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Abstract

Exposure of P. aeruginosa to the aminoglycoside (AG) paromomycin (PAR) induced

expression of the PA3720-armR locus and the mexAB-oprM multidrug efflux operon that

AmgR controls, although PAR induction of mexAB-oprM was independent of armR. Multiple

AGs promoted mexAB-oprM expression and this was lost in the absence of the amgRS

locus encoding an aminoglycoside-activated envelope stress-responsive 2-component sys-

tem (TCS). Purified AmgR bound to the mexAB-oprM promoter region consistent with this

response regulator directly regulating expression of the efflux operon. The thiol-active

reagent, diamide, which, like AGs, promotes protein aggregation and cytoplasmic mem-

brane damage also promoted AmgRS-dependent mexAB-oprM expression, a clear indica-

tion that the MexAB-OprM efflux system is recruited in response to membrane perturbation

and/or circumstances that lead to this. Despite the AG and diamide induction of mexAB-

oprM, however, MexAB-OprM does not appear to contribute to resistance to these agents.

Introduction

Pseudomonas aeruginosa is a common nosocomial human pathogen [1, 2] often associated with

pulmonary infections in patients with cystic fibrosis [3]. The organism has an impressive intrin-

sic antimicrobial resistome [4] and readily develops resistance during antimicrobial therapy via

mutation and horizontal gene transfer [5–7]. Major contributors to intrinsic and acquired anti-

microbial resistance in P. aeruginosa are a number of broadly-specific multidrug efflux systems

of the RND family [8]. One of these, MexAB-OprM, which contributes to both intrinsic [9] and

acquired (i.e., mutational) [6] resistance, exhibits one of the broadest substrate profiles of the

RND pumps in P. aeruginosa, accommodating a wide range of clinically-relevant [10–12] and

experimental [13] antimicrobials as well as biocides [14] and a variety of non-clinical agents

(e.g., organic solvents [15], dyes [16, 17], detergents [17], herbicides [18] and acylhomoserine
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lactones (AHLs) associated with quorum-sensing (QS) [19]. Clinically, this efflux system is

most noted for its contribution to acquired fluoroquinolone and β-lactam resistance [6].

Expression of mexAB-oprM is controlled by several regulators including two repressors,

MexR [20] and NalD [21], that each act at one of two promoters occurring distal (PI, MexR)

[22] and proximal (PII, NalD) [21] to the efflux locus. Mutations in each of these genes are

associated with efflux gene hyperexpression and multidrug resistance in both lab [20] [23] [24,

25] and clinical [26] [25, 27, 28] isolates. MexR binding to its promoter is modulated by its

redox status (in response to oxidative stress) [29, 30] and by the ArmR anti-repressor, whose

binding to MexR abrogates promoter binding by the repressor [31]. armR occurs as part of the

PA3720-armR operon that is regulated by the product of the divergently-transcribed nalC
repressor gene [32], with nalC mutants showing elevated PA3720-armR expression and, so,

elevated mexAB-oprM expression and multidrug resistance [32] as a result of ArmR modula-

tion of MexR’s repressor activity [31]. The function of PA3720, a protein with no homology to

any characterised protein, remains unknown. nalC lab and clinical isolates expressing mexAB-
oprM and showing a multidrug-resistant phenotype have been reported [32] [33, 34]. Recently,

a homologue of the E. coli CpxR envelope stress response regulator has been identified in P.

aeruginosa and shown to bind to the PI promoter of mexAB-oprM, where it positively influ-

ences efflux gene expression [35]. Interestingly, mexAB-oprM expression and the multidrug

resistance of MexR- nalB mutants were shown to be partially dependent on CpxR [35]. Finally,

the BrlR regulator of antimicrobial tolerance of P. aeruginosa biofilms [36] has also been

shown to bind to the mexAB-oprM promoter region where it positively influences expression

of the efflux operon, which thus contributes to biofilm antimicrobial tolerance [37].

Despite the identification of a number of mexAB-oprM regulators, the naturally-occurring

signals to which they respond and the intended substrates and, so, function of the efflux system

remain largely unknown. Chlorinated phenols, including the pesticide pentachlorophenol

(PCP) that is an uncoupler of oxidative phosphorylation [38], have been shown to induce

expression of the PA3720-armR and mexAB-oprM operons, in part owing to their ability to

bind and, so, modulate the repressor activity of NalC [39, 40]. Still, some PCP induction of

mexAB-oprM is seen in mutants lacking the ArmR anti-repressor but dependent on MexR, an

indication that this agent operates though multiple channels in driving expression of this efflux

operon. In any case, it seems unlikely that PCP is the intended natural substrate/inducer but

may mimic naturally-occurring plant-derived phenolic compounds that could be. NalD has

been shown to bind novobiocin, a known MexAB-OprM substrate, with novobiocin binding

abrogating NalD interaction with its DNA target, thereby enhancing PII promoter activity

[41]. Still, it is far from clear that this gyrase-targeting [42, 43] antimicrobial is an intended

inducer and substrate for this system. The identification of a CpxR homologue as a regulator

of mexAB-oprM would suggest that the efflux system responds to envelope stress. Still, an enve-

lope stress-response two-component system (TCS) that regulates genes reminiscent of E. coli
CpxR targets, AmgRS, has already been described in P. aeruginosa, despite AmgRS being a

homologue of the E. coli osmotic stress-responsive TCS, OmpR-EnvZ [44]. As such, P. aerugi-
nosa CpxR may respond to signals other than those related to envelope perturbation. Finally, a

recent report documents a transient, early log phase induction of mexAB-oprM in response to

Ca2+ [45], although the regulator mediating this and the Ca2+-generated signal(s) to which the

system is responding have not been identified.

The current study was undertaken to follow up a preliminary observation that exposure of P.

aeruginosa to the aminoglycoside (AG), PAR, induced the PA3720-armR operon, which sug-

gested that this antimicrobial might also upregulate mexAB-oprM expression. We confirm that

it and, in fact, several AGs, do indeed induce mexAB-oprM expression. Surprisingly, however,

this was independent of the ArmR anti-repressor and instead dependent on the aforementioned
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AmgRS envelope stress-responsive TCS. These results suggest that the generation of certain

product(s) of envelope stress and/or cellular conditions that promote envelope perturbation

require MexAB-OprM function and, so, promote it’s production.

Materials and methods

Bacterial strains and plasmids

Bacterial strains and plasmids used in this study are listed in Table 1. Plasmid pEX18Tc and its

derivatives were maintained in E. coli with 5 (in L-broth) or 10 (on L-agar) μg/ml tetracycline.

Plasmid pET23a and its derivatives were maintained in E. coli with ampicillin (100 μg/ml).

DNA methods

Standard protocols were used for restriction endonuclease digestions, ligations, transforma-

tions and agarose gel electrophoresis, as previously described [55]. Plasmid DNA was extracted

from E. coli using the Fermentas GeneJET Plasmid Miniprep Kit or the Qiagen Plasmid Midi

Kit according to protocols provided by the manufacturers. Chromosomal DNA was extracted

from P. aeruginosa using the Qiagen DNeasy Blood & Tissue Kit according to a protocol pro-

vided by the manufacturer. PCR products and restriction endonuclease digest products requir-

ing purification were purified using the Promega Wizard SV Gel and PCR Clean-Up System

according to a protocol provided by the manufacturer. Plasmid DNA was introduced into

CaCl2-competent E. coli cells, which were prepared as previously described [55].

Table 1. Bacterial strains and plasmids.

Strain Relevant genotypea Source

E. coli
DH5α φ80ΔlacZΔM15 endA1 recA1 hsdR17(rK

-mK
+) supE44 thi-1 gyrA96 relA1 F- Δ(lacZYA-argF) U169 [46]

S17-1 thi pro hsdR recA Tra+ [47]

E. coli Bl21 DE3 (pLysE) F-ompTrB
- mB

-; DE3 is a lambda derivative carrying lacI and a T7 RNA polymerase gene under placUV5 control [48]

P. aeruginosa
K767 PAO1 wild-type P. aeruginosa [49]

K1491 K767ΔmexR [50]

K3415 K767ΔarmR [39]

K1523 K767ΔmexB [51]

K1525 K767ΔmexXY [52]

K1542 K767ΔmexXY ΔmexB [53]

K3793 K767ΔnalD This study

K3794 K767ΔmexR ΔnalD This study

K3519 K767ΔamgR [54]

K3583 K767ΔamgS [54]

K3260 K767 derivative carrying the amgSV121G

mutation

[54]

K3249 K767 derivative carrying the amgSR182C

mutation

[54]

Plasmids

pET23a Expression plasmid; ApR Novagen

pMJF34 pET23a::amgR This study

aTcR, tetracycline resistance;

ApR, ampicillin resistance.

https://doi.org/10.1371/journal.pone.0205036.t001
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Oligonucleotide synthesis was performed by Integrated DNA Technologies (Coralville, Iowa),

and nucleotide sequencing was performed by ACGT Corporation (Toronto, Canada).

Susceptibility testing

The antimicrobial susceptibility of various P. aeruginosa strains was assessed using the 2-fold

microtiter broth dilution method as described previously [56]. The minimum inhibitory con-

centration (MIC) was recorded as the lowest concentration of antibiotic inhibiting visible

growth after 18 hours of incubation at 37˚C.

Quantitative RT-PCR

P. aeruginosa cells grown overnight in L-broth at 37˚C were subcultured (1:49) in the same

medium and incubated at 37˚C until cultures reached an optical density at 600 nm (OD600) of

0.6–0.8. Total RNA was isolated, purified and reverse transcribed into cDNA as described previ-

ously [57]. Where specified, the antimicrobials paromomycin (PAR; 256 μg/ml), neomycin

(NEO; 64 μg/ml), gentamicin (GEN; 2 μg/ml), tobramycin (TOB; 1 μg/ml), kanamycin (KAN;

128 μg/ml), chloramphenicol (CAM; 32 μg/ml), tetracycline (TET; 16 μg/ml), erythromycin

(ERY; 512 μg/ml), azithromycin (AZI; 512 μg/ml) and diamide (DIA; 4 mM) were added at

their respective MICs 30 minutes prior to harvesting cells. In some experiments, P. aeruginosa
was pretreated with CAM (128 μg/mL) for 15 min prior to the addition of neomycin at its MIC.

The primers used in quantitative real-time PCR (qPCR) were designed to amplify gene frag-

ments with lengths of 138 bp (mexA; Forward: CAGCAGCTCTACCAGATCG; Reverse:

CGTACTGCTGCTTGCTCA),123 bp (armR; Forward: CAACAAACCGTCCCGCAC;Reverse:

GTAGAGGTCCCAGGCATTGC) and 188 bp (PA3720; Forward: GATGCCTTTCCCTTGGTCCA;

Reverse: TCCTTGAGCCACAACACCAG).The rpoD reference gene was amplified as described

previously [58]. The amplification efficiencies of the qRT-PCR primer sets were 102.8% (corre-

lation co-efficient, r2 = 0.997) for mexA, 100.3% for armR (r2 = 0.997) and 101.2% for PA3720

(r2 = 0.994). The qRT-PCR reaction mixtures, amplification parameters, and melt curve analyses

were performed as previously described [39, 59]. The expression levels of mexA, PA3720 and

armR were normalized to that of the reference gene rpoD using the ΔΔC(t) method provided by

the CFX-manager software version 1.6 (Bio-Rad) and are reported as fold change relative to that

in the wild-type P. aeruginosa PAO1 strain K767, unless otherwise specified. A minimum of

three biological replicates each performed in triplicate were carried out for all samples. In all

instances, no-template controls were carried out to ensure the absence of DNA contamination.

Expression and purification of AmgR

To facilitate the purification of AmgR, a C-terminal polyhistidine tag was engineered onto

AmgR by cloning the amgR gene into plasmid pET23a. The amgR gene was amplified by PCR

using primers AmgR-His-For (5’-GATCCATATGTCGAACCCTGCCGCCCT-3’; NdeI site

underlined) and AmgR-His-Rev (5’-GATCCTCGAGGGCCTTGCGCGCGTTGCCGTC-3’;

XhoI site underlined) in a 50 μl PCR mixture that contained 1 μg P. aeruginosa PAO1 strain

K767 chromosomal DNA, 0.6 μM of each primer, 0.2 mM of each dNTP, 1 x Phusion GC

buffer and 1 U of Phusion polymerase (New England Biolabs). The mixture was heated for 30

sec at 98˚C, followed by 30 cycles of 30 sec at 98˚C, 30 sec at 65.0˚C, 30 sec at 72˚C, concluding

with 7 min at 72˚C. The PCR product was gel-purified, digested with NdeI and XhoI and

cloned into NdeI-XhoI-restricted pET23a to yield pET23a::amgR (pMJF34) encoding His-

tagged AmgR. Following nucleotide sequencing of the cloned gene to confirm the absence of

PCR-generated mutations, plasmid pMJF34 was introduced into E. coli Bl21(DE3) harbouring

the pLysE plasmid via transformation. AmgR-His was then expressed and purified from 50 ml
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of culture as previously described [39], with the exception that IPTG-induced expression of

the amgR gene on pMJF34 was carried out for 90 min.

Electrophoretic mobility shift assay

The binding of purified AmgR to a DNA fragment encompassing the intergenic region

upstream of mexAB-oprM was assessed using the electrophoretic mobility shift assay (EMSA)

as described previously [39]. The intergenic region was amplified on a 315-bp fragment using

primers K9 and K10 [22] in a 50-μl reaction mixture containing 1 μg of purified P. aeruginosa
PAO1 strain K767 chromosomal DNA, 0.6 μM of each primer, 0.2 mM of each dNTP, 1 x Phu-

sion HF buffer, 5% (vol/vol) dimethylsulphoxide and 1 U of Phusion polymerase (New

England Biolabs). The mixture was heated at 98˚C for 30 sec, followed by 30 cycles of 30 sec at

98˚C, 30 sec at 65.0˚C, 15 sec at 72˚C, concluding with 7 min at 72˚C. The DNA fragment was

gel purified and quantified using a NanodropTM 2000 Spectrophotometer (Thermo Fisher Sci-

entific). To assess the specificity of any binding observed, excess sheared salmon sperm DNA

(100 μM) was added to the reaction mixtures prior to the addition of AmgR.

Membrane depolarization assay

A previously described fluorometric assay [60] involving the membrane potential-sensitive

dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)], was employed to measure

the degree of cytoplasmic membrane (CM) depolarization promoted by diamide treatment of

P. aeruginosa. Briefly, early log phase (OD600 = 0.3–0.5) L-broth subcultures of P. aeruginosa
were exposed (or not) to diamide (4 mM final concentration). Samples (5 mL) were taken

immediately and then hourly over 3 h and incubated with DiBAC4(3) (Invitrogen, Burlington,

Ontario, Canada; 10 μg/ml final concentration) in the dark for 5 min at 37˚C. Bacteria were

then pelleted and resuspended in phosphate-buffered saline [61] to a final OD600 of 0.1. The

membrane depolarization-dependent fluorescence emitted by cells was measured using a Var-

ian (now Agilent, Mississauga, Ontario, Canada) Cary Eclipse fluorescent spectrophotometer

with excitation and emission wavelengths of 490 and 518, respectively.

Results

Aminoglycoside-induced expression of mexAB-oprM
DNA microarray analysis of wild-type (WT) P. aeruginosa PAO1 strain K767 treated with the

AG, PAR, revealed an increase in expression of the PA3720-armR two-gene operon (K. Poole,

unpublished) whose products regulate expression of the mexAB-oprM multidrug efflux operon

[31, 32]. To validate the results of the transcriptome analysis, log-phase K767 cells were simi-

larly treated with the MIC of PAR, and expression of the PA3720 and armR genes were

assessed using qRT-PCR. In agreement with the microarray data, treatment with PAR led to

an increase (~4-fold) in expression of the PA3720 and armR genes (Fig 1). ArmR is an anti-

repressor for the mexAB-oprM repressor [31], MexR, and its expression in so-called nalC
mutants is responsible for the elevated mexAB-oprM expression and multidrug resistance of

these mutants [32]. It was, therefore, hypothesized that the PAR-promoted increase in armR
expression and, ultimately, ArmR production, would also drive derepression of the mexAB-
oprM operon. Indeed, PAR provided for a ~2-fold increase in mexA gene expression (as a mea-

sure of mexAB-oprM expression) relative to the untreated K767 strain (Fig 1). Surprisingly,

however, mexAB-oprM expression was still PAR-inducible in a mutant lacking armR (Fig 1),

an indication that PAR induction of mexAB-oprM expression was not mediated by ArmR.
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To assess whether PAR induction of this efflux system was specific to this AG or a more gen-

eral property of this antimicrobial class, additional AGs were assessed for an ability to induce

mexAB-oprM expression. Like PAR, the AGs KAN and NEO induced mexAB-oprM expression

at their MICs, with NEO showing the best induction amongst all of the AGs tested (Fig 2). In

contrast, GEN provided for a minimal increase in mexAB-oprM expression and TOB failed to

induce this efflux operon, also at their MICs (Fig 2). Despite the induction of mexAB-oprM,

however, this efflux system does not appear to contribute to AG resistance in P. aeruginosa–loss

of MexAB-OprM in both WT strain K767 and a mutant derivative lacking the MexXY efflux

system linked to intrinsic AG resistance did not impact AG susceptibility (Table 2).

AG induction of the mexAB-oprM operon is independent of the MexR and

NalD repressors

The mexAB-oprM operon is regulated by 2 direct repressors, MexR [22] and NalD [21], one or

both of which might mediate the observed AG inducibility of this efflux operon. To assess this,

the impact of a mexR or nalD deletion on AG induction of mexAB-oprM expression was

Fig 1. PAR induction of PA3720-armR and mexAB-oprM expression. Expression of PA3720, armR and mexA was assessed in log-phase WT P. aeruginosa
strain K767 following a 30-minute exposure to the MIC of the AG, paromomycin (PAR; 256 μg/ml) using qRT-PCR. mexA expression was also assessed in a

ΔarmR derivative of K767, K3415, following exposure (30 min) to the MIC of PAR (256 μg/ml) using qRT-PCR. In all cases, expression was normalized to

rpoD and is reported relative to the untreated WT P. aeruginosa strain K767 (fold-change). Values shown are means ± standard errors of the means (SEMs)

from at least three independent determinations, each performed in triplicate. t-test: �, P< 0.05; ���, P< 0.001.

https://doi.org/10.1371/journal.pone.0205036.g001
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assessed. If AGs somehow obviate MexR or NalD repressor activity in promoting increased

mexAB-oprM expression, AG induction of mexAB-oprM expression should be lost in either a

mexR or nalD knockout strain. Individual deletions of the mexR and nalD genes in the WT

K767 strain led to the expected increase in mexAB-oprM expression (Fig 3). Still, exposure of

these mutants to the AG, NEO, still produced an increase in mexAB-oprM expression (Fig 3).

Similar results were obtained with a mutant lacking both repressor genes, where loss of both

mexR and nalD provided for an increase in mexAB-oprM expression that was, nonetheless,

Fig 2. AG induction of mexAB-oprM expression. mexA expression was assessed in log-phase WT P. aeruginosa strain K767 following a 30-minute exposure

to the MIC of the AGs, paromomycin (PAR; 256 μg/ml), neomycin (NEO; 64 μg/ml), gentamicin (GEN; 2 μg/ml), tobramycin (TOB; 1 μg/ml), and kanamycin

(KAN; 128 μg/ml) using qRT-PCR. Expression was normalized to rpoD and is reported relative to the untreated K767 (fold change). Values are means ± SEMs

from at least three independent determinations, each performed in triplicate. t-test: �, P< 0.05; ���, P< 0.001.

https://doi.org/10.1371/journal.pone.0205036.g002

Table 2. Impact of mexAB-oprM loss on AG susceptibility.

Strain Genotype MIC (μg/ml) for:a

GEN PAR NEO KAN

K767 WTb 4 256 64 128

K1523 ΔmexB 4 256 64 128

K1525 ΔmexXY 2 32 32 64

K1542 ΔmexXY ΔmexB 2 32 32 64

aGEN, gentamicin; PAR, paromomycin; NEO, neomycin; KAN, kanamycin.
bWT, wild type

https://doi.org/10.1371/journal.pone.0205036.t002
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elevated further upon exposure to NEO (Fig 3). Thus, AG induction of this efflux operon is

independent of the MexR and NalD repressors.

AmgRS mediates AG induction of mexAB-oprM expression

AmgRS, an AG-responsive TCS in P. aeruginosa that functions as part of an envelope stress

response to AG-induced CM-damaging aberrant polypeptides, was recently shown to play a

role in AG-induced expression of the AG resistance-promoting mexXY multidrug efflux

operon [44, 54, 62]. This TCS might, thus, mediate the AG induction of mexAB-oprM. To

assess this, the impact of AmgRS loss on PAR induction of mexAB-oprM expression was deter-

mined. As seen in Fig 4A, mutants lacking amgR or amgS were deficient for PAR-inducible

expression of mexAB-oprM, an indication that AG induction of this efflux system was depen-

dent on the AmgRS TCS. Consistent with this, mexAB-oprM expression promoted by the

other AGs was similarly lost in the amgR deletion strain (Fig 4B). As expected, activation of

AmgRS as a result of amgS gain-of-function mutations (V121G and R182C) also promoted an

increase in mexAB-oprM expression, independent of AG exposure (Fig 4C). This did not, how-

ever, parallel an increase in resistance to representative MexAB-OprM substrate antimicrobials

(e.g. carbenicillin, chloramphenicol, nalidixic acid; Table 3). As well, despite its link to mexAB-
oprM and a common inducibility by PAR, the PA3720-armR operon retained its PAR

Fig 3. MexR- and NalD-independent AG induction of mexAB-oprM expression. mexA expression was assessed in P. aeruginosa strains K1491 (ΔmexR),

K3793 (ΔnalD) and K3794 (ΔmexRΔnalD) following a 30-minute exposure to the MIC of neomycin (NEO; 64 μg/ml for all strains) using qRT-PCR.

Expression was normalized to rpoD and is reported relative to the untreated K767 strain (fold change). Values are means ± SEMs (error bars) from at least

three independent determinations, each performed in triplicate. t-test: �, P< 0.05; ��, P< 0.01.

https://doi.org/10.1371/journal.pone.0205036.g003
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Fig 4. AmgRS-dependent AG-inducible mexAB-oprM expression. (A) mexA expression was assessed in log-phase cultures of WT P. aeruginosa strain K767 and its

ΔamgR (strain K3159) and ΔamgS (strain K3583) derivatives following exposure to the MIC of PAR (K767, 256 μg/ml; K3159, 16 μg/ml; K3583, 16 μg/ml) for 30 min

using qRT-PCR. (B) mexA expression was assessed in log-phase cultures of P. aeruginosa strains K767 (WT; AmgR+) and K3159 (ΔamgR; AmgR-) exposed to the MIC

of the indicated antimicrobials (-, no antimicrobial; NEO, neomycin; GEN, gentamicin; KAN; kanamycin) using qRT-PCR. Antimicrobials were used at: NEO, 64

(K767) and 4 (K3159) μg/ml; GEN, 2 (K767) and 0.5 (K3159) μg/ml; KAN, 128 (K767) and 16 (K3159) μg/ml. (C) mexA expression was assessed in strains harbouring

WT (K767) and mutant (K3288, AmgSV121G; K3249, AmgSR182C) amgS genes using qRT-PCR. (D) armR and PA3720 expression was assessed in log-phase cultures of

P. aeruginosa strains K767 (WT), K3159 (ΔamgR), and K3583 (ΔamgS) exposed to the MIC of PAR for 30 min using qRT-PCR. Expression in all cases was normalized

to rpoD and is reported relative to the untreated K767 strain (fold change). Values are means ± SEMs from at least three independent determinations, each performed

in triplicate. t-test: �, P< 0.05; ��, P< 0.01; ���, P< 0.001.

https://doi.org/10.1371/journal.pone.0205036.g004

Table 3. Impact of amgS gain-of-function mutations on antibiotic susceptibility.

Strain AmgSa MIC (μg/ml) for:b

CAR CAM NAL NOV

K767 WT 64 64 128 1024

K3260 V121G 64 32 128 2048

K3249 R182C 64 64 128 1024

aThe amino acid change in AmgS in the indicated mutants is highlighted. WT, wild type.
bCAR, carbenicillin; CAM, chloramphenicol; NAL, nalidixic acid; NOV, novobiocin.

https://doi.org/10.1371/journal.pone.0205036.t003
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inducibility in the amgR deletion strain (Fig 4D) an indication that these operons can be inde-

pendently regulated.

AmgR binds to the mexAB-oprM promoter region

The regulation of mexAB-oprM by AmgRS is most simply explained by AmgR directly control-

ling expression of the efflux operon from a promoter upstream of the efflux genes. To assess

this, binding of AmgR to the mexAB-oprM promoter region was assessed using an EMSA. As

seen in Fig 5A, purified AmgR bound to a DNA fragment that encompassed the intergenic

region upstream of mexAB-oprM. Moreover, binding was retained in the presence of excess

competitor DNA (Fig 5B), an indication that binding was specific.

Role of cytoplasmic membrane perturbation in AG-induced mexAB-oprM
expression

It has been demonstrated that AmgRS responds to and protects cells from envelope stress

caused by AG-generated mistranslated/misfolded proteins that damage the cytoplasmic mem-

brane (CM) [44, 54, 62]. Previous reports demonstrated that treatment of WT P. aeruginosa
with CAM, a protein translation inhibitor, prior to the addition of an AG, blocked AG-pro-

moted CM damage, consistent with is blockage of mistranslated protein synthesis [62]. To

assess if AG-promoted CM damage is responsible for AmgRS-dependent induction of mexAB-
oprM expression by AGs, WT P. aeruginosa K767 cells were pre-treated with CAM prior to the

addition of the AG, NEO, and mexA expression was measured. CAM pre-treatment of cells

prevented NEO induction of mexAB-oprM expression (Fig 6), consistent with it blocking AG-

generated mistranslated/misfolded proteins and subsequent CM damage. Still, it was also

observed that CAM alone negatively influenced mexAB-oprM expression (Fig 6). As such, it is

unclear whether AG-induced mexAB-oprM expression follows from AG generation of mem-

brane-damaging mistranslation products.

mexAB-oprM is inducible by additional ribosome-perturbing agents

The observation that AG induction of mexAB-oprM is AmgRS-dependent and that CAM,

another ribosome-targeting agent, fails to induce the efflux system, is consistent with AG-gen-

erated membrane-damaging mistranslation products being key to AG-promoted mexAB-
oprM expression. As such, only mistranslation-promoting AGs are likely to induce this efflux

system. To assess this, a number of additional agents that target the ribosome but do not

Fig 5. AmgR binds to the mexAB-oprM promoter region. (A) Electromobility shift assay in which 40 ng of a 351-bp

DNA fragment encompassing the intergenic region upstream of mexAB-oprM was incubated with increasing

concentrations of purified AmgR as indicated. (B) Electromobility shift assay in which the above-mentioned 351-bp

DNA fragment was incubated with the indicated concentration of AmgR in the absence (-) and presence (+) of 200 ng

of sheared salmon sperm DNA (sssDNA).

https://doi.org/10.1371/journal.pone.0205036.g005

Regulation of the mexAB-oprM multidrug efflux operon by the AmgRS envelope stress response 2-component system

PLOS ONE | https://doi.org/10.1371/journal.pone.0205036 October 5, 2018 10 / 19

https://doi.org/10.1371/journal.pone.0205036.g005
https://doi.org/10.1371/journal.pone.0205036


promote mistranslation (TET, ERY, AZI) [63] were assessed for an ability to induce expression

of the mexAB-oprM operon. As with CAM, treatment of WT P. aeruginosa K767 with the MIC

of TET yielded a decrease in mexAB-oprM expression (2-fold; Fig 7A). In contrast, treatment

of K767 with ERY or AZI increased mexAB-oprM gene expression (2.5-fold; Fig 7A). Still, this

was independent of AmgR–induction of mexAB-oprM expression by ERY and AZI was

Fig 6. Impact of chloramphenicol on AG induction of mexAB-oprM expression. mexA expression was assessed in log phase cells of P. aeruginosa strain

K767 exposed to NEO (at MIC; 64 μg/ml) for 30 min without (-) and with (+) a 15-min pre-treatment with chloramphenicol (CAM; 128 μg/ml) using

qRT-PCR. In a control experiment, K767 was also exposed to 128 μg/ml CAM in the absence of NEO, to assess its impact on mexA expression on its own.

Expression was normalized to rpoD and is reported relative to the untreated K767 strain (fold change). Values are means ± SEMs from at least three

independent determinations, each performed in triplicate. t-test: ��, P< 0.01.

https://doi.org/10.1371/journal.pone.0205036.g006

Regulation of the mexAB-oprM multidrug efflux operon by the AmgRS envelope stress response 2-component system

PLOS ONE | https://doi.org/10.1371/journal.pone.0205036 October 5, 2018 11 / 19

https://doi.org/10.1371/journal.pone.0205036.g006
https://doi.org/10.1371/journal.pone.0205036


retained in an amgR null mutant (Fig 7B; see K3519). Thus, ribosome perturbation alone is

insufficient for AmgRS-promoted mexAB-oprM expression. While macrolide-induced

mexAB-oprM expression is clearly mediated by a different regulatory pathway, it is unclear

whether it follows from ribosome perturbation or some other impact of these agents on P.

aeruginosa.

Diamide-promoted mexAB-oprM expression

In addition to their contribution to CM damage, AGs [e.g. streptomycin (STR)] have also been

shown to cause protein aggregation in E. coli, also as a result of AG-induced mistranslation

[64]. Like AGs, the thiol-specific oxidant, diamide (DIA) has also been shown to promote pro-

tein misfolding and aggregation [65–67] although an impact on membranes has never been

assessed. To assess whether protein aggregation might be playing a role in AmgRS-driven

mexAB-oprM expression the impact of diamide on expression of the efflux operon was

assessed. Treatment of WT P. aeruginosa strain K767 with the MIC of diamide induced

mexAB-oprM expression (~3.5-fold; Fig 8) and this was dependent on AmgR (Fig 8). Interest-

ingly diamide was also shown to be modestly CM perturbing, promoting a transient increase

in membrane depolarization (at 1 h post-diamide addition; Fig 9) and, as with AGs [60, 62],

this was enhanced in a mutant lacking amgR (Fig 9). Thus, AmgRS appears to protect P. aeru-
ginosa from CM perturbation promoted by diamide.

Discussion

AmgR represents yet another direct regulator of the mexAB-oprM multidrug efflux operon,

highlighting the complexity of the regulation of this locus and the apparent diversity of signals

and growth conditions to which it responds. Given the apparent responsiveness of the AmgRS

TCS to envelope stress resultant from cytoplasmic membrane perturbation by AG-generated

mistranslation products, it is likely that the observed AmgRS-dependent induction of mexAB-

Fig 7. AmgRS-independent macrolide induction of mexAB-oprM expression. (A) mexA expression was assessed in log-phase cultures of WT P. aeruginosa strain

K767 exposed to the MIC of tetracycline (TET; 16 μg/ml), erythromycin (ERY; 512 μg/ml) and azithromycin (AZI; 512 μg/ml) for 30 min using qRT-PCR. Expression

was normalized to rpoD and is reported to that of the untreated (-) strain K767. (B) mexA expression was assessed in log-phase cultures of P. aeruginosa strains K767

(AmgR+) and K3159 (AmgR-) exposed to the MIC of ERY or AZI (512 μg/ml for both drugs and both strains) for 30 min using qRT-PCR. In all cases, expression was

normalized to rpoD and is reported relative to that of the untreated strain K767 (fold change). Values are means ± SEMs from at least three independent

determinations, each performed in triplicate. t-test: ��, P< 0.01; ���, P< 0.001.

https://doi.org/10.1371/journal.pone.0205036.g007
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oprM by AGs reflects an envelope stress-inducibility of this efflux locus and, so, a need for

MexAB-OprM under certain conditions of envelope stress. Consistent with this, another agent

shown here to be membrane perturbing, diamide, also showed AmgRS-dependent induction

of mexAB-oprM expression and this TCS appeared to protect P. aeruginosa somewhat from

diamide-mediated membrane damage. While CM perturbation is not a heretofore reported

property of diamide, it has been shown that a mutant of Xanthamonas campestris pv. campes-
tris lacking the RpoE envelope stress response sigma is more sensitive to diamide than WT X.

campestris [68], further support for this agent being membrane-damaging. It is interesting to

note, too, that the AG induction of mexAB-oprM was variable and reflected the AG responsive-

ness of AmgRS [54] with PAR and NEO being the better inducers/activators while, for

Fig 8. AmgRS-dependent diamide induction of mexAB-oprM expression. mexA expression was assessed in log-phase cultures of P. aeruginosa strains K767

(AmgR+) and K3159 (AmgR-) following a 30-min exposure to the MIC of diamide (4 mM for both strains) using qRT-PCR. Expression was normalized to rpoD
and is reported to that of the untreated strain K767 (fold change). Values are means ± SEMs from at least three independent determinations, each performed in

triplicate. t-test: ��, P< 0.01.

https://doi.org/10.1371/journal.pone.0205036.g008
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example, TOB failed to induce/activate (at 1X MIC) and, indeed, perturb membranes [62].

Still, despite the induction of this multidrug efflux locus by AGs and diamide, MexAB-OprM

does not appear to play any role in resistance to these agents. It is also possible that AG induc-

tion of mexAB-oprM serves primarily to increase OprM levels, this outer membrane protein

functioning with the proteins products of the similarly AmgRS-regulated and AG-inducible

mexXY efflux operon, with MexXY-OprM a known contributor to AG resistance. Still, oprM
appears to possess its own promoter [69], such that its expression can be driven independently

of mexAB, to ensure, for example, adequate levels of OprM to partner with MexXY without

the need for unnecessary and wasteful induction of the mexAB genes.

While attempts were made to show that AG-promoted mexAB-oprM expression was depen-

dent on protein translation (as evidence for potentially membrane-damaging mistranslation

products being key to AG induction of the efflux locus) the results were inconclusive since clas-

sical translation inhibitors (CAM and TET) themselves had a negative impact on mexAB-oprM
expression, rendering the observed CAM prevention of AG-promoted mexAB-oprM expression

not readily interpretable. Possibly, TET and CAM inhibition of translation interferes with

endogenous mistranslation that might provide basal levels of membrane-damaging aberrant

polypeptides that activate AmgRS and provide for some mexAB-oprM expression. Still, loss of

amgR did not adversely affect endogenous mexAB-oprM expression, arguing against this. Alter-

natively, since CAM is known to induce expression of a 2nd RND type multidrug efflux operon,

Fig 9. Diamide-promoted cytoplasmic membrane depolarization. Cytoplasmic membrane depolarization, as assessed by DiBAC4(3) fluorescence

(arbitrary units; A.U.), was measured over time following exposure of WT strain P. aeruginosa K767 (circles) and its AmgR- derivative, K3159 (squares), to 4

mM diamide (filled symbols) at T = 0 hr. Unexposed cells are represented by unfilled symbols. The data are means ± SEMs of three independent experiments.

Note that the symbols are larger than the error bars, which are thus not visible in the figure. t-test: ���, P< 0.001.

https://doi.org/10.1371/journal.pone.0205036.g009
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mexEF-oprN [70], and mutational upregulation of this efflux operon has been shown to parallel

a possibly compensatory decrease in mexAB-oprM expression [71, 72], the CAM-driven

decrease in mexAB-oprM expression may be secondary to its upregulation of mexEF-oprN. TET

(and CAM) also induces the mexXY RND efflux operon [73] although there is as yet no evi-

dence that this parallels a decrease in mexAB-oprM expression, and other mexXY inducers (AGs

and macrolides) [73, 74] were shown here to promote mexAB-oprM expression. This may, how-

ever, simply reflect these ribosome-targeting agents impacting the P. aeruginosa in ways that

require MexAB-OprM and, so, induce mexAB-oprM expression, masking the negative impact

their possible induction of a 2nd efflux operon might otherwise have on it.

Adding to the complexity of mexAB-oprM regulation is the observed induction of this efflux

locus by the macrolide antibiotics ERY and AZI. That such induction is independent of

AmgRS, consistent with this TCS responding to membrane perturbation and macrolides not

known to provide for membrane damage, speaks to a possibly additional mexAB-oprM regula-

tor mediating this, though at this point one cannot rule out the involvement of one of the

other regulators identified to date. Interestingly, and in contrast to results presented here, it

has been reported that AZI suppresses mexAB-oprM expression in P. aeruginosa [75], which

we can only attribute to differences in growth medium and/or the WT strain used in the two

studies. The observed AG induction of the PA3720-armR operon that encodes the MexR anti-

repressor is also interesting, given that it does not provide for AG induction of mexAB-oprM
expression and, so, suggests that this locus may also influence expression of additional loci.

It is becoming clear that the mexAB-oprM multidrug efflux locus is inducible by a number

of antimicrobial agents although, with few exceptions, the actual inducing signals and intended

efflux substrates are unknown. Thus, while clearly stress-responsive, the actual function of

MexAB-OprM remains to be elucidated.
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