organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[1-(4-Isobutylphenyl)ethyl]-6-(4methylphenyl)-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazole

Hoong-Kun Fun,^a* Samuel Robinson Jebas,^a‡ Ibrahim Abdul Razak,^a K. V. Sujith,^b P. S. Patil,^c B. Kallurava^b and S. M. Dharmaprakash^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and ^cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 5 May 2008; accepted 9 May 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.142; data-to-parameter ratio = 22.9.

In the title compound, $C_{22}H_{24}N_4S$, the methylphenyl and isobutylphenyl rings are inclined at an angle of 79.98 $(1)^{\circ}$ and they form dihedral angles of 4.59(1) and $75.47(1)^{\circ}$, respectively, with the triazolothiadiazole unit. An intramolecular C-H···S hydrogen bond generates an S(5) ring motif. The crystal structure is stabilized by intermolecular C-H···N hydrogen bonds and weak C-H··· π and π - π interactions [centroid-centroid distances between the thiadiazole ring and a symmetry-related phenyl ring and between the triazole ring and the phenyl ring range from 3.5680 (8) to 3.7313 (8) Å].

Related literature

For information on the biological activity of triazole derivatives, thiadiazoles and triazolothiadiazole compounds, see: Holla et al. (2003); Bekircan & Bektas (2006); Zhou et al. (2007); Bhat et al. (2004); Mathew et al. (2007); Karthikeyan et al. (2007); Chaturvedi et al. (1988); Shawali & Sayed (2006). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related literature, see: Tayseer et al. (2002).

 $\nu = 106.240 \ (1)^{\circ}$ V = 984.90 (2) Å³

Mo $K\alpha$ radiation

 $\mu = 0.18 \text{ mm}^{-1}$

 $R_{\rm int}=0.029$

248 parameters

 $\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

T = 100.0 (1) K

 $0.46 \times 0.20 \times 0.18 \text{ mm}$

15868 measured reflections

5687 independent reflections

4391 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Z = 2

Experimental

Crystal data

$C_{22}H_{24}N_4S$
$M_r = 376.51$
Triclinic, $P\overline{1}$
a = 7.2545 (1) Å
b = 8.1764 (1) Å
c = 17.6556 (3) Å
$\alpha = 97.390 \ (1)^{\circ}$
$\beta = 96.120 \ (1)^{\circ}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.922, \ T_{\rm max} = 0.969$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.141$ S = 1.085687 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C5—H5A…S1	0.93	2.70	3.1194 (16)	108
C15—H15A…N3 ⁱ	0.93	2.48	3.343 (2)	155
C4—H4A…Cg1 ⁱⁱ	0.93	2.62	3.5063	160

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y, -z + 1. Cg1 is the centroid of the C11– C16 ring.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. FHK and IAR also thank the Malaysian Government and Universiti Sains Malaysia for the FRGS grant No. 203/PFIZIK/671064. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2495).

[‡] Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bekircan, O. & Bektas, H. (2006). Molecules, 11, 469-477.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bhat, K. S., Prasad, D. J., Poojary, B. & Holla, B. S. (2004). *Phosphorus, Sulfur Silicon*, **179**, 1595–1603.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chaturvedi, B., Tiwari, N. and Nizamuddin. (1988). Agric. Biol. Chem. 52, 1229–1232.
- Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759–767.
- Karthikeyan, M. S., Holla, B. S., Kalluraya, B. & Kumari, N. S. (2007). Monatsh. Chem. 138, 1309–1316.
- Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823–840.
- Shawali, A. S. & Sayed, A. R. (2006). J. Sulfur Chem. 27, 233-244.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tayseer, A. A., Manal, A. D. & Hamdi, M. H. (2002). Molecules, 7, 494-500.
- Zhou, S., Zhang, L., Jin, J., Zhang, A., Lei, X., Lin, J., He, J. & Zhang, H. (2007). *Phosphorus, Sulfur Silicon*, **182**, 419–432.

Acta Cryst. (2008). E64, o1076-o1077 [doi:10.1107/S1600536808013883]

3-[1-(4-Isobutylphenyl)ethyl]-6-(4-methylphenyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole

H.-K. Fun, S. R. Jebas, I. A. Razak, K. V. Sujith, P. S. Patil, B. Kalluraya and S. M. Dharmaprakash

Comment

Triazoles and their heterocyclic derivatives represent an interesting class of compounds possessing a wide spectrum of biological activity, such as anticancer, anticonvulsant, analgesic, antibacterial, anthelmintic, antitubercular and anti-inflammatory activities (Holla *et al.*, 2003; Bekircan & Bektas, 2006; Zhou *et al.*, 2007). Similarly 1, 3,4-thiadiazoles were also found to possess antitumor, anti-inflammatory, antibacterial, antifungal, anticonvulsant and antitubercular properties (Bhat *et al.*, 2004; Mathew *et al.*, 2007). Thus triazolothiadiazole systems may be viewed as cyclic analogues of two very important components, which often display diverse pharmacological properties. Triazolothiadiazoles obtained by fusing the biolabile 1,2,4-triazole and 1,3,4-thiadiazole rings together have been reported to possess similar biological properties (Karthikeyan *et al.*, 2007; Chaturvedi *et al.*, 1988; Shawali & Sayed 2006) and the crystal structure of the title triazolothiadiazole compound is reported here.

Bond lengths and angles in the title compound (Fig 1) have normal values (Allen *et al.*, 1987). The triazolothiadiazole ring is planar with the maximum deviation of 0.016 (2)Å for atom C7. The planes through the C1—C6 and C11—C16 rings form dihedral angles of 4.59 (1)° and 75.47 (1)° respectively, with the triazolothiadiazole unit. This is also planar with a dihedral angle of 1.34 (2) ° between the two five membered rings. A weak intramolecular C—H…S hydrogen bond generates an S(5) ring motif (Bernstein *et al.*, (1995) and contributes to the planarity of the 4-methylphenyl-triazolothiadiazole portion of the molecule.

The crystal packing is stabilized by intermolecular C—H···N hydrogen bonds and a weak C—H··· π interaction involving the C11—C16 ring (centroid Cg1, Table 1). π – π interactions are observed between the thiadiazole ring (S1/C7/N1—N2/C8) and the symmetry related phenyl rings (C1—C6) and between the triazole ring and the phenyl ring (C1—C6) with centroid to centroid distances ranging from 3.5680 (8)–3.7313 (8)Å [symmetry codes:1-*X*,-Y,1-*Z*;2-*X*, -Y,1-*Z*].

Experimental

A mixture of 4-amino-3-mercapto-5-[1-(4-isobutylphenyl)ethyl]-1, 2,4-triazole (0.01 mol), *p*-toluic acid (0.01 mol) and 10 ml POCl₃ was refluxed on a water bath for about 9 h. Excess of POCl₃ was removed under reduced pressure. The reaction mixture was cooled, poured into crushed ice, and neutralized with aqueous ammonia. The resulting solid product was filtered off, washed with water, dried, and recrystallized from a mixture of ethanol and dimethylformamide, 1/1, v/v. (Yield 61%; m.p. 134–1360 C). Analysis (%) for C₂₂H₂₄N₄S found (calculated): C 70.16 (70.21), H 6.31 (6.38), N 14.78 (14.89).

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model, with $U_{iso}(H) = -1.2$ to $-1.5U_{eq}(C)$. A rotating-group model was used for the methyl groups.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.

Fig. 2. The crystal packing of the title compound, viewed along the *c* axis. Hydrogen bonds are shown as dashed lines.

3-[1-(4-Isobutylphenyl)ethyl]-6-(4-methylphenyl)-1,2,4- triazolo[3,4-b][1,3,4]thiadiazole

Crystal data	
C ₂₂ H ₂₄ N ₄ S	Z = 2
$M_r = 376.51$	$F_{000} = 400$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.270 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 7.2545 (1) Å	Cell parameters from 5597 reflections
b = 8.1764 (1) Å	$\theta = 2.6 - 32.0^{\circ}$
c = 17.6556 (3) Å	$\mu = 0.18 \text{ mm}^{-1}$
$\alpha = 97.539 (1)^{\circ}$	T = 100.0 (1) K
$\beta = 96.712 \ (1)^{\circ}$	Block, colourless
$\gamma = 106.024 \ (1)^{\circ}$	$0.46 \times 0.20 \times 0.18 \text{ mm}$
V = 984.90 (2) Å ³	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	5687 independent reflections
Radiation source: fine-focus sealed tube	4391 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
T = 100.0(1) K	$\theta_{max} = 30.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -10 \rightarrow 8$
$T_{\min} = 0.922, \ T_{\max} = 0.969$	$k = -11 \rightarrow 11$
15868 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.142$	$w = 1/[\sigma^2(F_0^2) + (0.0792P)^2 + 0.0947P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
5687 reflections	$\Delta \rho_{max} = 0.45 \text{ e } \text{\AA}^{-3}$
248 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.65630 (5)	0.70616 (5)	0.50456 (2)	0.02030 (11)
N1	0.77613 (18)	0.91957 (15)	0.40935 (7)	0.0187 (3)
N2	0.73966 (17)	0.75288 (15)	0.37235 (7)	0.0177 (3)
N3	0.6927 (2)	0.50811 (16)	0.29652 (7)	0.0237 (3)
N4	0.6461 (2)	0.47006 (16)	0.36878 (7)	0.0236 (3)
C1	0.8328 (2)	1.23186 (19)	0.51493 (8)	0.0197 (3)
H1A	0.8673	1.2404	0.4662	0.024*
C2	0.8563 (2)	1.3798 (2)	0.56768 (9)	0.0218 (3)
H2A	0.9089	1.4871	0.5541	0.026*
C3	0.8029 (2)	1.3718 (2)	0.64094 (8)	0.0212 (3)
C4	0.7242 (2)	1.2089 (2)	0.65980 (9)	0.0237 (3)
H4A	0.6859	1.2004	0.7080	0.028*
C5	0.7022 (2)	1.0597 (2)	0.60774 (8)	0.0222 (3)
H5A	0.6505	0.9524	0.6214	0.027*
C6	0.7572 (2)	1.06958 (18)	0.53493 (8)	0.0174 (3)
C7	0.7360 (2)	0.91381 (18)	0.47910 (8)	0.0172 (3)
C8	0.6765 (2)	0.62112 (18)	0.41226 (8)	0.0193 (3)
C9	0.7476 (2)	0.67599 (19)	0.29953 (8)	0.0202 (3)
C10	0.8042 (2)	0.7724 (2)	0.23493 (9)	0.0233 (3)
H10A	0.9227	0.8674	0.2557	0.028*
C11	0.6460 (2)	0.85129 (19)	0.20767 (8)	0.0220 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C12	0.4859 (2)	0.75782 (19)	0.15229 (8)	0.0228 (3)
H12A	0.4751	0.6447	0.1309	0.027*
C13	0.3422 (2)	0.8308 (2)	0.12848 (9)	0.0245 (3)
H13A	0.2379	0.7664	0.0907	0.029*
C14	0.3510 (2)	0.99849 (19)	0.15996 (9)	0.0251 (3)
C15	0.5107 (3)	1.0916 (2)	0.21594 (9)	0.0289 (4)
H15A	0.5197	1.2035	0.2384	0.035*
C16	0.6563 (3)	1.0200 (2)	0.23864 (9)	0.0274 (4)
H16A	0.7628	1.0857	0.2752	0.033*
C17	0.8301 (3)	1.5347 (2)	0.69710 (9)	0.0274 (3)
H17A	0.7632	1.5074	0.7397	0.041*
H17B	0.7783	1.6128	0.6715	0.041*
H17C	0.9661	1.5879	0.7160	0.041*
C18	0.8520 (3)	0.6536 (2)	0.17039 (9)	0.0289 (4)
H18A	0.9693	0.6281	0.1885	0.043*
H18B	0.8694	0.7101	0.1263	0.043*
H18C	0.7472	0.5481	0.1560	0.043*
C19	0.1932 (3)	1.0768 (2)	0.13430 (10)	0.0296 (4)
H19A	0.1290	1.0994	0.1780	0.036*
H19B	0.0973	0.9928	0.0947	0.036*
C20	0.2641 (3)	1.2447 (2)	0.10233 (10)	0.0312 (4)
H20A	0.3529	1.3316	0.1440	0.037*
C21	0.3738 (3)	1.2215 (3)	0.03589 (11)	0.0437 (5)
H21A	0.4838	1.1846	0.0532	0.066*
H21B	0.4176	1.3293	0.0178	0.066*
H21C	0.2897	1.1360	-0.0055	0.066*
C22	0.0920 (3)	1.3099 (2)	0.07796 (11)	0.0419 (5)
H22A	0.1372	1.4156	0.0584	0.063*
H22B	0.0298	1.3303	0.1219	0.063*
H22C	0.0008	1.2249	0.0383	0.063*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0225 (2)	0.02041 (19)	0.01790 (18)	0.00448 (15)	0.00473 (14)	0.00591 (13)
N1	0.0200 (6)	0.0182 (6)	0.0187 (6)	0.0067 (5)	0.0031 (5)	0.0038 (5)
N2	0.0192 (6)	0.0172 (6)	0.0168 (6)	0.0051 (5)	0.0027 (5)	0.0044 (4)
N3	0.0277 (7)	0.0225 (6)	0.0202 (6)	0.0061 (6)	0.0036 (5)	0.0041 (5)
N4	0.0282 (7)	0.0208 (6)	0.0214 (6)	0.0052 (5)	0.0053 (5)	0.0059 (5)
C1	0.0205 (7)	0.0228 (7)	0.0177 (7)	0.0083 (6)	0.0047 (6)	0.0045 (6)
C2	0.0218 (7)	0.0214 (7)	0.0231 (7)	0.0077 (6)	0.0035 (6)	0.0047 (6)
C3	0.0189 (7)	0.0263 (7)	0.0194 (7)	0.0101 (6)	0.0011 (6)	0.0018 (6)
C4	0.0258 (8)	0.0294 (8)	0.0172 (7)	0.0096 (7)	0.0051 (6)	0.0039 (6)
C5	0.0250 (8)	0.0234 (7)	0.0194 (7)	0.0071 (6)	0.0051 (6)	0.0061 (6)
C6	0.0153 (7)	0.0208 (7)	0.0169 (6)	0.0073 (6)	0.0012 (5)	0.0031 (5)
C7	0.0146 (6)	0.0197 (7)	0.0180 (7)	0.0052 (5)	0.0019 (5)	0.0056 (5)
C8	0.0185 (7)	0.0195 (7)	0.0201 (7)	0.0043 (6)	0.0035 (6)	0.0064 (5)
C9	0.0219 (7)	0.0204 (7)	0.0177 (7)	0.0067 (6)	0.0016 (6)	0.0020 (5)

C10	0.0273 (8)	0.0236 (7)	0.0187 (7)	0.0064 (6)	0.0051 (6)	0.0040 (6)
C11	0.0302 (8)	0.0198 (7)	0.0163 (6)	0.0055 (6)	0.0069 (6)	0.0057 (5)
C12	0.0314 (8)	0.0183 (7)	0.0189 (7)	0.0062 (6)	0.0071 (6)	0.0032 (5)
C13	0.0310 (8)	0.0214 (7)	0.0189 (7)	0.0045 (6)	0.0039 (6)	0.0031 (6)
C14	0.0357 (9)	0.0217 (7)	0.0201 (7)	0.0095 (7)	0.0065 (7)	0.0072 (6)
C15	0.0447 (10)	0.0174 (7)	0.0231 (8)	0.0091 (7)	0.0002 (7)	0.0030 (6)
C16	0.0370 (9)	0.0202 (7)	0.0205 (7)	0.0032 (7)	-0.0003 (7)	0.0028 (6)
C17	0.0321 (9)	0.0292 (8)	0.0207 (7)	0.0132 (7)	0.0005 (7)	-0.0020 (6)
C18	0.0312 (9)	0.0353 (9)	0.0238 (8)	0.0140 (7)	0.0078 (7)	0.0060(7)
C19	0.0377 (9)	0.0277 (8)	0.0259 (8)	0.0134 (7)	0.0049 (7)	0.0053 (6)
C20	0.0482 (11)	0.0217 (7)	0.0235 (8)	0.0140 (8)	-0.0024 (7)	0.0024 (6)
C21	0.0660 (14)	0.0411 (11)	0.0307 (9)	0.0211 (10)	0.0107 (9)	0.0158 (8)
C22	0.0616 (13)	0.0302 (9)	0.0340 (10)	0.0234 (9)	-0.0081 (9)	-0.0010 (7)

Geometric parameters (Å, °)

S1—C8	1.7248 (15)	C12—C13	1.388 (2)
S1—C7	1.7714 (14)	C12—H12A	0.9300
N1—C7	1.3018 (18)	C13—C14	1.391 (2)
N1—N2	1.3716 (17)	C13—H13A	0.9300
N2—C8	1.3672 (18)	C14—C15	1.395 (2)
N2—C9	1.3699 (18)	C14—C19	1.511 (2)
N3—C9	1.3113 (19)	C15—C16	1.387 (2)
N3—N4	1.4092 (18)	C15—H15A	0.9300
N4—C8	1.3133 (19)	C16—H16A	0.9300
C1—C2	1.383 (2)	C17—H17A	0.9600
C1—C6	1.397 (2)	С17—Н17В	0.9600
C1—H1A	0.9300	C17—H17C	0.9600
C2—C3	1.397 (2)	C18—H18A	0.9600
C2—H2A	0.9300	C18—H18B	0.9600
C3—C4	1.397 (2)	C18—H18C	0.9600
C3—C17	1.503 (2)	C19—C20	1.533 (2)
C4—C5	1.386 (2)	C19—H19A	0.9700
C4—H4A	0.9300	C19—H19B	0.9700
C5—C6	1.395 (2)	C20—C21	1.513 (3)
С5—Н5А	0.9300	C20—C22	1.527 (3)
C6—C7	1.464 (2)	C20—H20A	0.9800
C9—C10	1.503 (2)	C21—H21A	0.9600
C10-C11	1.525 (2)	C21—H21B	0.9600
C10-C18	1.533 (2)	C21—H21C	0.9600
C10—H10A	0.9800	C22—H22A	0.9600
C11—C12	1.392 (2)	C22—H22B	0.9600
C11—C16	1.394 (2)	C22—H22C	0.9600
C8—S1—C7	87.77 (7)	C12—C13—H13A	119.3
C7—N1—N2	107.74 (12)	C14—C13—H13A	119.3
C8—N2—C9	105.94 (12)	C13—C14—C15	117.59 (15)
C8—N2—N1	118.63 (12)	C13—C14—C19	121.14 (15)
C9—N2—N1	135.41 (12)	C15—C14—C19	121.27 (14)
C9—N3—N4	109.48 (12)	C16-C15-C14	121.08 (14)

C8—N4—N3	104.93 (12)	C16—C15—H15A	119.5
C2—C1—C6	119.97 (13)	C14—C15—H15A	119.5
C2—C1—H1A	120.0	C15—C16—C11	121.19 (15)
C6—C1—H1A	120.0	C15—C16—H16A	119.4
C1—C2—C3	121.54 (14)	C11—C16—H16A	119.4
C1—C2—H2A	119.2	C3—C17—H17A	109.5
C3—C2—H2A	119.2	С3—С17—Н17В	109.5
C4—C3—C2	118.01 (14)	H17A—C17—H17B	109.5
C4—C3—C17	121.60 (14)	C3—C17—H17C	109.5
C2—C3—C17	120.39 (14)	Н17А—С17—Н17С	109.5
C5—C4—C3	120.94 (14)	H17B—C17—H17C	109.5
C5—C4—H4A	119.5	C10-C18-H18A	109.5
C3—C4—H4A	119.5	C10-C18-H18B	109.5
C4—C5—C6	120.46 (14)	H18A—C18—H18B	109.5
C4—C5—H5A	119.8	C10-C18-H18C	109.5
С6—С5—Н5А	119.8	H18A—C18—H18C	109.5
C5—C6—C1	119.07 (13)	H18B—C18—H18C	109.5
C5—C6—C7	121.42 (13)	C14—C19—C20	114.77 (15)
C1—C6—C7	119.50 (12)	С14—С19—Н19А	108.6
N1—C7—C6	122.53 (13)	С20—С19—Н19А	108.6
N1—C7—S1	116.63 (11)	C14—C19—H19B	108.6
C6—C7—S1	120.84 (10)	C20—C19—H19B	108.6
N4—C8—N2	111.28 (13)	H19A—C19—H19B	107.6
N4—C8—S1	139.48 (11)	C21—C20—C22	111.13 (15)
N2—C8—S1	109.21 (10)	C21—C20—C19	111.68 (14)
N3—C9—N2	108.36 (13)	C22—C20—C19	109.77 (16)
N3—C9—C10	127.27 (13)	C21—C20—H20A	108.0
N2-C9-C10	124.35 (13)	С22—С20—Н20А	108.0
C9—C10—C11	109.88 (13)	С19—С20—Н20А	108.0
C9—C10—C18	109.90 (13)	C20—C21—H21A	109.5
C11—C10—C18	113.81 (13)	C20-C21-H21B	109.5
C9—C10—H10A	107.7	H21A—C21—H21B	109.5
C11—C10—H10A	107.7	C20—C21—H21C	109.5
C18-C10-H10A	107.7	H21A—C21—H21C	109.5
C12—C11—C16	117.76 (15)	H21B—C21—H21C	109.5
C12—C11—C10	121.62 (13)	C20—C22—H22A	109.5
C16—C11—C10	120.61 (14)	C20—C22—H22B	109.5
C13—C12—C11	120.99 (14)	H22A—C22—H22B	109.5
C13—C12—H12A	119.5	С20—С22—Н22С	109.5
C11—C12—H12A	119.5	H22A—C22—H22C	109.5
C12—C13—C14	121.37 (15)	H22B—C22—H22C	109.5
C7—N1—N2—C8	-1.13 (17)	N4—N3—C9—N2	0.11 (17)
C7—N1—N2—C9	177.66 (15)	N4—N3—C9—C10	-178.01 (14)
C9—N3—N4—C8	-0.02 (17)	C8—N2—C9—N3	-0.16 (16)
C6—C1—C2—C3	-1.1 (2)	N1—N2—C9—N3	-179.05 (14)
C1—C2—C3—C4	-0.1 (2)	C8—N2—C9—C10	178.03 (14)
C1—C2—C3—C17	-179.98 (13)	N1—N2—C9—C10	-0.9 (3)
C2—C3—C4—C5	0.9 (2)	N3—C9—C10—C11	108.16 (17)
C17—C3—C4—C5	-179.20 (14)	N2-C9-C10-C11	-69.68 (18)

C3—C4—C5—C6	-0.5 (2)	N3-C9-C10-C18	-17.8 (2)
C4—C5—C6—C1	-0.6 (2)	N2-C9-C10-C18	164.34 (14)
C4—C5—C6—C7	179.78 (13)	C9-C10-C11-C12	-85.94 (17)
C2—C1—C6—C5	1.4 (2)	C18—C10—C11—C12	37.8 (2)
C2-C1-C6-C7	-178.96 (13)	C9—C10—C11—C16	93.15 (17)
N2—N1—C7—C6	-179.59 (12)	C18—C10—C11—C16	-143.13 (15)
N2-N1-C7-S1	1.19 (15)	C16—C11—C12—C13	0.4 (2)
C5-C6-C7-N1	176.10 (14)	C10-C11-C12-C13	179.48 (13)
C1-C6-C7-N1	-3.5 (2)	C11—C12—C13—C14	-1.2 (2)
C5-C6-C7-S1	-4.72 (19)	C12—C13—C14—C15	0.6 (2)
C1-C6-C7-S1	175.70 (11)	C12—C13—C14—C19	-179.48 (14)
C8—S1—C7—N1	-0.81 (12)	C13—C14—C15—C16	0.7 (2)
C8—S1—C7—C6	179.96 (12)	C19—C14—C15—C16	-179.20 (15)
N3—N4—C8—N2	-0.09 (16)	C14—C15—C16—C11	-1.5 (3)
N3—N4—C8—S1	178.05 (14)	C12-C11-C16-C15	0.9 (2)
C9—N2—C8—N4	0.15 (17)	C10-C11-C16-C15	-178.18 (14)
N1-N2-C8-N4	179.27 (12)	C13—C14—C19—C20	-122.58 (16)
C9—N2—C8—S1	-178.56 (10)	C15—C14—C19—C20	57.3 (2)
N1—N2—C8—S1	0.55 (16)	C14—C19—C20—C21	55.9 (2)
C7—S1—C8—N4	-178.04 (19)	C14—C19—C20—C22	179.58 (14)
C7—S1—C8—N2	0.12 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C5—H5A…S1	0.93	2.70	3.1194 (16)	108
C15—H15A···N3 ⁱ	0.93	2.48	3.343 (2)	155
C4—H4A…Cg1 ⁱⁱ	0.93	2.62	3.5063	160

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, –*y*, –*z*+1.

Fig. 2