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Abstract: C2/C1 hydrocarbon separation is an important industrial process that relies on energy-
intensive cryogenic distillation methods. The use of porous adsorbents to selectively separate
these gases is a viable alternative. Highly stable covalent triazine frameworks (urea-CTFs) have
been synthesized using 1,3-bis(4-cyanophenyl)urea. Urea-CTFs exhibited gas uptakes of C2H2

(3.86 mmol/g) and C2H4 (2.92 mmol/g) at 273 K and 1 bar and is selective over CH4. Breakthrough
simulations show the potential of urea-CTFs for C2/C1 separation.

Keywords: covalent triazine frameworks; covalent organic frameworks; gas separation; C2/C1
hydrocarbon separation; C2H2/CH4; CO2/CH4

1. Introduction

The separation of C1 and C2 gases is a critical process in many industrial activities.
For example, acetylene is an important industrial byproduct of petroleum and natural gas
processing, which needs to be separated. In addition, there are other industrial processes
wherein ethylene and acetylene are produced by the oxidative and non-oxidative coupling
of methane [1]. However, quite often the methane conversion remains incomplete and
recovering the unreacted methane is essential [2]. As another example, in the process of
extracting natural gas, methane needs to be separated from carbon dioxide [3]. Natural
gas consists of high amounts of carbon dioxide that must be removed to obtain pure
methane, which can be used as an energy source for fuels and chemicals. As a final
example, the separation of CO2 in flue gases (typically containing about 75% nitrogen and
traces of water (vapor)) is becoming an important process in carbon capture and utilization
CCU strategies.

Metal organic frameworks (MOFs) have been studied for this purpose [4–6]. Al-
though some show very high adsorption capacities and selectivities, they often lack long-
term stability, an important factor for a potential adsorbent [7]. Hence, other types of
porous adsorbents, such as porous organic polymers are also considered for such gas
separation processes.

Covalent triazine frameworks (CTFs) are a class of organic porous materials that can be
used for gas separation [8–10]. Research on CTFs has boomed due to their ease of synthesis,
tunable porosities, desirable functionalization, and ultra-high stability [11–14]. They are
primarily made through an ionothermal synthesis, where ZnCl2 is used as an ionic liquid
solvent and catalyst for the trimerization of dinitrile linkers. The ionothermal synthesis
method has so far been used to design several inherent functionalities in CTFs, such as
fluorine containing CTF (FCTF-S, F-DCBP-CTF) [15,16], acetylacetone containing CTF (acac-
CTF) [17], bipyridine containing CTF (bpy-CTF) [18], ionic CTF (cCTF) [19], porphyrin
CTFs [20], N-heterocyclic carbene CTF (NHC-CTF) [21], binol [22], etc. The produced
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materials show good properties for several applications in gas storage and separation [23],
catalysis [24], electrocatalysis [25,26], photocatalysis [27,28], and batteries [29].

However, these harsh ionothermal synthesis conditions result in materials that are
mostly amorphous. In some reports, CTFs with a partial crystallinity were obtained [10,12].
Due to carbonization at these high temperatures, the structural characterization of the
material becomes arduous. Nonetheless, CTFs exhibit exceptional properties in comparison
to other covalent organic framework (COFs) for the above noted applications. One of the
most appealing properties of the ionothermally synthesized CTFs is their exceptionally
high thermal, hydrothermal, and chemical stability. They can withstand temperatures up
to 550 ◦C and extreme chemical environments, such as 1 M NaOH or 1 M HCl solutions, for
an extended period. Such stability is important for “real life” gas adsorption/separation
applications, wherein high temperatures and the acid/base poisoning of the gas streams are
important considerations [30]. This encouraged us to design new CTFs, particularly with
polar functional sites that can be beneficial for gas storage and separations. Recently, Yaghi
et al., reported the first urea-linked ketoenamine COFs and highlighted their structural
dynamics with respect to their flexibility [31]. However, the COFs were not highly stable in
basic conditions (1 M NaOH). In order to develop porous materials that are stable under
both strong acidic and basic conditions, we report herein the synthesis of ultra-stable urea-
based CTFs using a dinitrile linker, (1,3-bis(4-cyanophenyl)urea) (Scheme 1). We studied
their surface properties as well as their potential for C2H2, C2H4, and CO2 separation
over CH4. We report herein that urea-CTFs display high C2H2 and C2H4 uptakes and
moderate CO2 adsorption capacity in comparison to the existing CTFs. Moreover, the
C2 hydrocarbon (C2H2 and C2H4) adsorption was selective compared to C1 hydrocarbon
(CH4). In addition, urea-CTFs also exhibited good selectivity for CO2 over CH4.
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Scheme 1. Schematic representation of the synthesis and ideal structure of the urea-functionalized
CTFs. 1,3-bis(4-cyanophenyl)urea is a flexible linker, and its possible conformations are listed.

2. Results and Discussion
2.1. Synthesis and Characterization of Urea-CTFs

For the synthesis of the targeted urea-based CTFs, the linker 1,3-bis(4-cyanophenyl)urea
was synthesized from 4-aminobenzonitrile according to the reported procedure [32]. In
general, urea-CTFs were obtained through ionothermal synthesis using ZnCl2 (5 eq.)
both as a catalyst and a solvent at 400 ◦C (urea-CTF-400-5) and 500 ◦C (urea-CTF-500-5)
(Scheme 1, ESI). The complete trimerization of the cyano (-CN) groups was confirmed
through Fourier transform infrared (FTIR) analysis (Figure S1) where the -CN peak at
2226 cm−1 of the monomer is no longer visible in the CTFs [10,14]. In addition, triazine
peaks were observed around 1360 cm−1 and 1600 cm−1, which further confirm the success-
ful trimerization. Notably, a small broad peak around 1707 cm−1 was observed in the CTFs
that are red-shifted from 1737 cm−1 of C(O) monomer and confirms the presence of urea
groups in the resulting materials [31]. The observed lower wavenumber might be due to
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the decrease in the double-bond character of the C(O) bond of the urea functional group
after the CTF formation.

The porous properties of both the CTF materials were explored using argon sorption
at 87 K (Figure 1) and N2 sorption measurements at 77 K (Figure S2). Both urea-CTF_400_5
and urea-CTF_500_5 displayed a Type I isotherm typical for microporous materials, and the
calculated BET surface areas were 555 m2 g−1 and 928 m2 g−1, respectively. The detailed
textural properties are described in Table S1. As seen in several reported CTFs [11], the mi-
croporosity content depends on the synthesis temperature, whereas, urea-CTF_400_5 shows
a higher microporous-to-mesoporous volume ratio in comparison to Urea-CTF_500_5.
The theoretical expected pore sizes are 0.7 nm and 1.4–1.5 nm as shown in the structure
(Scheme S1). From the experimental argon pore-size distribution, 0.75/1.43 nm pores for
urea-CTF_400_5 and 1.65/2.70 nm pores for urea-CTF_500_5 were obtained. The values for
urea-CTF_400_5 correspond well with the expected pore size, whereas, for urea-CTF-500,
the absence of the smallest pore (0.7 nm) and the appearance of a larger pore (2.70 nm)
were observed. This is the result of thermal decomposition causing the fragmentation of
the walls on top of the micropores, creating mesopores in urea-CTF_500_5 [33]. A higher
synthesis temperature also causes a higher degree of carbonization [34], which is seen in
the C/N ratio from the elemental analysis data. The presence of a sudden drop in the
adsorbed volume in the desorption isotherm at P/P0~0.45 (Figure S2) is due to the tensile
strength effect leading to a forced closure of the hysteresis loop [35]. The powder X-ray
diffraction (PXRD) analysis show the amorphous characteristics of the materials with a
broad diffraction band at 2θ = 25.8 degrees (Figure S3). The physicochemical stability of
the urea-CTFs was analyzed using thermogravimetric analysis (TGA) which showed that
the materials were stable up to 450 ◦C (Figure S4). In addition, the chemical stability of the
urea-CTF_400_5 and urea-CTF_500_5 material was studied by exposing them to boiling
water (3 days), 6 M NaOH (3 days), and 6 M HCl (3 days). After each treatment, they were
cleaned to remove the corresponding chemical traces, and N2 sorption was performed
(Figures S5 and S6). In all cases, microporosity was retained, proving the permanent
microporosity of the urea-CTF. Transmission electron microscopy (TEM) images show the
two-dimensional stacking of the urea-CTFs (Figures S7 and S8). In addition, scanning
electron microscopy (SEM) images show that urea_CTF_400_5 particles, are on average,
larger than the urea_CTF_500_5 particles (Figures S7 and S8). Lower temperature synthesis
of the CTF created fewer defects, and hence, urea_CTF_400_5 had longer sheet morphology.
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Figure 1. (a) Argon sorption isotherms measured at 87 K and (b) the pore-size distribution of the
urea-CTFs based on quenched solid density functional theory (QSDFT) cylindrical pores.

2.2. Gas Storage and Separation

Although CTFs in general have high potential for gas storage and separation, their
potential for C2 hydrocarbon storage and separation has only rarely been explored. Only
recently, CTF-PO71 [36] and hexene-CTF [37] have been studied for C2 hydrocarbon storage
and separation. The permanent microporosity and presence of urea/triazine functional
groups make urea-CTFs excellent candidates for this purpose. To this end, C2 hydrocarbon
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storage capacity was tested for both urea-CTF_400_5 and urea-CTF_500_5. Among these
samples, urea-CTF_400_5 showed the highest C2H2 uptake (3.86 mmol/g) at 273 K and
1 bar pressure, which is higher than the previously reported CTFs (Figure 2a).
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Figure 2. (a) C2H2 uptake, (b) CH4 uptake, (c) C2H4/CH4 breakthrough simulation of urea-
CTF_400_5, and (d) CO2, C2H2, and C2H4 selectivities over CH4 of urea-CTF_400_5 and urea-
CTF_500_5.

Interestingly, despite the higher surface area of urea-CTF_500_5, a similar C2H2 uptake
(3.78 mmol/g) at 273 K and 1 bar pressure was observed (Figure 2a, Table S2). This is due
to the abundance of the micropores in both materials. However, for urea-CTF_400_5, the
Vmicro/Vtot (0.72) is slightly higher than for urea-CTF_500_5 (0.61) (Table S1). This results
in a steeper increase of C2H2 uptake at the lower-pressure regime for urea-CTF_400_5. In
addition, similar trends were observed in C2H4 uptake (2.89 mmol/g and 2.92 mmol/g for
urea-CTF_400_5 and urea-CTF_500_5, respectively) (Figure S9). The affinity at 273 K and
298 K of the C2 hydrocarbons for the urea-CTFs was calculated by the Clausius–Clapeyron
equation (Figures S11 and S12). The isosteric heat of adsorption (Qst) values are given in
Table S3. As expected, in both cases, a higher affinity was observed in urea-CTF_400_5
because the lower synthesis temperature resulted in fewer defects. In addition to the storage
capacity, selectivity is perhaps an even more important parameter for industrial utilization.
First, we targeted C2H2/CH4 and C2H4/CH4 separation. The CH4 uptake isotherms at
273 K and 298 K are given in Figure 2b. Selectivity was estimated using the ideal adsorbed
solution theory (IAST) (Table S4 and Figures S14–S17). The calculated selectivities of the
urea-CTFs were within 16.9–20.2 and 8.9–12.4 for C2H2/CH4 and C2H4/CH4, respectively,
which are promising results for C2/C1 hydrocarbon separation (Figure 2d, Table 1).

The presence of inherent triazine and urea functionalities in urea-CTFs also encour-
aged us to test CO2 adsorption performance. The CO2 adsorption and desorption isotherms
were measured at 273 K and 298 K up to 1 bar. At 1 bar and 273 K, urea-CTF_400_5 and
urea-CTF_500_5 showed 2.8 mmol/g and 3.1 mmol/g uptake respectively, which are mod-
erate values in comparison to other CTFs (Figure S10, Table S2). The heat of liquefaction
of bulk CO2 is 17 kJ/mol [38], and urea-CTF_500_5 shows an isosteric heat of adsorption
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of 48.57 kJ/mol (Figure S12 and Table S3), which is much higher. In addition, the Qst
values of urea-CTFs are much higher than several reported CTFs and higher than activated
carbon at low CO2 pressure (17.8 kJ/mol). This confirms the strong dipolar interactions
between CO2 and the N-basic sites, as well as the H-bonding interactions between the urea
functional group and the CO2 molecules. The selectivity of CO2 over N2 and CH4 are also
important factors for CCS applications. CO2/CH4 and CO2/N2 selectivity were calculated
using IAST (Table S4), and the best values, 20.3 and 69.6, were respectively obtained for
urea-CTF_400_5 at 273 K. Notably, the obtained CO2/N2 selectivity of urea-CTF_400_5 is
higher than several reported CTFs [14,39–41].

Table 1. Comparison of urea-CTFs with other materials for C2H2/CH4 and CO2/CH4 selectivities and adsorption enthalpies.

Material Temp.
(K)

C2H2
Uptake

(mmol/g)

C2H2/CH4
Selectivity

(273 K)

C2H2
Adsorption

Enthalpy
(kJ/mol)

CO2
Uptake

(mmol/g)

CO2/CH4
Selectivity

(273 K)

CO2
Adsorption

Enthalpy
Ref.

UTSA-50 296 3.80 68 39.4 2.63 5 27.8 [4]

Zn4(OH)2(1,2,4-
btc)2

295 2.22 14.7 28.2 1.72 4.5 20.2 [5]

ZJU-60a 296 6.33 - 17.6 2.99 5–5.6 15.2 [6]

Hexene-
CTF_400_1 298 2.28 12.8 47 2.66 8 32 [37]

ZJU-61a 298 5.88 115.3 23.98 - - - [42]

HOF-BTB 295 2.87 7.8 24.3 - - - [43]

UTSA-36a 295 2.45 Ξ 16.1 29.0 - - - [44]

Activated carbon 303 - - - 3.45 2.5 (303 K) 24.2 [45]

Urea-CTF_400_5 298 2.80 20.25 35.51 1.8 10.49 30.05 This work

Urea-CTF_500_5 298 2.57 18.96 27.78 1.5 10.47 48.57 This work

Note: Ξ Extrapolated from plot.

To verify the performance of the adsorbents in a mixed component system, break-
through simulations were performed. Urea-CTF_400_5 was selected for these simulations
as it showed the best performance among the urea-CTFs in all gas separations. The affin-
ity constants and maximal loadings at the corresponding temperatures were obtained
from Langmuir adsorption isotherm fitting (ESI). With these values, the equilibrium data
for a mixed-component system were simulated. The equilibrium plots for C2H2/CH4,
C2H4/CH4, and CO2/CH4 components with (i) constant gas composition and variable pres-
sure and (ii) constant pressure and variable gas composition are shown in Figures S18–S20.
As expected, even in a 50:50 mixtures, uptake is higher for C2H2, C2H4, and CO2 as com-
pared to CH4 due to the higher affinity constants. Further breakthrough simulations were
performed with defined height, diameter of the column, gas-flow rate, and mass of the
adsorbent at 25 ◦C and 1 bar pressure. The breakthrough plots for C2H2/CH4, C2H4/CH4,
and CO2/CH4 are shown in Figure 2c and Figures S21 and S22. The results show promising
C2/C1 and CO2/CH4 separation using urea-CTF-5-400.

3. Conclusions

In conclusion, rigid and highly stable CTFs were synthesized using flexible urea-
based linkers. These materials exhibit high surface areas with good C2H2, C2H4, and CO2
adsorption properties. The calculated C2H2/CH4, C2H4/CH4, and CO2/CH4 selectivity
values demonstrate that these materials are promising for C2/C1 hydrocarbon separation,
as well as for the separation of CO2 in natural gas extraction.
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Supplementary Materials: The following are available online. Instrumentation, Synthesis of Urea-
CTFs, FT-IR spectra, N2 sorption, Porous properties of Urea-CTFs, PXRD pattern, TGA spectra,
Stability tests, TEM and SEM images, Gas uptake values, Isosteric heat of adsorption, IAST selectivi-
ties, Breakthrough simulations. Figure S1: FT-IR spectral comparison between Urea-CTFs obtained
at different temperatures with respect to the monomer, Figure S2: N2 sorption isotherms of the
Urea-CTFs, Figure S3: PXRD pattern of the obtained Urea-CTFs, Figure S4: TGA spectra of the
obtained Urea-CTFs, Figure S5: N2 sorption isotherms of (i) Urea-CTF_400_5, (ii) Urea-CTF_400_5 in
boiling water for 3 days, (iii) Urea-CTF_400_5 in 6M NaOH for 3 days, and (iv) Urea-CTF_400_5 in
6M HCl for 3 days, Figure S6: N2 sorption isotherms of (i) Urea-CTF_500_5, (ii) Urea-CTF_500_5 in
boiling water for 3 days, (iii) Urea-CTF_500_5 in 6 M NaOH for 3 days, and (iv) Urea-CTF_500_5
in 6 M HCl for 3 days, Figure S7: TEM and SEM images of Urea-CTF_400_5, Figure S8: TEM and
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