
input. In this case, a total of 5,146 molecules from the FS index
were analyzed. For instance, the total amount of molecules

obtained from the FS index might differ from the ones of the
manual approach. This because for the adjusted log2FC
calculation, the FS index only takes molecules determined as
up or down regulated for averaging (see section 2.3), leaving out
some molecules with mixed values. The manual approach is more
bias, where the arithmetic mean is calculated from all molecules
with a significant p-value, without prior filtering.

Once mapped, inconsistencies in the trend from sections or
complete signaling events were removed from the original
pathway maps. The complete pathway can be visualized in the
Supplementary Figure S1. The original pathway maps from
WikiPathways were redesigned to accurately contextualize the
role and interplay of the molecules in DLBCL B-cells. Here, only a
section of the assembled pathway is shown in Figure 4. From this
signaling map, a prominent up-regulation of most of the elements
involved can be seen. Chemokines, cytokines, and interleukin
signaling demonstrate their involvement in the NF-KB and JAK-
STAT pathway activation and therefore cell survival and
proliferation. Several factors either display an opposite
regulation or are absent within the biomarker list generated.
However, the consistency along the pathway outline reflects an
involvement of these processes in this B-cell malignancy.

FIGURE 4 | PathVisio edited pathway of the obtained biomarker list. NFKB and JAK/STAT section of the complete pathway map from Supplementary Figure S1.
This section of a pathway contextualizes and represents the up-regulation trend of the molecules included in the map. Molecules with an adjusted p-value <0.05 from the
FS index score calculation were included.
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Feedback loops such as the one established by IL6, as well as
regulators, such as PIAS, SOCS, and PTPN6 can already be
spotted and represent potential hits to focus on further
(Figure 5B).

GeneMANIA analysis can enrich the pathway maps from
PathVisio. Several angles can be considered to add to the main
hypothesis, for example, the top molecules from the biomarker
list, the associated and clustered molecules obtained from
ClueGO/CluePedia analysis, or the molecules of interest
within the edited PathVisio pathway. Here, STAT3 was taken
as an example to complement the pathway of interest, due to its
downstream effects and the potential regulation of its activity.
Figure 5. A. shows GeneMANIA results. Several molecules that
were not included in the pathway map make an appearance. The
connected molecules can either represent genomic interaction,
shared protein domain, shared pathway, co-expression, co-
localization, among other interactions. The additional
interactors of STAT3 identified through GeneMANIA, such
as NFKBIZ, EGFR, PTK6, and STAP2, complement the
previous pathway, and the trend in consistency remains
(Figure 5B). Here, one can hypothesize that the tumor
microenvironment, such as T-cells, promote the chemokine/
cytokine signaling in B-cells and lead to pro-inflammation,
cellular proliferation and maintenance to some extent
through JAK/STAT and NFKB signaling pathway constant
activation. The interconnected and functionally correlated
genes identified through ClueGO/CluePedia analysis, and
some others integrated into the final edited pathway, have
shown to be already associated with DLBCL.

4 DISCUSSION

The decreased costs of high-throughput technologies have made
the exploratory studies of complex biological traits, such as
cancer, possible. Integrative omics approaches have been
under the spotlight due to their potential to elucidate novel
pathophysiological insights that better capture the complexity
of molecular systems in a trait (Argelaguet et al., 2018; Kim et al.,
2018; Zhou et al., 2019). Despite the increase in studies
performing this type of analysis, efforts are still needed to
better analyse and decipher the origin of complex diseases, for
better diagnostics and discovering potential therapeutic targets,
reviewed in (Yan et al., 2017; Karczewski and Snyder 2018). As a
common characteristic, integrative methodologies rely on the
identification of shared features across different large-scale
datasets to further perform functional analysis. Nevertheless,
one of the main elusive challenges that remains is the
contextualization of the deregulated molecules; particularly in
cancer where the high variability and intricacy of biomolecules
involved can overwhelm meaningful readouts. In this setting, it is
complex to identify commonalities among the systems altered by
only looking at molecular signatures or protein-protein
interactions, even within samples from the same cancer type.
Thus, even though novel insights regarding potential correlations
have been depicted across multi-omics studies (Zhang et al., 2013;
Li J. et al., 2015; Mertins et al., 2016), the contextualization of how
a molecule might influence or affect a system is still lacking. Our
proposed methodology focuses not only on the identification of
shared features, but also on their contextualization through

FIGURE 5 | GeneMANIA focus and Pathvisio de novo pathway contextualization. (A) GeneMANIA results for STAT3; interactor molecules can either represent
physical interaction (red), co-expression (purple), genetic interaction (green), shared protein domain (yellow). (B) Pathvisio NFKB and JAK/STAT signaling pathway
section with added elements from GeneMANIA highlighted in purple; STAT3 analyzed gene highlighted in yellow box, blue boxes represent feedback loops. analyzed
gene highlighted in yellow box, blue boxes represent feedback loops.
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pathway mapping. Approaches such as IPA, also focuses on the
contextualization of features into pathway maps, however the
lack of identifier curation, track and maintenance can result in
poor reproducibility. In high-throughput studies the sample size
is also an issue that might affect reproducibility and specificity.
Usually, sample size increment correlates with higher
reproducibility; it is equally responsible for an increase in false
positives (Maleki et al., 2019). Thus, the fusion of integrative
approaches, meta-analysis, associative data and enrichment
methodologies gives an opportunity to boost the
understanding, correlation and contextualization of potential
molecules of interest affected in a disease. Moreover, one of
the main hallmarks of our methodology is the enhancement of
the statistical power of the biomarkers identified not only through
the integration of high-throughput studies but also small-scale
studies, which provides the focus on the pathway maps further
described.

The majority of the available big data approaches rely on
computational tools and therefore, the need of certain
background to be able to perform these analyses. However,
the HHmeta method provides a platform to not only perform an
integrative meta-analysis, but also the opportunity for
researchers lacking a solid background in bioinformatics to
be able to perform an unbiased and straight-forward, but
robust meta-analysis on pre-processed big data, to reach a
logical and contextualized overview of the molecular
interplay of a list of significant molecules related to an
specific research question. In the example presented above,
besides the identification of a deregulated and correlated set
of molecules through out the analysis of different studies
(Table 2), this methodology allowed their contextualization
to identify potential processes and mechanisms involved in
the disease (Figures 3, 4), and clarified targets influencing
cell growth, survival and metastasis.

An interesting aspect that is commonly under-rated–but can
influence downstream analysis and affect its replication–is the
wide range of identifiers. Their constant update, reuse, un-usage,
and the lack of unified efforts to both keep track and make
mapping between different platforms available for the scientific
community. Moreover, in order to merge datasets from different
platforms and sources, the harmonization of identifiers is crucial.
Thus, one of the solid basis and uniqueness of this methodology is
its reliability on the PADB unifier database (see Methods section).
Efforts have been previously made by others to address this issue
(Gaj et al., 2007; Klimke et al., 2011), through BLASTx
approaches (e.g., TargetIdentifier), linking annotations from
different databases (e.g., DAVID) and trying to provide as
much information as possible about IDs (Gaj et al., 2007),
however data curation and constant update its still lacking. It
has been noticed in pathway mapping that a great proportion of
arrays become useless, mainly because there is no track of older
IDs. Herein, PADB adds an extra quality-check to be able to rely
fully on the available annotations and support the replication
process. It enriches the downstream biological pathway map
interpretation by retaining old identifiers for those molecules
that currently have no annotation. PADB also allows cross-
linking through species by its ortholog IDs (OMAP), enabling

the identification of mechanisms that might be conserved across
species through the downstream analysis.

Conventional meta-analyses apply several strategies to merge
statistical measurements (i.e., p-value), and this is one of the main
differences highlighted in the methodology presented here.
Methods such as Fisher’s, Stouffer’s Z-test and Rank product
are examples of popular statistical approaches to follow when
performing meta-analyses to combine p-values of different
studies, and their use depends on the meta-analysis goal
(Zaykin et al., 2007; Hong and Breitling 2008). The former is
based on testing the probability that different null-hypotheses,
when combined, are statistically significant (Fisher 1992).
However, here the proposed methodology relies on already
statistically significant data for the manual approach; the FS
index calculation (see section 2.3) relies on the number of
times a molecule is significant, and the adjusted significance of
a molecule is only one layer of ranking to consider. Therefore, in
this setting Fisher’s method would not be the one of choice. In this
methodology, the more a molecule is significant across studies the
more likely it is that it is significant overall, regardless of the actual
p-value, same with log2FCs, threshold values are used to set those
boundaries. The significance of the molecules identified through
this method is then corroborated by pathway mapping and other
further analyses. Nevertheless, the HHmeta method and Fisher’s
are similar in the principle of getting a new p-value (in our case
also log2FC, plus the FS index) through the fusion of all the
studies included. The main difference among conventional meta-
analyses and our proposed methodology is that, by keeping the
studies intact regarding cases and controls, and correlating the DS
comparisons p-values and log2FCs, this methodology adds a layer
of confidence regarding the comparisons made, allowing a
primary correlation and clustering of studies through PCA plots.

PCA plot analysis have been used for the purpose of modelling
the relationship between samples, to detect group differences and
identify outliers and batch effects within a single high-throughput
study (Ringnér 2008; Conesa et al., 2016; Merino et al., 2016;
Todorov et al., 2018). Furthermore, there have been other
integrative methodologies that have generalized PCA rationale
to identify commonalities across different omics studies (Kim
et al., 2017; Argelaguet et al., 2018). In contrast, here we apply
PCA plot analysis to individual omics data types. Through this
analysis, we were able to identify different groups and outliers
from the initial high-throughput studies included in the analysis.
This quality-check gives the opportunity to identify
commonalities even amongst different samples, such as
complete tumoral tissue and B-cells, by only including the
molecules analysed in all the studies. It allows us to subtract
commonalities across diverse studies, provided that the research
question is well established. Even though the meta-analysis
performed through this methodology is based on similar data,
and therefore group of studies, it allows the comparison and
identification of the relation between groups of different
conditions (e.g., DLBCL vs. Healthy and DLBCL treated vs.
DLBCL non-treated) opening new opportunities to identify
specific responses and common enhanced pathways
deregulated by the disease itself. Thus, to perform standard
meta-analysis will be inadequate.
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The major liability of the HHmeta method is that it is based on
publicly available data. Thus, it is possible that the specific
research question one wants to address hasn’t been covered by
many research groups. The less high-throughput data sets
available for a certain topic of interest, the less statistical
power the data analysis would have. Moreover, if the available
data is heterogenous, for example due to differences in the biology
of the samples (treatments, stages of a disease, subtypes or sample
sources), it makes the correlation even more complex, and the
main question to address would need to change into a more
general one, where commonalities can be depicted. Another
weakness of the whole procedure is that the contextualization
of the biomarker list relies on pathways previously described, so
there will be gaps, molecules that do not map and unsolved
questions. Despite these flaws, this method takes advantage of
previous knowledge and uses it in the context of the specific topic
of interest.

The substantial amount of data generated throughout the
years represent a tool that can be somehow overlooked by the
scientific community. For instance, good scientific practice can be
enhanced by the screening, review and statistical analysis of
previous studies performed in the field of interest to identify
the gaps, commonalities and generating a better understanding
regarding the behaviour of a system of interest, by feeding a
potential model with what has already been proven and
enhancing the generation of novel hypothesis to address by
the inclusion of high-throughput data. The essence of the
proposed methodology is the merging of independent
statistical tests in an unbiased way, into a single test. It
embraces the availability and basis of statistical analyses used
in the big data field and utilizes their outcome to add to the
statistical power of the data, resulting in a novel analysis
approach. What sets the HHmeta method apart from the
already available approaches are the basis of the data
considered for merging, thresholding and its subsequent fusion
and scoring system. Here, the manual and FS index approach are
presented to highlight the main differences of what has been done
before with the same ground basis as the FS index approach (FS
index) which relies on a formula and adjusted values to produce
similar results.

5 CONCLUSION

Studies in basic science are commonly hypothesis-driven and
usually small-sampled. Likewise, and despite their exploratory
nature, high-throughput studies tend to be biased to the resulting
top deregulated genes. Therefore, novel findings require further
validation, and here is where meta-analysis comes in handy. Even
though the experimental design of different studies in essence is
unique, meta-analysis methodologies have provided the

opportunity to integrate the results of diverse and multiple
studies addressing the same question, to enhance the statistical
power of the results and therefore, the chances of finding true
positives. In contrast to the meta-analysis methodologies already
implemented in the big data-field, the methodology presented in
this manuscript provides a simple, novel, unbiased, integrative
and logical approach to not only meta-analyze single omics
studies, but to integrate small and big data sets, as well as
different omics studies. It includes quality checks to avoid
batch effects, relies on a powerful cross-indexing unifier
database and goes a step further by including associative
data to aid for the identification and understanding of novel
pathways and molecules involved in a specific disease. All in
all, the current methodology provides novel hypotheses to
further validate and a broader view of the system of interest,
enhancing the outcomes generated through conventional
meta-analysis.
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