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Abstract: The current study compared the synthesis, characterization and properties of copper
oxide nanoparticles (CuO) based on green and traditional chemical methods. The synthesized CuO
were confirmed by spectroscopic and morphological characterization such as ultraviolet-visible
(UV-vis) spectroscopy, fourier transform infrared (FTIR) spectroscopy, zeta potential, scanning
electron microscopy (SEM) and energy dispersed X-ray (EDX). Electrochemical behavior of
the modified electrodes was done using cyclic voltammetry (CV) in ferricyanide/ferrocyanide
([Fe(CN)6]4−/[Fe(CN)6]3−) redox probe. As revealed by UV spectrophotometer, the absorption peaks
ranged from 290–293 nm for all synthesized nanoparticles. Based on SEM images, CuO were
spherical in shape with agglomerated particles. Zeta potential revealed that the green CuO have more
negative surface charge than the chemically synthesized CuO. The potential of the green synthesized
nanoparticles was higher relative to the chemically synthesized one. Cyclic voltammetry studies
indicated that the traditional chemically synthesized CuO and the green CuO have electrocatalytic
activity towards the ferricyanide redox probe. This suggests that the green CuO can be modified with
other nanomaterials for the preparation of electrochemical sensors towards analytes of interest.

Keywords: green copper oxide; nanoparticles; spectroscopy; cyclic voltammetry;
terminalia phanerophlebia

1. Introduction

Nanotechnology generally involves the application of extremely small particles that are used across
all fields of science including chemistry, biology, medicine and material science [1–4]. According to
Sathiyavimal et al. [5], nanotechnology deals with the synthesis of metal and metal oxide nanoparticles
of different sizes, shapes, disparity and chemical composition. Nanoparticles, which by definition are
the clusters of atoms in the size range of 1–100 nm are the major building blocks of nanotechnology [6,7].

There are two methods of synthesizing nanoparticles, which are the chemical and physical
methods [8]. The chemical method of synthesis includes chemical reduction, electrochemical techniques
and photochemical reduction [9,10]. The classical chemical method in which a reducing agent such as
sodium borohydride and hydrazine [6] as well as radiation chemical method generated by ionization
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radiation are also used for chemical synthesis of nanoparticles. Even though most chemical methods
successfully produce pure and well-defined nanoparticles, they are expensive, inefficient and can
release harmful wastes to the environment hence a better eco-friendly methods are preferred [10].
On the other hand, the chemical method of nanoparticles synthesis give room for the use of desired
reducing agents with lower economic implication compared to the physical method of synthesis such
as the laser ablation technique which attracts extra cost of the laser system procurement.

The physical methods of synthesis include condensation, evaporation and laser ablation [8].
Green synthesis method (plant-mediated synthesis of nanoparticles) is established as an alternative
to physical and chemical methods. It is simple, rapid process that involve the use of less toxic and
environmentally-friendly materials as compared to other methods of synthesis [7,11]. Green synthesis
mitigates environmental problems such as solar conversation, catalysis and agricultural production [12].
According to Zhang et al. [13], the plant material in the green synthesis often have a vital role in the size
and surface morphology of the nanoparticle synthesized. The plant extract can act as both the reducing
and capping agent. In terms of size of the nanoparticles formed, the products of green synthesis are
larger compared to the ones obtained by chemical methods [8]. In addition, nanomaterials produced
from the green source have high biocompatibility which contributes to their biofunctionality [14].
It has also been reported that the green synthetic route produces higher yield of nanoparticles than the
chemical means [15].

Nanoparticles of a wide range of elements such as copper (Cu) [16], gold (Au) [17], silver (Ag) [18],
titanium (Ti) [19], zinc (Zn) [20], silicon (Si) [21] and palladium (Pd) [22] and their oxides are abound
in literature. Specifically, copper is a good conductor of heat or electricity and it is cheaper than silver
and gold [23]. Copper oxide nanoparticles (CuO) are used as water purifiers, antimicrobials and are
also used in batteries, gas sensors, catalysts for different cross-coupling reactions and high temperature
superconductors [7,24–27]. CuO have a high surface-to-volume ratio that makes them very reactive
and interact easily with other materials [28]. Moreover, CuO have moderate band gap, good catalytic
activity and high optical transparency which further extend their industrial applications [29,30].

Green synthesis of CuO with good physico-chemical properties have been accomplished
with the use of microbial precursors such as Penicillium aurantiogriseum, Penicillium citrinum,
Penicillium waksmanii [31] and Seratia sp. [32] as reductants. Likewise, leaf extracts from plants
such as Aloe vera [33], Psidium guajava [34], Abutilon indicum [35], Malva sylvetris [36], Carica papaya [37],
Camellia sinensis [38] and Ixiro coccinea [39] have been used for the preparation of CuO. Interestingly,
most of the CuO from these green sources have demonstrated noteworthy antimicrobial activity,
particle sizes below 100 nm and photocatalytic activity towards the degradation of contaminants were
investigated. For instance, Ijaz et al. [33] prepared CuO from the leaf extract of Abutilon indicum and
copper (II) nitrate trihydrate. The resultant nanoparticles had noteworthy antimicrobial activity against
Escherichia coli, Staphyloccus aureus and Bacillus subtilis, excellent oxidation properties towards linolenic
acid as well as good photocatalytic effect on the degradation of Acid Black 210 organic dye.

These precedents informed our interest in the preparation of CuO using Terminalia phanerophlebia
leaf extracts. Green CuO were prepared from the leaf extract of Terminalia phanerophlebia obtained
using ethanol (eCuO), deionized water (wCuO) and acetone (aCuO) as solvent. We also synthesized
CuO through the traditional chemical means (cCuO) for a comparative study with the green CuO.
Precisely, comparative analysis of the spectroscopic, morphological and electrochemical properties of
the two nanoparticles were investigated. To the best of our knowledge, this is the first time a CuO
prepared from this green precursor will be used in a comparative analysis with the chemical counterpart.

2. Materials and Methods

2.1. Reagents and Materials

Copper sulphate pentahydrate (CuSO4.5H2O) (99.5%), sodium borohydride (NaBH4) (95%),
ethanol and acetone were purchased from Sigma-Aldrich, Gauteng, 1600, South-Africa. All reagents
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were of analytical grade. Leaves of Terminalia phanerophlebia (Family: Combretaceae) were collected
from the Botanical Garden, University of KwaZulu-Natal (Pietermaritzburg campus), South Africa
and were positively identified by the curator of the Bews Herbarium, University of KwaZulu-Natal,
South Africa.

2.2. Preparation of Plants Extracts

Extract from the oven-dried leaves of Terminalia phanerophlebia was prepared by weighing 2 g
of the ground powder and dissolved in 150 mL deionized water, ethanol and acetone, respectively,
as previously reported in literature. The three extracts were filtered and used for the synthesis
of nanoparticles.

2.3. Synthesis of CuO

Traditional Chemical Synthesis of CuO

The traditional chemical synthesis was done according to a method reported by Khatoon et al. [6]
Briefly, 60 mL of NaBH4 was transferred into 250 mL Erlenmeyer flask which was subsequently placed
on a hot plate with magnetic stirrer. The resultant solution was heated for 10 min while stirring at 80 ◦C.
Thereafter, 50 mL of 0.02 M CuSO4.5H2O was added dropwise to the flask and the final solution was
heated for 7 min with continuous stirring. The flask was covered with aluminum foil after completion
to avoid oxidation. The particles were allowed to settle leaving the solution colorless and copper
nanoparticles with green color settled at the bottom of the flask. The solution was kept in a hot air
oven for 24 h to convert the aqueous mixture to powder. The dried powder was collected, dissolved
in ethanol and distilled water and centrifuged for purification. This purification was done thrice to
remove all impurities and dried for further use. The XRD studies were done with a Rontgen PW3040/60
X’Pert Pro diffractometer by Bruker, Hamburg, Germany, from diffraction angles of 10–80 degrees at
room temperature.

2.4. Green Synthesis of CuO

The green synthesis was carried out as reported by Sathiyavimal et al. [5] Briefly, 30 mL of
0.1 M CuSO4.5H2O was added to 10 mL of the plant extract in a flask and then the solution was stirred
and heated at 90 ◦C for 5 h. Color change of the solution (from yellowish green to brownish black)
indicated the formation of CuO. The solution was kept overnight at room temperature. The CuO
obtained were centrifuged and washed twice with distilled water. The nanoparticles were collected
and dried in a hot air oven. Similar procedure was applied for the ethanol and acetone plant extract
using temperatures of 68 ◦C and 46 ◦C, respectively. The purification of the nanoparticles was done
with the approach used for the CuO nanoparticles through the traditional chemical synthetic route.

2.5. Characterization of CuO

CuO synthesized were characterized by using Uviline 9400UV-vis spectrophotometer (Sl Analytics,
Mainz, Germany) at wavelengths ranging from 200 to 700 nm for UV-vis spectroscopy. Opus Alpha-P
Fourier-transform infrared spectrophotometer (Brucker Corporation, Billerica, MA, USA) in the range
of 4500–400 cm−1 was applied for the IR-spectroscopy. Quanta FEG 250 scanning electron microscope
(ThermoFisher Scientific, USA) was used to investigate the morphology and the elemental composition
via SEM and EDX analysis. In preparation for SEM analysis, clear suspension of the nanoparticles
was made in ethanol and subsequently deposited on a mica solid substrate. The accelerating image,
brightness, working distance and contrast of the microscope were adjusted to optimum level prior
to imaging. Zeta analyzer was used to obtain the surface charge and the long-term stability of
the synthesized nanoparticles. This was accomplished with the aid of a Malvern multi-purpose
titrator instrument.
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2.6. Electrochemical Studies

The cyclic voltammetry characterization was done using a potentiostat with a three electrode
system. DropSense with inbuilt Dropview 200 software (Metrohm South Africa (Pty) Ltd., Johannesburg,
South Africa) was fitted with screen printed carbon electrode (SPC) having inner carbon working
electrode (diameter of 4 mm), a silver pseudo-reference (Ag/AgCl) electrode (RE) and carbon counter
electrode (CE). SPC was modified with cCuO, wCuO, aCuO and eCuO to obtain the modified working
electrode used for the electrochemical studies. SPC electrode was modified by dropping about 0.5 µL
of the ultrasonicated CuO nanoparticles samples on the surface of the electrode and air dried for
20 min. Noteworthy, the ultrasonication of the nanoparticles was done at room temperature. Each of
the modified working electrodes were characterized using the Fe(CN)6]4−/[Fe(CN)6]3− (10 mM) redox
probe in the presence of a phosphate buffer saline (PBS) (0.1 M, pH 7.0) supporting electrolyte. All cyclic
voltammetry (CV) measurements were done at a scan rate of 50 mVs−1 over a potential window
of 1.0–1.2 V.

3. Results and Discussion

3.1. Spectroscopic and Microscopic Characterization

3.1.1. UV-vis Spectroscopy Analysis

The UV absorption peak of CuO usually shows an absorption peak ranging from 280 nm to
360 nm [19]. As shown in Figure 1a, a UV absorption peak of 289 nm was recorded for CuO synthesized
by a traditional chemical method. As an indication of the formation of different sized CuO, the UV
absorption peaks observed for the CuO nanoparticles from green synthesis using water, acetone and
ethanol as solvent were 291, 291 and 290 nm for wCuO, aCuO and eCuO, respectively (Figure 1b–d).
These observed peaks are within the range reported in literature [25,37,39]. The extra broad peak at
410 nm is similar to the peak reported for green mediated CuO by Saif et al., 2016 [40]. The band
gap calculated for wCuO, aCuO and eCuO from the UV-visible spectra were 1.25, 1.75 and 1.63 eV,
respectively. These band gaps are higher than a value of 1.20 eV reported for CuO which suggest that
the green CuO nanoparticles have higher conductivity than the traditional chemically synthesized
CuO nanoparticles [41].

3.1.2. FT-IR Analysis

According to Prakash et al. [42], characteristic peaks of IR spectra of is in the range 400–650 cm−1.
In the FTIR spectra of CuO from the traditional chemical synthesis, Cu-O stretching was observed
at 494 and 595 cm−1 (Figure 2a). The peaks observed at 3404 cm−1 is associated with OH stretching
present as a result of the hydroxyl group on the surface of the CuO. The FTIR spectra of wCuO, aCuO
and eCuO were presented in Figure 2b–d. In the spectra of wCuO, Cu-O stretching band was observed
at 444 and 579 cm−1 and OH stretching at 3117 cm−1 (Figure 2b). Figure 2c shows a Cu-O stretching
at 450 cm−1 and OH stretching at 3353 cm−1. In Figure 2d, the absorption peak situated at 450 cm−1

corresponds to the Cu-O stretching and the one at 3353 cm−1 is due to the OH stretching vibration.
Absorption peaks at 1696 cm−1 which appeared only in the spectra of wCuO (Figure 2b) is associated
with the stretching vibrations of C=C of a water-soluble unsaturated component of the plant extract.
As shown in Figure 2, the OH stretching band for a green method are broader when compared to
that of the traditional chemical method. This could be due to the hydroxyl group present in the plant
extract attached to the CuO.

3.1.3. Energy Dispersed X-ray and SEM Analysis

The dominance of copper and oxygen in all the plots confirms that the synthesized nanoparticles
are indeed that of copper oxide (Figure 3. The presence or origin of sodium is a result of the reducing
agent that was used for the chemical synthesis (Figure 3a). The percentage of Cu is lower in cCuO and
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also in eCuO. The standard deviation for the percentage composition of copper in the nanoparticles
are 1.27, 4.87, 3.19 and 1.84 for cCuO, wCuO, eCuO and aCuO, respectively.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 22 
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3.1.4. X-ray Diffraction (XRD) Studies

The XRD diffractogram gives an insight to the crystalline structure of a compound. Crystallite size
was calculated using X-ray diffraction pattern of CuO nanoparticles (Figure 5). Diffraction peaks for
chemically synthesized cCuO (Figure 4a) were noticed at 2θ values of Brags angle for 22.85◦ (020),
28.00◦ (021), 30.58◦ (110), 33.42◦ (002) 35.67◦ (111), 41.43◦ (131), 52.45◦ (113) and 59.16◦ (200) and for
aqueous extract of plant (Figure 5B) at 22.9◦ (020), 27.96◦ (021), 30.60◦ (110), 33.44◦ (002) 35.67◦ (111),
41.34◦ (131), 52.69◦ (113) and 60.1◦ (200) with their corresponding lattice/Miller indices in parentheses.
XRD pattern of CuO synthesized from plants extract via acetone and methanol aCuO and eCuO were
deficient of peaks (graphs not shown) which possibly could have been from impurities from the
organic solvent used in the preparation of the extract. Inter planar d-spacing of cCuO and wCuO were
calculated applying Bragg’s law equation: [43].

2dSinθ = nλ (1)

where d is interplanar spacing, θ is Brag’s angle of diffraction = 2θ/2, λ is X-ray wavelength (0.154 nm)
and n = 1 as represented in Table 1.
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Table 1. d-inter planar spacing calculations for CuONP.

Peaks (2θ) θ Sin θ d (nm)

cCuO wCuO cCuO wCuO cCuO wCuO cCuO wCuO

22.85 22.91 11.42 11.45 0.1980 0.1985 0.3887 0.3879
28.00 27.96 14.00 13.98 0.2419 0.2415 0.3183 0.3187
30.58 30.60 15.29 15.30 0.2637 0.2638 0.2919 0.2637
33.42 33.44 16.71 16.72 0.2875 0.2876 0.2678 0.2875
35.66 35.67 16.83 17.83 0.2895 0.3061 0.2659 0.2895
41.43 41.34 20.71 20.67 0.3536 0.3529 0.2177 0.3536
52.45 52.69 26.22 26.35 0.4418 0.4438 0.1742 0.4420
59.16 60.18 29.58 30.05 0.4936 0.5013 0.1559 0.4939

Crystallite size calculated from the diffraction peak corresponding to most intense peak (θ/2)
for cCuO (22.85◦) and wCuO (22.9◦) using Debye–Scherrer’s formula were found to be 17.8 nm
and 24 nm for cCuO and wCuO, respectively, which are close to reported values in the range of
14–25 nm. [44,45] Differences in the size could, possibly, be attributed to different route of synthesis,
imperfect crystallization and strain.

3.2. Zeta Potential Studies

The size of the zeta potential gives information about the particle synthesized stability. For example,
particles with high zeta potential exhibit increased stability due to larger electrostatic repulsion between
particles [46]. While cCuO show a charge of −5.60 mV, wCuO, aCuO and eCuO had corresponding
charges of −22.3, −16.5 and −15.6 mV, respectively (Figure 6). All the CuO synthesized had negative
surface charges. As highlighted by Aparna et al., [47] negative zeta potential obtained for nanoparticles
might be an indication that CuO are negative particles and moderately stable. The obtained zeta
potentials for green synthesis method were about three times greater than that of traditional chemical
method which suggests that CuO synthesized by green method are more stable than those from
chemical method. Higher zeta potentials were obtained from the CuO prepared from wCuO (Figure 6b)
and aCuO (Figure 6c) compared to the cCuO (Figure 6a) and eCuO (Figure 6d). This suggests
lesser agglomeration of the particles which manifested in a better porosity as seen in Figure 4b–c.
Zeta potential close to that of wCuO (−28.9 mV) has earlier been reported by Sankar et al. [37] for green
CuO prepared from the leaf extract of Carica papaya.
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3.3. Electrochemical Study Using Cyclic Voltammetry

Electrochemical comparative studies of CuO was studied using cyclic voltammetry at a scan
rate of 50 mV/s in 10 mM [Fe(CN)6]4−/[Fe(CN)6]3− solution prepared in 0.1 M PBS. The screen
print carbon electrode was modified with the CuO nanoparticle synthesized from chemical and
the green method. The screen print electrodes were modified with the CuO nanoparticles and
denoted as SPC/cCuO, SPC/wCuO, SPC/aCuO and SPC/eCuO, representing chemically prepared CuO
nanoparticles and the green mediated CuO from water, acetone and ethanol solvents, respectively
(Figure 7). The voltammogram of the modified SPC electrodes of SPC/cCuO, SPC/wCuO, SPC/aCuO
and SPC/eCuO showed redox peaks, an anodic peak at about 0.25 V and cathodic peaks at reduction
potential of 0.6 V for the [Fe(CN)6]4−/[Fe(CN)6]3− probe. Another observable anodic peak ranging from
observed 1.0 V to 1.5 V in Figure 7 is attributed to the CuO on the SPC electrodes. The SPC/cCuO gave
better current response compared to the SPC/wCuO, SPC/aCuO and SPC/eCuO modified electrodes
(Figure 7) which can be attributed to its lower band-gap between the valence and the conduction band
as seen in the UV study also the XRD showed that cCuO has smaller particle size as compared to that
of the green mediated CuO nanoparticles. This better current response remained conspicuous with
varying scan rates as evident in Figure 8a–d. This could be ascribed to the better catalytic activity of
the chemically synthesized CuO towards the redox probe. The anodic peak current of the CuO follows
the order; SPC/cCuO > SPC/wCuO > SPC/eCuO > SPC/aCuO. This result confirms that chemical
synthesis enhances the electroactivity of the synthesized nanoparticles better than the green mediated
nanoparticle. However, the electroactivity of the green mediated CuO can be enhanced by modification
with conducting materials such as carbon nanotubes, quantum dots and graphene or graphene oxide
for enhance electroactivity.
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Figure 8. Scan rate voltammogram of (a) SPC/cCuO, (b) SPC/wCuO, (c) SPC/aCuO, and (d) SPC/eCuO 

nanoparticles in 10 mM [Fe(CN)6]4−/[Fe(CN)6]3− solution prepared in 0.1 M PBS at varying scan rates 
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Figure 8. Scan rate voltammogram of (a) SPC/cCuO, (b) SPC/wCuO, (c) SPC/aCuO, and (d) SPC/eCuO
nanoparticles in 10 mM [Fe(CN)6]4−/[Fe(CN)6]3− solution prepared in 0.1 M PBS at varying scan rates
(50–400 mV/s).

The effect of the scan rate was also studied for different CuO that are synthesized as seen in
Figure 8a–d. The results indicated a direct proportional relationship between scan rate and the
current. Increase in scan rate resulted in an increase in current. Linear plots for the comparative
are shown in Figure 9 with regression values of approximately 0.9, for SPC/cCuO, SPC/wCuO,
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SPC/aCuO and SPC/eCuO modified SPC electrodes, respectively. The anodic and cathodic plots
suggest diffusion-controlled processes at the electrodes.Nanomaterials 2020, 10, x FOR PEER REVIEW 16 of 22 
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Table 2 summarizes the electrochemical behavior of the bare electrode and the SPC modified
electrodes of SPC/cCuO, SPC/wCuO, SPC/aCuO and SPC/eCuO. From this table, it is apparent that
the best current response (anodic peak current, Ipa) to the redox probe was obtained from SPC/cCuO.
This was followed by the current response obtained at SPC/aCuO. Basically, the current response
obtained from the electrodes followed the order SPC/cCuO > SPC/aCuO > SPC/wCuO > SPC/eCuO >
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bare SPC. The reversibility of the redox reaction at an electrode can be estimated from the difference
of the anodic (Epa) and the cathodic peak potentials (Epc) (∆Ep). The closer this difference is to
59/n mV, the more reversible the process [48]. The reaction of the redox probe at the surface of the
bare electrode, the electrode modified with chemically synthesized nanoparticles (NPs) and the green
NPs are irreversible or quasi-reversible at best. This inference was drawn from the ∆Ep values of
1.04, 1.03, 1.02, 1.00 and 1.19 obtained at bare SPC, SPC/wCuO, SPC/aCuO, SPC/eCuO and SPC/cCuO,
respectively. Similarly, the extent of departure of the ratio Ipa/Ipc of all the electrodes from unity
further confirms the irreversibility of the redox reaction at the surface of the bare electrode and the
modified electrodes.

ip = 2.69 × 105 n2/3Ae f f D1/2CV1/2 (2)

Table 2. Electrochemical parameters of bare SPC and electrodes modified with CuO nanoparticles.

Electrodes Epa Epc Ipa Ipc Aeff (cm2) Ipa/Ipc ∆Ep

Bare SPC 0.32 −0.72 6.87 × 10−5
−1.76 × 10−4 6.90 × 10−5 3.90 × 10−1 1.04

SPC/wCuO 0.36 −0.67 1.66 × 10−4
−4.12 × 10−4 0.12 4.03 × 10−1 1.03

SPC/aCuO 0.37 −0.65 1.76 × 10-4
−3.94 × 10−4 0.08 4.47 × 10−1 1.02

SPC/eCuO 0.34 −0.66 1.27 × 10−4
−2.60 × 10−4 0.061 4.88 × 10−1 1.00

SPC/cCuO 0.44 −0.75 7.32 × 10−4
−1.03 × 10−3 0.196 7.11 × 10−1 1.19

Using the Randles–Sevcik equation (Equation (2)) where ip, n, Aeff, D, C and v represent the
peak current (A), number of electrons transferred, effective surface area of the electrode (cm2),
diffusion coefficient of the redox probe (cm2 s−1), concentration of the analyte (mol cm−3) and the scan
rate (V s−1), respectively. From the plot of the anodic peak potential (Ipa) against the square root of

the scan rate (V
1
2 ) (Figure 8a–d), the slope which is equal to 2.69 × 105 n2/3Ae f f D1/2C was used to

calculate Aeff given the value of D, n and C for the redox probe as 7.6 × 10−6 cm2 s−1, 1 and 10 mM,
respectively [49]. The Aeff of the bare SPC, SPC/wCuO, SPC/aCuO, SPC/eCuO and SPC/cCuO were
calculated as 0.69 × 10−4, 0.275, 0.129, 0.081 and 0.079, respectively. Again, the highest surface area was
obtained for the electrode modified with cCuO while the best surface area from the electrode modified
with the green CuO was obtained at SPC/aCuO. The extremely small surface area obtained for the
bare SPC is an indication that the modification of the bare electrode with the green mediated CuO has
affected the surface area of the electrode in no small measures. As a result, the incorporation of the
CuO into other materials with large surface area could create a composite with improved surface area
and electrocatalytic activity towards an analyte of interest. This possibility has precedence in literature
where green mediated nanoparticles have been combined with materials such as polypyrrole [50] and
graphene oxide [51–53] with the nanoparticles bringing forth improved electrocatalytic activity to
the resultant composite. Interestingly, green-mediated CuO have also been individually used for the
modification of bare glassy carbon electrode for the detection of biomolecules [51,54].

4. Conclusions

CuO were synthesized using a chemical and green method for a comparative study.
The morphological studies revealed that the chemically synthesized CuO have similar morphology
with that of the copper oxide prepared from plant extract using ethanol as solvent. Similar conclusion
could be drawn from the SEM micrograph of green CuO prepared from plant extracts obtained
with water and acetone as solvents. The electrochemical activity of the chemically prepared CuO
towards ferrocyanide redox probe was much better than that of the green CuO. Further studies on the
modification of the CuO with other conducting materials could increase their electrocatalytic activity
towards the analytes of interest. On this basis, the green CuO have the prospect of application in
electrochemical sensing among other industrial applications, as with the chemically synthesized CuO.
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