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Abstract: Inflammatory bowel disease (IBD) includes Crohn’s disease (CD) and ulcerative colitis
(UC). These are chronic autoimmune diseases of unknown etiology affecting the gastrointestinal
tract. The IBD population includes a heterogeneous group of patients with varying disease courses
requiring personalized treatment protocols. The complexity of the disease often delays the diagnosis
and the initiation of appropriate treatments. In a subset of patients, IBD leads to colitis-associated
cancer (CAC). MicroRNAs are single-stranded regulatory noncoding RNAs of 18 to 22 nucleotides
with putative roles in the pathogenesis of IBD and colorectal cancer. They have been explored as
biomarkers and therapeutic targets. Both tissue-derived and circulating microRNAs have emerged as
promising biomarkers in the differential diagnosis and in the prognosis of disease severity of IBD as
well as predictive biomarkers in drug resistance. In addition, knowledge of the cellular localization
of differentially expressed microRNAs is a prerequisite for deciphering the biological role of these
important epigenetic regulators and the cellular localization may even contribute to an alternative
repertoire of biomarkers. In this review, we discuss findings based on RT-qPCR, microarray profiling,
next generation sequencing and in situ hybridization of microRNA biomarkers identified in the
circulation and in tissue biopsies.

Keywords: biomarkers; circulating miRNA; colitis-associated cancer (CAC); Crohn’s disease (CD);
inflammatory bowel disease (IBD); microRNA (miRNA); ulcerative colitis (UC)

1. Introduction

Inflammatory bowel disease (IBD) refers to Crohn’s disease (CD) and ulcerative colitis (UC). In UC,
inflammation generally includes the rectum and extends towards the coecum and remains confined
to the colon. In contrast, in CD, inflammation can involve any part of the gastrointestinal tract (GI)
from the oral cavity to the anus. Both CD and UC are associated with multiple pathogenic factors such
as environmental changes, the array of susceptibility gene variants, qualitatively and quantitatively
abnormal gut microbiota and broadly dysregulated immune response [1]. Although CD and UC
have some common pathological and clinical characteristics, they have several different attributes
that imply that they are two distinct disease subtypes. In CD, fissuring ulceration and sub-mucosal
fibrosis can be observed along with granulomatous inflammation. In UC, the inflammatory process
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always involves the rectum [2] and general histological findings include crypt distortion, infiltration of
lymphocytes and granulocytes and chronic inflammation, usually confined to the lamina propria [3].
The diagnosis of IBD is usually established by a collective assessment of clinical presentation and
endoscopic, histopathological, radiographic and laboratory findings. A definitive diagnosis of IBD
cannot be made without detailed endoscopic and histologic assessment [4]. However, a subset of IBD
cases cannot be classified as either CD or UC but are categorized as IBD unclassified (IBDU). Molecular
biomarkers may support differential diagnosis of IBDU cases into CD or UC, or even be helpful in
determining if IBDU represents a unique IBD diagnostic entity.

IBD starts developing at a younger age, including in infants [5], and is often characterized by
a considerable diagnostic and therapeutic challenge because of the disease’s clinical features and
associated complications. The prevalence of IBD in the Western world is projected to be up to 0.5%
of the overall population [6]. In Denmark, where one of the highest annual incidence rates of IBD in
Europe is seen, the incidence has been increasing over the last three decades [7]. In 2013, the incidence
was 9.1 per 100,000 persons and 18.6 per 100,000 persons for CD and UC, respectively [8]. Since the
turn of the 21st century, IBD has become a global disease with accelerating incidence rates also
in developing countries whose societies have adopted a western diet and lifestyle. Although the
incidence rate has become steady in western countries, the burden remains high, as prevalence exceeds
0.3%. The chronical inflammatory condition in the affected colon of IBD patients has been linked to
development of neoplastic lesions in the colon. Several studies have shown a higher incidence of
colorectal cancer (CRC) in IBD patients [9–11]. No biomarkers exist for the identification of IBD patients
at risk of developing colitis-associated cancer (CAC), strongly advocating for more translational
research in this field.

In this review, we give an overview of microRNAs (miRNAs) as candidate biomarkers in the IBD
diagnostic assessment. Changes in miRNA levels are associated with disease development and can be
measured both within the diseased tissue and in the circulation by a variety of molecular methods.
MiRNAs have been found to be well conserved in archived tissue specimens, enabling retrospective
analyses of clinical sample cohorts.

2. MicroRNA—An Introduction

MiRNAs play a central role in the regulation of several immune-mediated disorders including
IBD [12–14]. MiRNAs are a group of small noncoding RNAs, approximately 18–22 nucleotides [15]
which are found conserved across species. Their discovery was first described first in 1993 in
Caenorhabditis elegans [16]. MiRNAs are transcribed as primary transcripts by RNA polymerase,
processed into a precursor miRNA by the RNase III enzyme, Drosha, and exported from the nucleus to
the cytoplasm. The precursor miRNA is cleaved by the RNase III enzyme, Dicer, into its mature form,
which becomes stably incorporated into an RNA induced silencing complex (RISC). The miRNA guides
the binding of the RNA-induced silencing complex to complementary sequences in the 3′-untranslated
regions (UTR) of target mRNA molecules, resulting in either mRNA degradation or translational
inhibition [17]. During stages of miRNA biogenesis, several factors can influence the development of
the mature miRNA. These include regulation of transcription, cleavage of the stem loop structures
by Drosha and Dicer enzymes, and editing as well as regulation of miRNA turnover. Each of these
mechanisms acts as part of a signaling network that modulates gene expression in response to cellular
or environmental changes.

MiRNA expression has been shown to be of importance in a wide variety of human diseases such
as cancer, autoimmune, cardiovascular, and neurodegenerative diseases [14,18–24]. The miRNAs not
only circulate in the human peripheral blood in a stable form, they are also present in other body fluids
such as urine, saliva, milk, cerebrospinal fluid, and feces [25–28]. The miRNAs are engaged in disease
origin and development, and some are pathology-specific [29], thus, changes in miRNA expression
profiles have been addressed for applications in early detection as well as prognostics, diagnostic
classification and drug response prediction.
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3. MiRNAs in IBD

In IBD, miRNAs have been found to be involved in pathogenesis and have been identified as both
diagnostic biomarkers and therapeutic targets [30]. Most of the recent research in the IBD field has
measured levels of circulating miRNAs in body fluids such as blood or feces, and in homogenized tissue
biopsies using techniques like microarray profiling, RT-qPCR, and NGS [27,31–34]. Studies have also
performed tissue miRNA expression analysis using in situ hybridization (ISH) methods [35–37]. ISH
methods for expression analyses of miRNAs can determine the cellular origin of miRNA expression
and can offer insight into the biology of the disease mechanisms involved. Local expression levels
of miRNAs can greatly vary from those of circulating miRNAs, e.g., due to contribution of miRNAs
from circulating cells. Esquela-Kerscher and Slack [38] proposed that tumor cells release miRNAs into
the neighboring microenvironment and enter circulation during angiogenesis. Some studies suggest
that this likely occurs through exosomal release from cells [39,40]. Changes in the levels of circulating
miRNA may occur due to other inflammatory reactions or the host immune response rather than only
due to the intrinsic changes within the lesion [41]. Thus, as discussed further below, it is not surprising
that miRNAs analyzed in tissue biopsies poorly correlate with those found in the circulation [42].

There is an increasing interest in exploring epigenetic mechanisms in common diseases,
with notable progress in characterizing the contribution of miRNAs [43]. In their 2008 study, Wu et al.
found that miRNAs regulate colonic epithelial cell-derived chemokine expression and were the first to
relate miRNAs to IBD [44]. The field of miRNA research has grown rapidly after their discovery in
human disease biology including in IBD [43]. We have listed a series of IBD-related miRNA studies
from recent years in Table 1, with a focus on sample type and quantitative method. MiR-21, miR-155,
and miR-31 have repeatedly been identified and seem to be the most studied miRNAs related to
IBD [15,19,35,45–48]. MiR-21 is possibly the most intriguing miRNA involved in IBD, with associations
between miR-21 and IBD being replicated in several studies, as well as functional relevance reported in
mouse models of IBD [19,23,24,30,35,49]. Each miRNA can potentially target hundreds of mRNAs
resulting in mRNA destabilization and/or inhibition of translation, however, restricted to a specific
cellular context, the number of relevant targetable transcripts is probably quite low.

MiRNAs regulate important cellular functions such as cell differentiation and proliferation and
signal transduction and apoptosis and exhibit highly specific regulated patterns of gene expression [15].
In autoimmune diseases, miRNAs can act through interference with inflammatory signaling pathways,
such as the nuclear transcription factor kappa B (NF-κB) pathway, IL23/IL23R pathway, and IL-6/STAT3
pathway [50–54]. Studying the RhoB pathway of cell adhesion in UC mucosa and cultured colon
cancer cells, Yang et al. [36] examined the role of miR-21 in regulation of intestinal epithelial barrier
function and found that miR-21 induced the degradation of RhoB mRNA, reduction in RhoB protein,
causing loss of tight junctions in intestinal epithelial cells. Tian et al. showed miR-31 to be highly
expressed in tissues from IBD patients, and miR-31 reduced the inflammatory response in the Dextran
Sodium Sulphate (DSS)-induced colitis mouse model (see below), by preventing the expression of
inflammatory cytokine receptors such as IL7R and IL17RA and signaling proteins such as GP130 [55].
Another study based on the DSS model showed that miR-155 directly binds to SHIP-1 mRNA and
causes a significant decrease in SHIP-1 levels, which regulate cell membrane trafficking, and thereby
contribute to the pathogenesis of colitis [56]. Taken together, these examples indicate the complexity of
how miRNAs may act through signaling pathways in the biological settings of IBD.

Studies of circulating miRNAs have shown that miRNAs are potential candidates as biomarkers
for diagnosing IBD and various other diseases [57–61]. The high stability of miRNAs in the body fluids
and the ability to obtain rapid and accurate quantitative estimates are some merits of using circulating
miRNAs as biomarkers in IBD [28]. MiRNAs are not only interesting tools for diagnosis, but also for
potential future therapeutic applications by miRNA mimics or miRNA antagonists [62,63].
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Table 1. A summary of studies on microRNA research in inflammatory bowel disease (IBD). CD: Crohn’s disease, UC: Ulcerative colitis, HC: Healthy controls,
RT-qPCR: Quantitative real time polymerase chain reaction, Biopsy: colon tissue biopsy, ISH: In situ hybridization, QISH: Quantitative in-situ hybridization, PBMC:
Peripheral blood mononuclear cells, DSS: Dextran sodium sulphate, AOM: Azoxymethane, TNF: Tumor necrosis factor alpha.

# MiRNAs Disease Subtype Sample Type Techniques Used Outcome Reference

1

miR-16, miR-29a, miR-199a-5p,
miR-363-3p, miR-340, miR-532-3p,

miRplus-1271, miR-140-3p, miR-127-3p,
miR-196b, miR-877, miR-150

CD, UD, HC Serum, Biopsy RT-qPCR, Microarray Mixed outcomes [42]

2 miR-223-3p, miR-31-5p CD, HC Biopsy Nano string Mir-223-3p expression showed age and sex effects and miR-31-5p expression
was driven by location [45]

3 miR-29b CD Fibroblasts RT-qPCR MCL-1 is modulated in CD fibrosis by miR-29b via IL-6 and IL-8 [64]

4 miR-141, miR-200a, miR-200b, miR-200c UC, CD Biopsy RT-qPCR
All investigated miRNAs were significantly down regulated in CD, and 3 of

them were downregulated in UC in comparison to the normal or the least
affected mucosa.

[65]

5 miR-141 UC, HC Biopsy Microarray, RT-qPCR MiR-141 plays a role in the bowel inflammation of individuals with active UC
via down regulation of CXCL5 expression. [66]

6 miR-124 UC, HC Biopsy RT-qPCR
MiR-124 regulates the expression of STAT3. Reduced levels of miR-124 in
colon tissues of children with active UC appear to increase expression and

activity of STAT3.
[67]

7 miR-19b CD, HC Biopsy, Cell culture RT-qPCR, ISH MiR-19b suppresses the inflammation and prevents the pathogenesis of CD. [68]

8 miR-590-5p CD, HC Human and mice tissues RT-qPCR Decreased miR-590-5p levels in CD. [69]

9 miR-122 CD, HC Biopsy RT-qPCR, Sequencing Significant increase of miR-122 expression in cells treated with 5′-AZA. [70]

10 miR-10a CD, UC, HC Biopsy RT-qPCR Dendritic cell activation and Th1/Th17 cell immune responses were inhibited
via miR-10a in IBD. [71]

11 miR-192 CD, UC, HC Biopsy RT-qPCR, Microarray, ISH MiR-192 with decreased expression in active UC. [44]

12 miR-15a CD, UC, HC Biopsy, Cell cultures RT-qPCR MiR-15a negatively regulates epithelial junctions through Cdc42 in
Caco-2 cells [72]

13 miR-146a, miR-155 CD Biopsy RT-qPCR MiR-146a and -155 shows increased duodenal expression in pediatric CD. [73]

14 miR-146b-5p CD, UC, HC Serum RT-qPCR Higher expression of serum miR-146b-5p in patients with CD and UC than
in HC. [74]

15 miR-425 CD, UC, HC Biopsy, PBMC RT-qPCR Increased expression of miR-425 in IBD. [75]

16 miR-301a IBD PBMC, Biopsy RT-qPCR MiR-301a promotes intestinal mucosal inflammation via induction of IL-17a
and TNF in IBD. [76]

17 miR-125b, miR-155,
miR-223 and miR-138 UC Biopsy RT-qPCR, Microarray Differential expression of miR-223, miR-125b, miR-138, and miR-155 in the

inflamed mucosa compared to non-inflamed mucosa and controls. [48]

18 miR-16, miR-21, miR-155, and miR-223 CD, UC, HC Serum, Feces RT-qPCR Differential expression of miR-16, miR-155, miR-21, and miR-223 in IBD. [47]

19 miR-21 UC, HC Biopsy RT-qPCR, ISH Over expression of miR-21 in UC. [36]

20 miR-133a IBD Mice Tissue RT-qPCR MiR-133a-UCP2 pathway participates in IBD by altering downstream
inflammation, oxidative stress, and markers of energy metabolism. [77]

21 miR-20b, miR-98, miR-125b-1, let-7e CD, UC, HC Biopsy RT-qPCR, Microarray MiR-20b, miR-98, miR-125b-1, and let-7e are deregulated in patients with UC. [78]

22 miR-155 CD, HC PBMC RT-qPCR, Transfection MiR-155 regulates IL-10-producing CD24 CD27+ B Cells. [79]

23 miR-21, miR-126 CD, UC, HC Biopsy RT-qPCR, qISH Endothelial expression of miR-126 are increased in UC. MiR-21 is expressed in
subsets of monocytes/macrophages and T cells. [35]
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Table 1. Cont.

# MiRNAs Disease Subtype Sample Type Techniques Used Outcome Reference

24 miR-31 CD, UC, HC Cell culture, Biopsy RT-qPCR, ISH, Transfection Expression of miR-31-3p in human colonic epithelial cells. [80]

25 miR-21, miR-155 UC, HC Biopsy RT-qPCR MiR-21 and miR-155 was highly expressed in UC. [81]

26 miR-15 UC, HC, IBS Biopsy RT-qPCR MiR-15 activates NF-κB Pathway in UC. [82]

27 miR-143, miR-145 UC, HC Biopsy RT-qPCR, ISH MiR-143 and miR-145 are down regulated in UC. [83]

28 miR-206 UC, HC Cell culture, Biopsy RT-qPCR, MiR-206 as a biomarker for response to mesalamine treatment in UC. [84]

29 miR-193a-3p UC, HC Cell culture, Biopsy RT-qPCR, ISH MiR-193a-3p reduces intestinal inflammation in response to microbiota. [85]

30 miR-19a UC, HC Biopsy, mice tissue RT-qPCR Reduced expression of miR-19a in human colon tissue with UC and in
DSS-treated mice colitis. [86]

31 miR-21-5p UC, HC Sera, rat tissue RT-qPCR, Transfection MiR-21-5p was down regulated in the sera and colon tissue of UC compared
with healthy people and the control group. [87]

32 miR-200b CD, HC Biopsy, Serum. Cell culture RT-qPCR MiR-200b is involved in intestinal fibrosis of CD. [88]

33 miR-155 Colitis Mice tissue, cell culture RT-qPCR, Transfection MiR-155 promotes the pathogenesis of experimental colitis by repressing
SHIP-1 expression. [57]

34 miR-31 IBD, CAC, CRC Biopsy RT-qPCR, Microarray,
Transfection

MiR-31 expression levels as a marker for disease progression and to
discriminate distinct pathological entities that co-exist in IBD. [89]

35 miR-150 UC, HC murine model RT-qPCR MiR-150 was elevated and c-Myb were down regulated in human colon with
active UC compared to HC. [90]

36 miR-122 CD Cell culture RT-qPCR, Transfection
MiR-122 reduces the expression of pro-inflammatory cytokines (TNF and

IFN-γ) and promotes the release of anti-inflammatory cytokines
(IL-4 and IL-10).

[91]

37 miR-141 CD Murine models, Biopsy Microarray, RT-qPCR MiR-141 regulates colonic leukocytic trafficking by targeting CXCL12β
during murine colitis and human CD. [92]

38 miR-7 CD, HC Cell culture, Biopsy Transfection, RT-qPCR MiR-7 modulates CD98 expression during intestinal epithelial
cell differentiation. [93]

39 miR-146b IBD IL-10 deficient mouse Microarray, Transfection,
DSS induced colitis in vivo MiR-146b improves intestinal injury in mouse colitis. [94]

40 miR-21 IBD IL-10 deficient
mouse, Biopsy

DSS-induced Experimental
Colitis, RT-qPCR, ISH MiR-21 is overexpressed in intestinal inflammation and tissue injury. [95]

41 miR-215 UC, CAC Biopsy Nano string MiR-215 discriminates patients who progressed to neoplasia as early as
5 years prior to the diagnosis of neoplasia [96]

42 miR-449a HC, CAC DSS animal model biopsy RT-qPCR, ISH MiR-449a expression decreased gradually during the progression of CAC [97]

43 miR-135a CAC DSS mouse model biopsy ISH, RT-qPCR MiR-135a in colonic cells were suppressed and up-regulating miR-135a
inhibited apoptosis and inflammation of colonic epithelial cells [98]

44 miR-146a, miR-155, miR-122 CD, UC, HC Biopsy RT-qPCR Altered expression of all three miRNAs in colonic mucosa of children
with IBD [46]

45 miR-146a, miR-335,
miR-26b and miR-124 CD, UC, CRC Genome-wide

expression profiles Bioinformatics MiR-146a, miR-335, miR-26b and miR-124 were identified in CD, UC,
and CRC samples [99]

46 miR-155 CAC, HC AOM and DSS mouse
model biopsy Microarray, RT-qPCR MiR-155 is upregulated in and relates to CAC [100]
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To study the pathogenesis and intricacy of IBD, the advancement of a variety of animal models
has provided important information. The most extensively used mouse model of colitis utilizes DSS,
a so-called chemical colitogen with anticoagulant properties, to stimulate epithelial damage. The DSS
colitis model is simple and easy to administer. Acute and persistent colitis is achieved by altering
the concentration of DSS and the frequency of administration [101]. A genetically engineered in vivo
model that has been widely used to examine IBD etiology is the interleukin-10 (IL-10)-deficient mouse
model [102]. IL-10 is an anti-inflammatory cytokine. Mutated IL-10 signaling systems shows early
and aggressive expansion of systemic inflammation in IBD. IL-10 knockout mice develop spontaneous
colitis and CAC [103]. Nata et al. [94] performed miRNA microarray profiling on IL-10-deficient mice
and identified that several miRNAs were upregulated, including miR-146b that, through further studies,
was found to contribute to increased intestinal inflammation by upregulating NF-κB. Shi et al. [95]
showed that knockout of miR-21 in mice improved the survival rate in DSS-induced fatal colitis via
protecting against inflammation and tissue injury. Hence, it was suggested that impaired expression
of miR-21 in gut may block the onset or progression of IBD. Other animal models used in IBD
research include genetically engineered mice, congenic mouse strains, chemically induced models,
and cell-transfer models [104]. Most of the studies investigating miRNA expression in IBD have used
high-throughput methods such as a microarray combined with RT-qPCR as a validation method for
prioritized miRNAs.

4. MiRNA Biomarkers for IBD Diagnosis

The diagnostic assessment of IBD can be challenging; particularly, discriminating CD from UC
can be a diagnostic encounter in cases where the inflammatory lesions are limited to the colon. It is
estimated that 10–15% of IBD cases are categorized as IBDU [105]. Although many IBDU patients
are eventually reclassified as either CD or UC, approximately 75% of the IBDU cases maintain the
diagnosis of IBDU, suggesting that most of the IBDU patients have a distinct diagnostic entity of a
true overlap phenotype between large bowel CD and typical UC [106,107]. Recently, a study that
examined colon biopsies from patients with IBD suggested miR-19a, miR-21, miR-31, miR-146a and
miR-375 as a biomarker profile for discriminating CD and UC [108]. A Study by Peck et al. used a
next-generation sequencing–based approach and found that a combination of miR-31-5p, miR-215,
miR-223-3p, miR-196b-5p and miR-203 could stratify patients with CD according to disease behavior
independent of the effect of inflammation [109]. The lack of reproducibility in miRNA profiling
analyses of IBD samples in independent studies could be due to the technology applied, as well as
the variation in control groups, disease activity and data normalization. It was recently reported
that miR-21 is a potential diagnostic marker for discriminating CD from UC, as both RT-qPCR and
quantitative ISH (qISH) identified significantly higher levels in UC compared with CD [35]. The authors
suggested that miR-21 is not just an unspecific marker of inflammation, but that miR-21 is specific
to the immunopathological process of UC. miR-21 ISH analyses reveal complex expression patterns,
where the miR-21 staining is identified mainly in cells of the inflamed lamina propria as well as in
subsets of epithelial cells of partly damaged crypt structures (example in Figure 1).
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Figure 1. MiR-21 in situ hybridization in ulcerative colitis. The example shows the inflamed colon 
mucosa with transversally cut crypts and the lamina propria (indicated by LP). The miR-21 ISH signal 
is represented by the blue stain and is seen in inflammatory cells located in the lamina propria in and 
some of the epithelial cells (arrows) in some collapsed crypts. Nuclear Fast Red was used in 
counterstaining. 
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continued microbial influx or increased levels of pro-inflammatory cytokines like tumor necrosis 
factor alpha (TNF) and IL-1β [110,113,114]. Increased levels of oxidants in inflamed tissue cause cell 
death, or more deliberately, mutations in epithelial cells that, in turn, can initiate neoplastic growth. 
The persisting inflammation develops into and probably shapes the tumor microenvironment that is 
inherent to most solid tumors with their additional presence of blood vessels and fibroblastic cells. 

Patients with extensive IBD or diagnosed with IBD in childhood [115], have a shorter life 
expectancy that may be related to the higher risk of CRC [116–118]. CAC represents a type of CRC in 
which the IBD paved the way for the cancer, probably through mutations in K-RAS and the 
adenomatous polyposis coli (APC) gene [119]. The risk of CAC may be further increased in untreated 
IBD patients [120]. Mucosal mapping studies indicate that the chronically inflamed colonic mucosa 
of patients with IBD undergoes a “field change” in cancer-associated molecular alterations before 
there is histologic evidence of epithelial dysplasia [121,122], which is one the initial morphological 
changes in the stepwise progression to CRC [123–125]. 

MiRNAs are believed to take part in the inflammation in IBD and to be implicated in the process 
from inflammation to CRC [126]. Despite the fact that CD and UC can affect the entire colon, Ranjha 
et al. [127] found that CRC in UC patients developed primarily in the rectosigmoid areas of the colon, 
whereas other parts, such as the ascending colon, showed less frequent development of CRC. 
Analyzing tissue from rectosigmoid and ascending colon, the authors found differences in the 
miRNA expression patterns, and suggested that the local miRNA profile could contribute to the 
development of CRC. 

MiRNAs likely play both oncogenic and tumor-suppressive roles in the carcinogenesis and 
progression of CRC by regulating the expression of numerous cancer-related genes. The role of the 
inflammatory burden has also been studied in animal models and indicates that both the initiation 
and the progression of colonic neoplasia can be aggravated or accelerated by the inflammatory 
conditions [30,126,128–130]. The DSS-induced colitis model has been used to study the role of 
multiple miRNAs in IBD and CAC, including miR-21, miR-155, and miR-301a, which will be 
addressed briefly in the following. 

Figure 1. MiR-21 in situ hybridization in ulcerative colitis. The example shows the inflamed colon
mucosa with transversally cut crypts and the lamina propria (indicated by LP). The miR-21 ISH signal is
represented by the blue stain and is seen in inflammatory cells located in the lamina propria in and some
of the epithelial cells (arrows) in some collapsed crypts. Nuclear Fast Red was used in counterstaining.

5. MiRNAs and CAC

Chronic inflammation is linked to the development of a variety of cancers such as CRC, pancreatic,
breast, and skin cancer [110,111] and is a key hallmark of cancer [112]. Local chronic inflammation in
the colon, typically caused by an unbalance in the regulation of the immune response, may damage
the epithelial barrier, which induces self-sustained inflammation linked to continued microbial
influx or increased levels of pro-inflammatory cytokines like tumor necrosis factor alpha (TNF) and
IL-1β [110,113,114]. Increased levels of oxidants in inflamed tissue cause cell death, or more deliberately,
mutations in epithelial cells that, in turn, can initiate neoplastic growth. The persisting inflammation
develops into and probably shapes the tumor microenvironment that is inherent to most solid tumors
with their additional presence of blood vessels and fibroblastic cells.

Patients with extensive IBD or diagnosed with IBD in childhood [115], have a shorter life
expectancy that may be related to the higher risk of CRC [116–118]. CAC represents a type of CRC
in which the IBD paved the way for the cancer, probably through mutations in K-RAS and the
adenomatous polyposis coli (APC) gene [119]. The risk of CAC may be further increased in untreated
IBD patients [120]. Mucosal mapping studies indicate that the chronically inflamed colonic mucosa of
patients with IBD undergoes a “field change” in cancer-associated molecular alterations before there is
histologic evidence of epithelial dysplasia [121,122], which is one the initial morphological changes in
the stepwise progression to CRC [123–125].

MiRNAs are believed to take part in the inflammation in IBD and to be implicated in the
process from inflammation to CRC [126]. Despite the fact that CD and UC can affect the entire colon,
Ranjha et al. [127] found that CRC in UC patients developed primarily in the rectosigmoid areas of the
colon, whereas other parts, such as the ascending colon, showed less frequent development of CRC.
Analyzing tissue from rectosigmoid and ascending colon, the authors found differences in the miRNA
expression patterns, and suggested that the local miRNA profile could contribute to the development
of CRC.

MiRNAs likely play both oncogenic and tumor-suppressive roles in the carcinogenesis and
progression of CRC by regulating the expression of numerous cancer-related genes. The role of the
inflammatory burden has also been studied in animal models and indicates that both the initiation
and the progression of colonic neoplasia can be aggravated or accelerated by the inflammatory
conditions [30,126,128–130]. The DSS-induced colitis model has been used to study the role of multiple
miRNAs in IBD and CAC, including miR-21, miR-155, and miR-301a, which will be addressed briefly
in the following.
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MiR-21 is one of the most prevalent miRNAs in CRC and other cancer types [131,132],
and the increased expression levels in CRC are associated with poor prognosis [24,133]. MiR-21
acts on tumor-suppressor genes, like PTEN and PDCD4 [134–136], and is thus categorized as an
oncomiR [137]. Since miR-21 is upregulated in IBD [35,44,47], and miR-21 reduction in the DSS
model lowers inflammation in DSS-induced colitis [95], it is tempting to speculate that miR-21
is a key facilitator of CAC. In support of this hypothesis, a study of human IBD, found that
the tumor-suppressor-programmed cell death 4 (PDCD4) was downregulated, while miR-21 was
upregulated [134]. Suppression of PDCD4 and NF-κB activation was found along with reduced
levels of pro-inflammatory TNF [134,135]. In addition, epithelial miR-21 upregulation in UC was
reported to increase intestinal permeability, which is believed to be a key pathophysiological step in
the development of IBD [138].

MiR-155 is upregulated in both UC and CD patients compared to healthy controls [48,139–141]
and is upregulated in both tissue and blood from CRC patients, and is furthermore an indicator of
poor prognosis [142,143]. MiR-155 promotes intestinal inflammation in UC and CD, probably via a
variety of inflammation-related pathways [46,56,73,79,81,139]. In a recent study by Liu et al. [144,145],
it was shown that miR-155 mediates intestinal barrier dysfunction in DSS-induced mice colitis through
targeting the HIF-1α/TFF-3 axis. Paraskevi et al. [140] found that miR-155 is the most highly expressed
UC-associated miRNA in blood samples, however, in the study by Schönauen [47], the authors did not
find increased miR-155 levels in the blood from IBD patients, suggesting that more studies are needed
to determine whether miR-155 is a putative blood-related biomarker.

MiR-301a is upregulated in both blood and tissue from IBD and CRC patients [76,141,146].
He et al. [76,129] found increased levels of miR-301a in peripheral blood monocytes and in the mucosa
from IBD patients and in mice after administration of DSS. Using the DSS-induced IBD model in
mice with an inactivated miR-301a, miR-301a was found to reduce the inflammation through the
suppression of BTG anti-proliferation factor 1 (BTG1) and to reduce the development of CAC [129].
Thus, miR-301a should be investigated in future studies to establish possible use as a clinically relevant
diagnostic biomarker in IBD and for prediction of CAC.

6. MiRNAs as Predictive Biomarkers and in IBD Treatment

The goal of the treatment of IBD patients is to obtain remission and mucosal healing, and thereby
lower surgery rates. The classical therapies include corticosteroids, thiopurines, and amino salicylates
(5-ASA), which have been in use for decades. 5-ASA has minor side effects [147,148] and it is very
effective for treating mild to moderate UC patients, but not recommended for treatment of patients
with CD [149]. The last-line medical treatment in IBD is administration of biologics targeting key
elements in the inflammatory process. Anti-TNF therapies include TNF inhibitors that antagonize
the pro-inflammatory cytokine TNF [150]. The use of anti-TNF therapy has improved long-term
outcomes for IBD patients [149,151]. Even though TNF inhibitors have improved the overall conditions
for a large group of IBD patients, approximately 30% of patients fail to respond to TNF inhibitors
(primary non-responders), and up to 50% of the patients who initially benefited from treatment with
TNF inhibitors lose the response over time (secondary non-responders) [152,153]. Thus, identifying
predictors of responders/non-responders and choosing a treatment strategy according to biomarker
profiles could improve overall IBD disease management. Interestingly, Morilla et al. [154], found that
nine miRNAs, together with five clinical factors correlated with response to treatment of IBD patients,
and that neural-network-developed algorithms based on certain miRNA levels identified responders
to the anti-TNF antibody therapy, infliximab, vs. non-responders.

Currently used therapies in IBD also include Ustekinumab, Vedolizumab and Tofacitinib.
Ustekinumab is a monoclonal antibody against IL-12 and IL-23, which is used in patients with
moderate to severe CD who are resistant to anti-TNF treatment [155]. Considering the efficacy of
ustekinumab, it is possible to extrapolate the efficacy of miR-29 mimicry as a mechanism to reduce
IL-23 levels [12]. With respect to potential secondary target effects, miR-29c has been described
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as a tumor-suppressor in liver cancer [156]. Vedolizumab binds specifically to α4β7-integrin on
T-helper lymphocytes. Blocking the α4β7-integrin results in anti-inflammatory activity that is caused
by the inhibition of leukocyte adhesion to endothelial cells, which consequently reduces leukocyte
recruitment to affected tissue [157]. Previous studies have suggested a similar effect of miRNAs in
the posttranscriptional regulation of leukocyte trafficking [158]. Harris et al. [158] described how
endogenous miR-126 inhibits leukocyte adherence through the regulation of an intercellular adhesion
molecule expressed by endothelial cells (VCAM-1). Tofacitinib is a janus kinase (JAK) inhibitor,
approved for treating moderate-to-severely active UC patients who have deteriorated disease and
did not improve after conventional or antibody-based therapies [159,160]. Pathak et al. [51] identified
SOCS1, a potent molecular switch that tunes the JAK pathway that is also a direct target of miR-155.

In general, miRNA-based therapies comprise two fundamental strategies: miRNA antagonism
and mimicry [161–164]. Physiologic miRNA over-expression resulting in pathologically reduced target
gene expression can be hindered by using miRNA antagonists, while reduced miRNA expression
resulting in enhanced target function can be restored by utilizing miRNA mimics [12]. A study by
Lu et al. [56] reported that a so-called antagomir towards miR-155 alleviated DSS-induced intestinal
inflammation in mice, and the authors propose that anti-miR-155 could be a promising candidate for
a novel IBD therapy. Jin et al. conducted a study on miR-133a and its target UCP2 (mitochondrial
uncoupling protein 2) using the DSS-induced IBD mouse model [77]. miR-133a levels were found to
be decreased upon DSS treatment, and by introducing a miR-133a mimic, the DSS-induced IBD was
alleviated, suggesting that miRNA mimics could also function as therapy in IBD [77].

7. Circulating miRNAs vs. Tissue miRNAs

It is of importance to determine whether miRNA dysregulation in the circulation reflects similar
changes in the lesion. The detection and quantification of circulating miRNAs and the interpretation
of their impending role as novel non-invasive biomarkers could be very beneficial in the diagnosis
and treatment of IBD. As mentioned above, miRNAs can be detected in distinct body fluids such as
saliva, plasma or urine [32]. Current diagnostic and predictive findings in IBD on miRNA expression
profiling have mainly focused on the assessment of miRNAs in blood. Even though blood samples
can be relatively easily obtained from IBD patients, miRNA measurement in blood samples, as with
other biological samples, comes with some inherent obstacles, such as sample procurement, storage,
measurement platform and normalization of the acquired data. Circulating miRNAs may derive
from both the diseased tissue and by leakage from the normal vascular network and circulating cells.
Obtaining tissue samples, on the other hand, requires an invasive procedure, where small biopsies
from the affected part of the bowel are obtained during endoscopy. The tissue samples can be either
frozen or fixed in formalin and paraffin-embedded (FFPE) for histological examination. MiRNAs can
be isolated from both fresh-frozen and FFPE tissue samples. Normalization of miRNA data from
both blood and tissue samples is an important step for data interpretation in the comparison between
patients, and between different study cohorts. MiRNA expression levels measured in tissue samples
will have been derived from cells in the normal tissue and from activated cells in the lesion. To be able
to find the same miRNAs in the tissue as in the circulation would require substantial expression in
the lesion and/or for the background level in the circulation to be low. Thus, it may not be surprising
that the study by Iborra et al. [42] of tissue biopsies and peripheral blood showed that none of the
serum miRNAs corresponded with tissue miRNAs in the CD and UC patients. Feces samples represent
another liquid biopsy that is relevant in relation to IBD and may be better linked to expression levels in
the diseased mucosa than to the levels in the blood circulation. Schönauen et al. [47] analyzed both
serum and fecal miRNAs in IBD and found increased levels of miR-16, miR-21, and miR-223 in both
sera and feces from the IBD patients compared to controls. In addition, the authors found that fecal
levels, but not sera levels, of miR-16 and miR-223 correlated with clinical parameters, like C-reactive
protein and calprotectin. Thus, fecal samples seem to be a promising alternative to blood for miRNA
profiling in IBD.
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As seen in Table 1, most miRNA studies have used high-throughput methods such as RT-qPCR
and microarray for miRNA analysis in IBD. It is important to note that these techniques require
homogenization of the tissue to isolate the miRNAs. Homogenization of the tissue will degrade the
spatial arrangement and, hence, will give an overview of the miRNA expression at the tissue level.
ISH using Locked Nucleic Acid (LNA) probes is a method that allows detection of miRNAs in tissue
sections [165]. Detection of miRNAs at the cellular level determines the cellular origin of expression and
can provide evidence on expression levels in different cell populations and tissue compartments [35].
More knowledge about the cellular localization of miRNAs in the framework of IBD is needed as
this will provide a vital link between the growing amounts of miRNA biomarkers discovered in
IBD and functional studies identifying various miRNA target genes. Thorlacius-Ussing et al. used
quantitative ISH on IBD tissue samples and showed that miR-126 levels are increased in UC and
expressed in endothelial cells and miR-21 is expressed in subsets of monocytes/macrophages and T
cells [35]. As also suggested from Figure 1, ISH data provide information of contextual expression in
the tissue, as exemplified by focal upregulation in certain tissue compartments. Simple histological
analysis from ISH analysis if IBD tissue can often determine if a miRNA is expressed in the epithelial
or stromal (lamina propria) compartment. Nielsen and Holmstrøm presented a method to combine
miRNA ISH using LNA-containing probes with immunohistochemical detection of cell-specific protein
markers in order to better characterize the miRNA’s cellular characteristics [166]. This approach could
also be used to monitor parallel downregulation of the specific downstream target protein. MiRNA
ISH is a powerful tool when also combined with parallel characterization of the cell population in
question and of mRNAs using combined staining methods [23]. Thus, for better understanding of
the role of miRNAs in IBD and CAC, miRNA ISH analyses will be a helpful tool both for validating
expression and for deciphering the related inflammatory molecular context.

8. Concluding Remarks

MiRNAs in IBD research started with the extensive pioneering work by Wu et al. in 2008 [44],
who found altered expression of several miRNAs in tissue from IBD patients. Since then, there have
been tremendous advancements in the field both regarding mechanistic studies and studies evaluating
the use of miRNAs as diagnostic and predictive biomarkers in IBD. The miRNAs are involved in the
regulation of the NF-κB and the IL-6 pathways, regulating the inflammatory activity. The inflammation
is fueled by cytokines like TNF, which is currently a key therapeutic target. Thus, the dysregulated
miRNAs may be considered also as therapeutic targets in IBD. Tracking the immune status in IBD
based on miRNA signatures determined from liquid or tissue biopsies, may be powerful for designing
individualized therapies that could be, e.g., combinations of conventional drugs and biologically active
drugs, like anti-TNF. In this review, we discussed the possibility of using miRNA expression profiles
to understand the link between inflammation in IBD and CAC, where animal models of IBD have
provided new information on the role of miRNAs both as biomarkers and as possible therapeutic
targets. Future studies may apply new sequencing techniques and histology-based multiplexing
analyses in well-annotated independent patient cohorts to address the possible value of miRNAs as
diagnostic and predictive biomarkers.
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