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Introduction
Breathlessness, fatigue, insomnia, and cough are some of the 
signs of many chronic lung diseases. Together these symp-
toms lead to decreased quality of life. Some of these chronic 
lung diseases end in early mortality. Therefore, early detection, 
good prognostic measures, and personalized management of 
these diseases are highly desired.

Many chronic lung diseases, such as chronic obstructive 
pulmonary disease (COPD), develop insidiously over many 
years and can remain undetected until large areas of the lungs 
are remodeled and have lost their structure.1,2 Others, such as 
asthma, can be detected early on in childhood, but it is difficult 
to predict if the condition is going to resolve, persist, resolve 
and reappear, or persist in a progressively worsening clinical tra-
jectory.3 Still other conditions such as pulmonary hypertension 
are a challenge to correctly diagnose, because the breathlessness 
can be mistaken for a problem of airway function, instead of 
recognizing the increase in the pulmonary blood pressure.4,5

To date, most of the markers used for phenotyping in 
clinical use are either based on lung function, right heart func-
tion measurements, and imaging – particularly high-resolution 
X-ray computed tomography (CT) scans – or cellular analysis 
of bronchoalveolar lavage or sputum specimens (Table 1).6–16 
Molecular markers (Table 2),17–45 while still limited, are being 
developed to facilitate detection of injury to cells within the 
lung structure and to identify molecular disease mechanisms in 
order to personally tailor therapeutic management. Addition-
ally, biomarkers of disease risk and biomarkers that predict dis-
ease progression are being developed. The following sections 
discuss specific chronic conditions of the lungs with respect to 
the application of these different types of biomarkers.

Biomarkers for Asthma
Asthma affects approximately 300 million people worldwide 
(GINA guidelines 20156). Asthma is a heterogeneous disease 
with a diagnosis dependent on the confluence of symptoms 
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and measurements of lung function showing variable airflow 
obstruction or airway hyperreactivity. Although the bronchi 
are the structures mainly affected in asthma, changes in small 
airways, bronchial blood vessels, and pulmonary blood ves-
sels can also be present. Several biomarkers that character-
ize some of the phenotypes of asthma have included blood or 
sputum eosinophils, serum/plasma immunoglobulin E (IgE), 
and exhaled nitric oxide (NO).20 An increase in the peripheral 
total IgE titer suggests the presence of an allergic response9,47; 
the allergic response can be further dissected by determining 
allergen-specific IgE or allergen-specific skin reactivity.

The challenge. The challenge is that asthma is hetero-
geneous and not all asthmatics are atopic (ie, have allergen-
specific IgE). Moreover, some asthmatics fail to achieve 
control even with the use of high-dose therapy of broncho-
dilators and inhaled corticosteroids.17,48 Additionally, current 
therapy is based on reducing symptoms and not curative; the 
symptoms of asthma return when the therapy is stopped.17 The 
result is that bronchodilators and inhaled corticosteroids are 
often required for lifelong therapy, and these have the poten-
tial for significant side effects. Thus, new drugs are needed 
to modify pathways that are present in the different mani-
festations of asthma and that might reduce the need to use 
chronic corticosteroids.

Drugs that target specific inflammatory pathways have 
been sought after for years. The first leukotriene antagonists 
inhibited synthesis or receptors of the leukotriene pathways; 
however, they were incompletely effective and raised the pos-
sibility that there were subsets of patients who might respond 
better than others.49 New examples include anti-IgE (first 
Food and Drug Administration [FDA] approval 2003),52–53 
drugs that target interleukin (IL)-4 or IL-13 or both (in 
phase III clinical trials and in development),54–58 anti-IL-5 

(awaiting FDA approval in 2015),18,59–64 and anti-IL-17 
receptor (clinical trial for asthma stopped65). Furthermore, it 
is increasingly clear that the different phenotypes of asthma 
may be associated with different endotypes, or biologic path-
ways, for example, T helper (Th)2, Th17, high eosinophils, or 
high IgE.66 Because the specific drugs target the critical pro-
cess that causes asthma in the particular patient, the therapy 
has to be personalized by matching the pathogenic mecha-
nism and the specific therapy.67 Thus, it is necessary to develop 
a biomarker or a set of biomarkers (biomarker profile) that 
characterizes the underlying disease pathways together with 
the new therapeutics. Because the process-specific therapies 
target the critical mediator, it is possible that there may be 
curative effects that provide long-term relief from the asthma 
symptoms. However, for anti-IL-5 therapy, this expectation 
was not met because asthma exacerbations and eosinophils 
returned when the therapy was withdrawn.60

Biomarkers under development. These are examples 
of process-specific biomarkers that are under development 
(Table 2)68–71:
•	 Total plasma/serum IgE levels or the presence of peren-

nial allergen-specific IgE levels provide a cutoff value for 
use of anti-IgE therapy.17

•	 Numbers of eosinophils in the blood provide a marker 
value for the high-eosinophil asthma phenotype for 
which anti-IL-5 therapy is effective.18

•	 Serum/plasma periostin levels combined with numbers of 
blood eosinophils and additional biomarkers (eg, plasma 
eotaxin or IgE) are indicators of patients who respond to 
therapy with anti-IL-13.19 In some instances, this profile is 
referred to as T helper 2 – high (Th2-high) asthma. The con-
cept of the Th2-high asthma is challenging because thera-
pies with anti-IgE, anti-IL-5, or anti-IL-13/IL-4 in asthma 

Table 1. Examples of phenotyping procedures for asthma, COPD, or pulmonary hypertension.

Phenotyping Procedure Structure/Sample 
Being Tested

Involved Process Involved Disease Citation

Lung function testing Lung Lung function Asthma, COPD 7, 8

Response to broncho-dilators Airways Lung function Asthma, COPD 9

Airway hyperreactivity Airways Lung function Asthma 10

Right heart catheterization Right heart Heart function Pulmonary hypertension 11

Exercise challenge Right heart Heart function Pulmonary hypertension 11

Exhaled NO Exhaled breath Inflammation COPD, asthma 7, 12, 13

Diffusing capacity for  
Carbon Monoxide (DLCO)

Exhaled breath Lung function COPD, pulmonary hypertension 12

High resolution CT Lung Lung remodeling COPD, lung fibrosis, (pulmonary hypertension) 14

PET scan combined with CT Lung Abnormally active cells COPD (pulmonary hypertension, asthma) 15

MRI scan Right heart Right heart morphology Pulmonary hypertension (COPD) 11

Bronchoscopy, BAL Airways Inflammation, remodeling COPD (asthma, pulmonary hypertension) 12

Induced sputum Airways Inflammation, remodeling Asthma, COPD 16

Notes: Brackets indicate conditions for which certain assays/procedures are not commonly used, for example, bronchoscopy and BAL for asthma or pulmonary 
hypertension.
Abbreviations: BAL, bronchoalveolar lavage; CT, computed tomography; MRI, magnetic resonance imaging; NO, nitric oxide; PET, positron emission tomography.
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are designed for the T helper 2-high endotype. However, in 
studies involving Th2-high mouse models (characterized by 
eosinophils and IgE), airway hyperreactivity and increased 
airway mucus were inhibited by anti-IL-1372,73 and not by 
IgE deficiency74 or anti-IL-574 treatment. Therefore, the 
biomarker panel for the therapies with anti-IL-13, anti-
IL-4, and anti-IL-13 + anti-IL-4 (or anti-IL-4 receptor α) 
is still in development19,57,58 and is expected to be of great 
significance for personalized asthma management.

•	 Sputum-derived molecular signatures of dendritic cells 
and airway epithelial cells are developed to more specifi-
cally understand the type of the immune response and the 
degree of inflammation.46 This knowledge is expected to 
be of great value for assessing the progression of asthma 
and the response to therapy.

•	 Biomarkers of critical changes in glucose and lipid 
metabolism and oxidative stress are also being developed 
to specifically identify the mechanism that causes non-
allergic asthma and asthma that is unresponsive to the 
therapeutic options detailed above.27,75–78

The challenge for biomarker-guided therapy and for 
biomarker-guided assessment of progression and/or response to 
therapy is the ability to measure these biomarkers in relatively 

accessible samples, ie, sputum biomarkers are usually only per-
formed in research centers, whereas blood biomarkers are more 
easily accessible. An additional level of complexity that is intro-
duced into the clinical algorithm is that the use of these mark-
ers makes diagnosis and monitoring of responses to therapy 
more expensive. The therapeutic dilemma for asthma patients 
whose biomarker profile does not fit an available specific thera-
peutic option is challenging. For these cases, bronchodilators 
and inhaled corticosteroids remain the therapeutic approach of 
choice, with antimuscarinic agents added when these fail, and few 
other options. This dilemma is not uncommon as approximately 
half of the patients who have severe asthma that is not con-
trolled with bronchodilators and inhaled corticosteroids posses 
a biomarker profile that is not clearly understood,48,79 and no 
specific, biomarker-guided therapy is yet available.80,81

In conclusion, new asthma biomarkers are under devel-
opment to better match the disease process with specific ther-
apies. Several challenges remain to be tackled, among them 
are added costs and the clinical dilemma of patients presented 
with uncontrolled asthma and a biomarker profile that does 
not match available new therapies. The combination of specific 
biomarkers and new therapies is expected to achieve better 
asthma control with fewer side effects and perhaps long-lasting 
therapeutic success.

Table 2. Examples of molecular biomarkers in clinical use or in promising development for asthma, COPD, or pulmonary hypertension.

Biomarker/Assay Sample Involved Process Disease(s) for which biomarker is: Citation

Established In Promising 
Development

IgE

Eosinophils

Periostin

Chemokines, Th2 
response associated

Serum, Plasma

Whole Blood

Serum, Plasma

Serum, Plasma

Allergy

Allergic inflammation

Allergic inflammation

Allergic inflammation

Asthma Identification of Th2 
endotype in asthma, 
COPD, pulmonary 
hypertension

17

18

19

19

Exhaled NO Exhaled breath Inflammation COPD, asthma 20

Pro-BNP Serum Heart failure Pulmonary 
hypertension

21

iNOS Sputum, bronchial 
brushing, Bal 

Inflammation Asthma, COPD, pulmonary 
hypertension

22, 23

VEGF Serum, sputum, 
BAL

Angiogenesis and endo
thelial function

Asthma, COPD, pulmonary 
hypertension

24–26

TNFα Serum, sputum, 
BAL

Inflammation COPD, asthma 14, 25

Microbiome Nasal brushing,  
aseptic BAL

Infection, Colonization, 
Microbial Flora

Asthma, COPD 
(pulmonary hypertension)

27–31

Desmosine, isodesmosine Urine, blood, 
sputum, BAL

Elastin degradation COPD, pulmonary 
hypertension

32–36

Panel of mRNAs/miRNAs Nasal or bronchial 
brushing, BAL,  
sputum, blood

Genomics and epigenetics  
(changes in gene  
transcription)

Asthma, COPD (pulmo-
nary hypertension)

37–45

Neutrophils Sputum, BAL Inflammation Asthma, COPD 46

Notes: Brackets indicate conditions for which certain biomarkers/assays are not commonly used, for example, microbiome testing for pulmonary hypertension.
Abbreviations: BAL, bronchoalveolar lavage; IgE, immunoglobulin E; exhaled NO, exhaled nitric oxide; iNOS, inducible nitric oxide synthase; pro-BNP, pro-B-type 
natriuretic peptide; Th2, T helper 2; TNFα, tumor necrosis factor a; VEGF, vascular endothelial growth factor.
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Asthma COPD Overlap Syndrome
Recent deep phenotyping and biomarker studies have identi-
fied asthma/COPD patients who also had a profile suggest-
ing allergic inflammation (Th2-associated inflammation)/
remodeling changes indicative of COPD, a condition 
known as “Asthma COPD overlap syndrome.”82–91 The exis-
tence of a syndrome where asthma and COPD overlap was 
predicted by studies in experimental animals.92–94 Biomark-
ers will be necessary to further subtype patients who show 
signs of this clinical overlap syndrome. For example, spe-
cific biomarkers of a Th2 response may identify individuals 
who might profit from therapy with IL-13/IL-4 inhibitors. 
Biomarker panels covering both inflammatory and remodel-
ing markers would be particularly informative to determine 
personalized therapy in these individuals. Specific biomark-
ers and clinical characteristics need to be further defined by 
future research.95

Development of Biomarkers for COPD
COPD is the third most common cause of death in the world.96 
COPD is characterized by progressive airflow limitation97 
that is not reversible by bronchodilator drugs. In addition to 
lung function measurements, imaging (eg, high-resolution 
CT), bronchoscopy, sputum, and exhaled breath (exhaled 
NO)20 are used to assess the nature and the degree of tissue 
damage to the lungs. A major cause of COPD is exposure 
to cigarette smoke (primary exposure or indirect exposure via 
secondhand smoke) although exposure to biomass smoke is a 
major contributor worldwide.98 Nearly the whole structure of 
the lungs is affected, including bronchi, small airways, alveoli, 
blood vessels, and connective tissue. The lung structures can 
show signs of destruction, leading to a loss of alveoli and sub-
sequent emphysema or scarring and remodeling of the small 
airways.99 Furthermore, the changes within the tissue from 
COPD can be a precursor to lung cancer.100–103

Measurement of lung function alone presents limita-
tions to determine prognosis, predicting outcomes, select-
ing appropriate therapy, or monitoring disease activity. Thus, 
a biomarker that has the potential to identify exacerbations 
and provides prognostic information on the severity of the dis-
ease has long been sought.

Inflammation. C-reactive protein (CRP) was the first 
biomarker to be investigated in COPD,104–107 and most studies 
have shown that CRP levels are elevated in COPD patients, 
both nonsmokers and smokers without airflow obstruction 
when compared with controls. However, CRP levels are a 
marker of inflammation and because inflammation is one of 
the constant processes in COPD, it does not distinguish dis-
ease processes or understanding of the specific structure that 
is being affected in a patient with COPD.

A panel of six inflammatory markers in peripheral blood 
(white blood cell count, fibrinogen, CRP, IL-6, IL-8, and 
tumor necrosis factor [TNF]-α) in the Evaluation of COPD 
Longitudinally to Identify Predictive Surrogate Endpoints 

(ECLIPSE) study predicted increased mortality and exacer-
bation rates in COPD patients with inflammation when com-
pared with patients without inflammation.108

The chemokine cc-chemokine ligand-CCL18 may also 
be a component of the serum biomarker signature of inflam-
mation in COPD. CCL18 concentrations were independently 
associated with the presence of COPD; its concentrations were 
independently associated with the future risk of cardiovascu-
lar hospitalization and mortality and with total mortality in 
COPD. Lastly, an intervention study showed that short-term 
steroid use modified serum CCL18 levels.109

Sputum neutrophil count has been used as a biomarker 
to evaluate responses to COPD therapies. The advantage of 
this biomarker is that it is measured locally in the sputum and 
reflects inflammation in the airways. There is a clear association 
of increased sputum neutrophils with smoking and COPD 
progression.110 The increased neutrophil numbers persisted for 
at least 1 year, even following smoking cessation, when mea-
sured in the sputum111 or in biopsy112 specimens.

Vascular changes. Pulmonary vascular changes are 
an integral component of COPD.22 The vascular abnor-
malities can present as pulmonary hypertension associated 
with COPD.113 Accordingly, biomarkers that determine 
endothelial cell function are associated with COPD. One 
example is inducible NO synthase that produces NO and 
contributes to oxidative and nitrosative stress in COPD.22 
Another biomarker example is vascular endothelial growth 
factor (VEGF). A significant difference in plasma VEGF 
levels between healthy control and COPD patients and cor-
relation between plasma VEGF and FEV1 (forced expira-
tory volume in 1 second) was shown.114 Similarly, a decrease 
in sputum VEGF was correlated with COPD severity.115 
Animal model studies have clearly established that inhibi-
tion of VEGF can cause emphysema116,117 and prepares the 
vascular bed for remodeling in response to a second stres-
sor (eg, combination of VEGF blockade and hypoxia24). 
As part of a larger panel, biomarkers of endothelial cell 
function are expected to be a valuable means to determine 
disease status.

Systemic organ involvement. COPD is a systemic dis-
ease associated with skeletal muscle wasting.118,119 Serum lev-
els of chemokines (cx-chemokine ligand-CXCL9, CXCL10) 
were correlated with energy metabolism genes in skeletal 
muscles of COPD patients.120 CT imaging of skeletal muscle 
mass shows promise as a marker of COPD severity and for the 
identification of gender-specific differences in COPD.121,122 
Serum myostatin123,124 and serum creatinine125 are also under 
investigation as biomarker of skeletal muscle function in 
COPD. High levels of serum creatinine are seen following 
acute muscle destruction while abnormally low levels indicate 
skeletal muscle atrophy.125 Serum creatinine in addition to 
other kidney function markers is also an indicator of renal 
disease in COPD.126 Circulating microRNA (miRNA) spe-
cies are discussed in more detail under emerging biomarkers 
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and are being considered as markers of muscle wasting 
in COPD.39

Oxidative and nitrosative stress. A continuum of oxi-
dative stress in virtually all cells in the lungs is thought to 
be another major pathogenic event in COPD.22,127–130 Oxida-
tive (and nitrosative) stress is chemically characterized by the 
exposure to exogenous or endogenous radicals of oxygen or 
nitrogen. In addition to proinflammatory signals, the radicals 
are highly reactive and modify proteins and nucleic acids. The 
modified (eg, nitrosylated) proteins can lose proper function 
and therefore cause critical cell damage.22 These processes are 
thought to be the basis for remodeling changes in the pulmo-
nary blood vessels of COPD patients, which in turn causes 
COPD-associated pulmonary hypertension.22 Biomarkers 
that would precisely reflect the source of the free radical – 
for example, oxidants in cigarette smoke, increased activity 
of inducible NO synthase, or decreased expression of anti-
oxidant proteins that are in turn controlled by nuclear factor 
(erythroid-derived 2)-like 2 (NFE2 L2-NRF2) – could lead 
to the development of specific therapies.22,131 Therapy with 
nonspecific antioxidants has been evaluated in COPD. These 
have failed perhaps due to the inability to precisely and suf-
ficiently target the root process that is causing the oxidative or 
nitrosative stress.132

Assessment of structural cell and stromal function. 
Biomarkers that assess the function of lung cells in COPD133 
include club (Clara) cell secretory protein (CCSP, CC-16134) 
and surfactant protein D (SP-D135,136). CCSP is produced 
almost exclusively by nonciliated, secretory club cells (for-
merly Clara cells).137–139 Club cells are transitional precursor 
cells for ciliated airway epithelial cells,140,141 and type II epi-
thelial cells lining the alveoli produce surfactant proteins.142 
Serum CCSP levels were measured in 2083 patients with 
COPD (ECLIPSE cohort).143 Serum CCSP levels were 
reduced in patients with COPD, and there was a correlation 
with disease severity in former smokers.143 In the ECLIPSE 
cohort study, SP-D was higher in current than in former 
smoker controls but was significantly higher in both current 
and former smokers diagnosed with COPD.144 There was a 
rapid and marked fall in serum SP-D levels among COPD 
patients who received oral corticosteroids. Its levels returned 
to baseline following the cessation of treatment,144 but the 
risk of exacerbations increased with increasing baseline serum 
SP-D levels.144–146 However, after acute exposure to cigarette 
smoke, CCSP serum levels have been shown to be increased147 
or suppressed148 by inhaled corticosteroids.

Unchecked and increased protease activity causes tissue 
destruction and emphysema in COPD.149–153 In addition to the 
destruction of the alveolar wall, the composition of the lung’s 
matrix is also significantly altered in COPD. Sand et  al.154 
found significantly elevated levels of circulating biomarkers 
of collagen types III, IV, and VI and elastin at the time of 
COPD exacerbation when compared with that during follow-
up. The tissue turnover balance, assessed systemically by the 

collagen degradation/formation ratio, increased for type III 
and VI collagen and decreased for type IV collagen.

Desmosine and isodesmosine are small degradation pep-
tides of elastin and can be measured by mass spectrometry in 
the plasma and urine. Associations between desmosines and 
several lung function variables suggest that desmosines, par-
ticularly those measured in urine, may be a useful biomarker 
of ongoing lung destruction in COPD.32,35,36,155–157

Alpha-1 antitrypsin is a major endogenous inhibitor of 
serine proteases such as neutrophil elastase and has thera-
peutic application in COPD with focus on emphysematous 
changes158 because cigarette smoking induces functional defi-
ciency of this inhibitor in the lungs.159 Individuals who have a 
loss-of-function mutation in the α1 antitrypsin have increased 
risk of developing emphysema.160,161 Plasma desmosine values 
did not significantly change following therapy with α1 anti-
trypsin in deficient individuals,162 perhaps indicating that 
the α1 antitrypsin did not fully inhibit the excess protease 
activity in this initial study. Later studies showed a signifi-
cant effect of α1 antitrypsin replacement therapy in lowering 
desmosine and isodesmosine levels in plasma and bronchoal-
veolar lavage fluid.163 These data again suggested the utility of 
desmosine and isodesmosine as biomarkers of matrix turnover 
in the lungs.36,157,164,165

In addition to the serine proteases, metalloproteinases 
(MMPs) also have major destructive activity in COPD.151,152 
Both metalloelastases166 and metallocollagenases151 contribute 
to the process. The proteolytic activity of MMPs is inhibited 
by tissue inhibitors of metalloproteinases (TIMPs). Concen-
trations of MMPs and TIMPs in the serum or sputum, as well 
as the molar ratio between MMPs and TIMPs, are currently 
being evaluated for their use as a marker of COPD severity, 
predictors of COPD exacerbations, with specific focus on 
emphysematous changes.167–170

Protease inhibitors with broad-spectrum activity have 
therapeutic potential in COPD. However, the challenge is 
that matrix protein turnover is critical for lung health and 
requires proteases at optimal activity levels. Biomarkers of 
matrix turnover and therapies that would normalize matrix 
could greatly aid the management of COPD and also all dis-
eases that cause lung fibrosis.

Progression of COPD from the inflammatory and 
remodeling condition to lung cancer. Large-scale proteomic 
profiling has revealed a biomarker panel that is hoped to 
aid in the detection of the emergence of lung cancer in the 
continuum of changes in the cells from the lungs of COPD 
patients.100,101,103 Proteomic and genomic profiling of epithe-
lial cells obtained from buccal or nasal swabs showed that 
molecular programming of these cells reflected changes in 
airway epithelial cells,102 further emphasizing inhaled expo-
sures to toxic substances as a cause of COPD.38 The search for 
biomarkers that will identify endotypes of COPD is still under 
intense investigation and is expected to significantly improve 
the management of this disease.86,171–174 It is to be emphasized 
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that in all studies a multimolecular signature was necessary to 
cluster the patients who had COPD and cancer. The signature 
comprised, for example, five diagnostic and six normalization 
proteins in plasma samples,103 59  genes in the airway tran-
scriptome,102 or 13 proteins in the blood.101 These data sug-
gest that a biomarker test that is useful for cancer diagnosis in 
COPD patients will be multimolecular and can be performed 
in blood101/plasma103 samples and in nasal and buccal epithe-
lial samples.102 This latter property is important because it sug-
gests that the multimolecular biomarker test can be performed 
on samples that can be acquired noninvasively.

Biomarkers for Pulmonary Hypertension
Pulmonary hypertension has multiple etiologies. It can be con-
sidered a stand-alone condition (eg, idiopathic, heritable, or 
high-intensity exercise-induced pulmonary hypertension) or 
as an exacerbating change in obstructive sleep apnea and many 
lung, heart, blood, and autoimmune diseases.175 The diagnosis 
of pulmonary hypertension can predict a short survival rate 
(eg, 15% mortality rate over 1- to 2-year period for herita-
ble pulmonary hypertension and even higher mortality rate 
for systemic sclerosis-associated pulmonary hypertension).175 
Pulmonary hypertension can occur alone or in association with 
many different diseases, and it is classified into five groups by 
World Health Organization (WHO). The available drugs are 
targeted for specific WHO groups.175

Pulmonary hypertension is characterized by remodeling 
in the pulmonary vascular bed and can affect the pulmonary 
artery or vein. Functional measures of right heart function, pul-
monary artery pressure, imaging of the right heart (Table 1), 
and a circulating biomarker of cardiomyocytes176 (N-terminal 
pro-B-type natriuretic peptide, pro-BNP; Table  2) are in 
clinical use for pulmonary hypertension. Furthermore, muta-
tions in several genes, most importantly in the bone morpho-
genetic protein receptor type 2 (BMPR2) gene,177–180 increase 
the risk of developing pulmonary hypertension significantly. 
The identification of these mutations by a genetic screening 
test is being used to aid carriers of the mutated genes with 
additional monitoring.

Current studies are under way to identify additional bio-
markers that would help to better match pulmonary hyper-
tension to optimal therapies and to better understand disease 
pathogenesis.181 For example, pulmonary hypertension in 
association with COPD can be the result of diffuse changes 
in the lung’s structure, affecting the airspaces and the vas-
culature, and in that case, patients would benefit from tar-
geted pulmonary vasodilator therapies.114 In this situation, 
the exposure to toxic substances, eg, cigarette smoke, could 
have a primary impact on the pulmonary vasculature and the 
associated lung structure and less impact on inflammation.22 
Conversely, pulmonary hypertension in association with 
COPD can also be the result of focal tissue remodeling of the 
airways, alveoli, and blood vessels caused by foci of inflam-
mation or foci of oxidative/nitrosative stress.114 In that case, 

vasoconstriction is function-preserving because it restricts 
blood flow to the remodeled, nonfunctional areas of the lungs 
and instead directs blood to areas of the lungs that are less 
remodeled and still have gas-exchange activity. Therefore, 
administration of vasodilators would not be helpful and could 
worsen the condition.113

Desmosine and isodesmosine, two amino acids that form 
cross-linkages in elastin, are also being evaluated as biomark-
ers of matrix turnover in pulmonary vascular remodeling.182 
This is hoped to detect the abnormal elastin and collagen con-
tent and turnover that is a critical process in the remodeling of 
the vascular bed in pulmonary hypertension.183–188

Pulmonary hypertension can be associated with autoi
mmune diseases that manifest in generalized connective tissue 
remodeling (eg, systemic sclerosis). In some of these cases, spe-
cific immune dysfunction can induce pulmonary hypertension, 
and specific biomarkers are being sought that would match 
patients with specific immune inhibitors (eg, anti-IL-1,189  
anti-IL-6,189 anti-IL-13/IL-4,190,191 anti-IL-17,192 or inter-
feron190). Animal model studies suggest that the immune 
mediators have a causal relationship with vascular remodeling 
and increased right ventricular pressures.193–198 Therefore, the 
expectation is that specific biomarkers of the immune processes 
will be important guides for personalized therapy in pulmo-
nary hypertension associated with significant inflammation.

Several large multicenter clinical trials (eg, Pulmonary 
Vascular Disease OMICS (PVDOMICS)) are currently under 
way to identify additional biomarker candidates in a variety 
of types of pulmonary hypertension, including those with 
underlying parenchymal lung disease.

Biomarkers of Environmental Exposures
Environmental exposures exacerbate all chronic lung diseases 
by inducing oxidative stress or inflammation, directly injuring 
the cells that line the airspaces, and causing associated dam-
age to the cardiovascular system and increased mortality.199–201 
Techniques to measure fine dusts and volatile chemicals such 
as ozone in air are well established.202,203 Tracers are available 
that track the source of the fine dusts and distinguish between 
fossil fuel204 and biomass (plant) combustion205–208 or identify 
fungal products in indoor air.209

Additionally, there are several examples of drugs that can 
cause chronic lung disease or exacerbate an existing condi-
tion210: aspirin211 or angiotensin-converting enzyme inhibi-
tors212 can cause asthma; fenfluramine/phentermine (a weight 
loss drug) can cause pulmonary hypertension213; fenretinide 
(a cancer drug) can cause emphysema214; bleomycin (a cancer 
drug)215 can cause parenchymal inflammation and interstitial 
fibrosis; and kinase inhibitor cancer drugs175 can cause pulmo-
nary hypertension. Naturally occurring toxins have also been 
linked to chronic lung disease, for example, molds in water-
damaged houses209 and asthma/COPD or monocrotaline 
(from many types of plants)216 and pulmonary hypertension. 
In all these cases, the relationship between the natural or drug 
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toxicity and the chronic lung disease could be causally resolved 
by combining studies in human subjects and animal models.

Biomarkers that would quantify environmental expo-
sures of the lungs and establish an etiology of exposure for 
the chronic lung disease are much less established. Causality 
of exposure is established for silica/coal dust exposure caus-
ing bronchitis and pulmonary hypertension,217,218 as is ciga-
rette smoke exposure and COPD.98 Cotinine is a specific and 
sensitive serum marker for cigarette smoke exposure and in 
large epidemiologic studies shows the detrimental effects 
of exposure to secondhand cigarette smoke.219,220 However, 
more specific chemicals need to be measured to determine 
the individual exposure to specific toxins in tobacco smoke.221 
Levels of IgE antibodies or asthma exacerbations to indoor or 
outdoor allergens are an indirect measure of exposure because 
responses occur in at-risk or in sensitized individuals.222,223 
For example, high IgE levels may be produced by exposure 
to large doses of allergen or low doses of allergen in a highly 
sensitized individual. Direct detection of particles in induced 
sputum224–228 or bronchoalveolar lavage229 is possible when the 
exposure levels are very high (as occurred during the World 
Trade Center disaster) or is the result of occupational expo-
sures. However, these measures lack specific quantification. 
Current research efforts are directed toward the identification 
of biomarkers that predict increased risk of developing chronic 
lung diseases and other detrimental health effects due to occu-
pational, residential, or outdoor ambient exposures.230–235 The 
tests under development are not yet specific for the exposure 
but indicate protective or injurious metabolic, inflammatory, 
or tissue remodeling activities. Environmental disasters such 
as the World Trade Center collapse are being used to iden-
tify biomarkers that would detect individuals at risk for the 
development of chronic progressive lung disease in response 
to the exposures.236–239

Emerging Classes of Biomarkers
Gene and protein expression has been the paradigm for bio-
marker studies, and these classes of biomarkers, particularly 
messenger RNA (mRNA) measured by polymerase chain 
reaction or proteins determined by enzyme-linked immu-
nosorbent assay (ELISA or multiplex ELISA) or proteins 
determined by mass spectrometry assays, have been used for 
the biomarkers that are currently in clinical development. 
New classes of biological molecules are emerging as potential 
sources of valuable biomarker information as outlined below.

Noncoding RNA. Noncoding RNA species are being 
evaluated for their utility in many different disease processes, 
including all types of chronic lung diseases. One class of non-
coding RNA, miRNA, serves not only for communication 
between adjacent cells but also between cells from different 
organs. miRNA is packaged in exosomes or adheres to car-
rier proteins and then exported into the blood and to other 
extracellular spaces. Therefore, levels of specific miRNAs can 
be determined in serum, plasma, and exosomal fractions of 

plasma, serum, sputum, or bronchoalveolar lavage.41,42 Specific 
miRNAs are being investigated for their role in disease patho-
genesis and also as potential biomarker in all chronic lung dis-
eases, including asthma,43,45,240–244 COPD,37,40,245,246 muscle 
wasting in COPD,39,123,247 and pulmonary hypertension.248–256 
Although there is great enthusiasm, currently none of the 
miRNA species has been established as a clinical biomarker for 
chronic lung diseases.

Metabolites. Biomarkers that detect molecular changes 
in metabolism are also emerging as important contributors to 
virtually all chronic lung diseases. For example, major adipok-
ines leptin and adiponectin were reported to be abnormally 
regulated in COPD and related to systemic inflammation, 
body mass index (BMI), and gender.257 Resistin, another adi-
pokine, is under investigation as a biomarker in asthma.258 
Furthermore, many cases of severe treatment-refractory 
asthma and cases of pulmonary hypertension are thought 
to be associated with severe reprogramming of metabolism 
and high BMI.259–261 Mutations in the bone morphogenetic 
protein receptor 2  gene that increase the risk of developing 
pulmonary hypertension are now thought to cause reprogram-
ming of cardiac lipid storage and glucose metabolism.262,263

Biomarkers of metabolic remodeling in the pulmonary 
vasculature and right heart are expected to be of diagnostic 
and prognostic value in pulmonary hypertension.264–268 Lower 
circulating levels of the soluble receptor for advanced glyca-
tion end products (RAGE) were associated with the severity 
of COPD, specifically emphysema, and a genetic polymor-
phisms in the RAGE gene locus.269 Lower RAGE levels 
were also associated with neutrophilic asthma.270 However, 
animal models suggest that the role of RAGE in asthma 
requires further studies because in the model the presence 
of RAGE is critically required for the asthmatic response to 
natural allergens.271

Vitamins. Vitamins have been widely studied for their 
contribution to chronic lung diseases, and vitamin levels can be 
used to determine increased risk for developing disease. In the 
ECLIPSE study, low levels of vitamin D in blood – reflecting 
insufficient nutritional intake and insufficient exposure to 
sunlight – were related to the presence of emphysema, exercise 
capacity, airways reactivity, and blood CCSP levels.272 Abnor-
mally low circulating levels of vitamin D have been related 
to exacerbations of asthma and asthma susceptibility.273  

However, vitamin D as an add-on therapy for asthma has 
shown inconsistent results,274,275 suggesting that an optimal 
level of vitamin D may be required.

Coagulation markers. Coagulation markers have long 
been implicated in chronic lung diseases. Serum von Wille-
brand factor, a glycoprotein that is a marker of endothelial 
cells and initiates coagulation, has been reported to indicate 
early structural and functional changes of the pulmonary 
vasculature and to be an interesting marker for COPD.276 
Inflammation in the lungs causes another coagulation cascade 
initiation protease, tissue factor activity to be expressed and 
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to be released via exosomes from mononuclear cells, airway 
epithelial cells, and endothelial cells.277,278 By this mechanism, 
tissue factor causes increased coagulation due to inflammation 
or tissue injury, including asthma.279–281 Abnormally increased 
or decreased coagulation leading to pulmonary intravascular 
thrombosis or contributing to pulmonary hemorrhage can be 
seen in pulmonary hypertension.282–285

Microbiome. Markers to distinguish an intact micro-
biome from a microbiome that protects, predisposes, or causes 
disease are being refined in ongoing research.31,286–288 The most 
frequently used methodology consists of deep sequencing of 
16S ribosomal (r)RNA of bacteria.289,290 Additionally, sequenc-
ing methods to study the fungal and viral microbiomes and 
metabolic state of a specific microbiome are in development 
as tool for the understanding of chronic lung diseases.28,291 The 
sequencing approach circumvents the necessity to culture bacte-
ria, virus, or fungi and allows for detection of microbes that can-
not be cultured. Furthermore, sequencing allows the vastness 
of the microbiome to be appreciated. Changes in the micro-
biome of the lungs in COPD are currently being mapped out 
to understand the recurrent microbial infections that cause hos-
pitalizations and exacerbations of COPD.29,30,291,292 Viral infec-
tions, including rhinovirus293 and respiratory syncytial virus,294 
are thought to initiate asthma in early life and are major triggers 
of exacerbations in asthma patients of all ages.295,296 Further-
more, when compared with controls, patients with uncontrolled 
asthma had a higher microbiota burden in the airways.297

Conclusions
The lungs are catching up with many other organs for the 
availability of molecular biomarkers that would indicate 
molecular disease processes or detect injury to specific cell 
types in the lungs. The readily available specific lung and right 
heart function tests may have slowed the discovery of molecu-
lar biomarkers. In addition to lung and right heart function 
tests, imaging was also developed early, with bronchoscopy 
providing for direct inspection of airways and the ability to 
obtain biopsies of lung and lung-draining lymph node tissue 
under visual guidance.298 Furthermore, high-resolution CT, 
positron emission tomography, and magnetic resonance imag-
ing scans are allowing for detailed imaging of lungs and 
heart.299–303 The disadvantages of the above tests include the 
specialized equipment, the invasiveness of some of the pro-
cedures (bronchoscopy, right heart catheterization), and the 
time required and the potential for radiation exposure by the 
imaging procedure.304–306

New therapies that are specific to a molecular pathway 
are still in clinical trials or have been approved during the past  
10 years, eg, anti-IgE or anti-IL-13/anti-IL-4 for asthma. 
These new therapies have provided demand to identify molec-
ular biomarkers so that therapies can be personalized for the 
disease driving molecular process.19,57,62,307,308 Improved thera-
pies and management of a deadly condition, pulmonary hyper-
tension, have led to improved quality of life and increased life 

expectancy.309 This clinical success in pulmonary hypertension 
has created demand for the development of molecular biomark-
ers for early detection and better matching of aberrant dis-
ease-causing molecular process and therapy.21,113,310 Improved 
detailed imaging of lungs of COPD patients has resulted in 
the detection of early changes in the lung structure,311 and 
there is a great demand for prognostic biomarkers.101,103,173,174

For these reasons, it is expected that in the future molec-
ular biomarkers will become critically important tools for the 
clinical management of many of the chronic lung diseases.
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