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Introduction

Oral cavity squamous cell carcinoma (OCSCC) is one of 
the most common cancers worldwide, with a 5-year survival 
rate of less than 60% (1,2). The most common subtype of 

OCSCC is tongue squamous cell carcinoma (TSCC), which 

has the worst prognosis. Recently, an increasing incidence 

of TSCC among young people has been observed (2,3). 

Challenges in diagnosis and prognosis prediction for TSCC, 
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such as developing effective strategies for early diagnosis 
and evaluating the risk of postoperative recurrence, still 
exist, but reliable approaches to solve these problems are 
elusive (4-6).

Machine learning (ML) is a technique that involves 
learning from input data, analyzing data, and outputting 
the result, which can be used for feature extraction, feature 
selection, model construction, etc. The ML protocol is 
shown in Figure 1. ML has been widely used for medical 
research and has shown excellent performance in multiple 
aspects, such as diagnosis, efficacy evaluation, and prognosis 
prediction (7-10). 

Radiomics and deep learning (DL), which fall under 
ML, have developed rapidly. Radiomics extracts numerous 
features, such as first-order and texture features, from the 
region of interest (ROI) on medical images while DL can 
extract deep features (11,12). The features extracted by 
radiomics and DL, which are invisible to the naked eye, can 
be analyzed to determine their relationship with diseases 
(13,14). The utilization of radiomics and DL enables a more 
accurate and more objective method for medical research 
and clinical decision (15,16).

In this paper, studies on ML in TSCC were reviewed to 
highlight that ML may be a potential approach to solve the 

challenges regarding diagnosis and prognosis prediction 
for TSCC. We present the following article in accordance 
with the Narrative Review reporting checklist (available at 
https://tcr.amegroups.com/article/view/10.21037/tcr-22-
1669/rc).

Methods

Literature searches were performed on May 3, 2022 and 
July 18, 2022 in PubMed, Scopus, Web of Science, and 
China National Knowledge Infrastructure databases. 
Papers in English or Chinese, published between the 
dates of inception of these databases and April 30, 2022, 
were included. The keyword “tongue cancer” or “tongue 
squamous cell carcinoma” was used together with either 
“machine learning”, “radiomics” or “deep learning”. The 
search results were screened by two reviewers independently 
through titles and abstracts to select the eligible studies. 
A summary of the search strategy and the search flow 
are shown in Table 1 and Figure 2 respectively. After the 
exclusion of duplicates, irrelevant papers, and papers 
involving other oral lesions, 24 papers were finally included 
in the review. Among the papers included, 21 focused on 
diagnosis and 3 focused on prognosis prediction. There was 

Figure 1 The machine learning protocol. MSE, mean square error.
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only 1 article regarding ML in TSCC in 2018, whereas the 
number of articles concerning ML in TSCC published per 
year has reached or exceeded 5 since 2019.

Applications of ML in TSCC

Diagnosis

The conventional screening methods for OCSCC are 
inspection and palpation. A biopsy is needed to confirm 

the diagnosis of suspicious lesions (17). However, the 
result relies largely on the experience of the clinician. Even 
for experienced clinicians, the result of the biopsy may 
not represent the whole lesion due to the heterogeneity 
within the tumor. Additionally, this approach is invasive 
and expensive (18,19). Thus, it is necessary to develop a 
noninvasive and reliable diagnostic method. 

Lu et al. (19) used hyperspectral imaging (HSI), 
autofluorescence imaging, and vital-dye fluorescence 

Figure 2 The search flow and the classification of included papers. CNKI, China National Knowledge Infrastructure.

Table 1 Summary of the search strategy

Items Specification

Date of search May 3, 2022 and July 18, 2022

Databases and other sources searched PubMed, Scopus, Web of Science and China National Knowledge Infrastructure

Search terms used “tongue cancer” or “tongue squamous cell carcinoma” with either “machine learning”, 
“radiomics” or “deep learning”

Timeframe From inception to April 30, 2022

Inclusion and exclusion criteria Papers in English or Chinese were included

Selection process Two reviewers screened the search results independently through titles and abstracts to select 
the eligible ones

172 potentially relevant articles
PubMed: 34
Scopus: 67

Web of Science: 61
CNKI: 10

Number of articles excluding duplicates
(n=106)

Number of duplicates
(n=66)

Number of relevant articles
(n=51)

Number of articles unrelated to the topic
(n=55)

Number of articles included in the review
(n=24)

Number of articles in different years:
2018: 1, 2019: 5, 2020: 7, 2021: 6, 2022: 5

Number of articles on diagnosis: 21
Number of articles on prognosis prediction: 3

Number of articles involving other oral lesions
(n=27)



Lin et al. ML in TSCC4412

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(12):4409-4415 | https://dx.doi.org/10.21037/tcr-22-1669

imaging combined with a variety of ML algorithms for 
tongue neoplasia detection in mouse models. The area 
under the curve (AUC), sensitivity, and specificity of 
the HSI in tongues in vivo were 0.84, 78%, and 78% 
respectively, and those in tongues ex vivo were 0.86, 
79%, and 79% respectively. Due to its non-invasiveness, 
less dependence on the experience of the clinician and 
contrast agent, and good performance in vivo and ex vivo, 
HSI was considered a potential method to detect tongue 
neoplasia. Manni et al. (20) successfully built a support 
vector machine (SVM) model based on patient HSI data 
to detect TSCC, with an AUC of 0.92. Several researchers 
have constructed DL models based on HSI data, which 
showed good performance in distinguishing TSCC from 
normal tissue (21-23). The results supported the point that 
HSI augmented with ML may have notable potential as a 
supportive tool for clinicians.

Yu et al. (24) used convolutional neural network (CNN), 
linear discriminate analysis, and SVM to analyze the Raman 
spectrum data of tongue specimens to discriminate between 
TSCC and normal tissue. The sensitivity, specificity, 
precision, and accuracy of the CNN model were 99.31%, 
94.40%, 94.70%, and 96.90%, respectively, which were 
superior to those of other models. Yan et al. (25,26) found 
that the CNN model combined with Raman spectroscopy 
had great potential as a useful tool for the intraoperative 
evaluation of the resection margins of TSCC. Xia et al. (27) 
combined CNN and SVM to develop a model for TSCC 
detection, whose AUC reached 0.99. Ding et al. (28) used 
the residual network, a type of CNN, to construct a diverse 
spectral band-based model, which could also distinguish 
TSCC from normal tissue. CNN was also used to analyze 
clinical images of tongues for the early detection of TSCC, 
which showed promising performance (29). These studies 
indicated that the CNN model can be applied for the 
evaluation of resection margins during surgery to reduce 
the possibility of reoperation due to insufficient resection.

Yu et al. (30) constructed magnetic resonance (MR) 
imaging-based radiomics models with good performance 
in predicting the degree of pathological differentiation in 
TSCC. Committeri et al. (31) successfully built an ML 
model combining radiomics features and clinical parameters 
to predict tumor grading, with an accuracy of 0.82. These 
results confirmed the superiority of radiomics in pathologic 
diagnosis.

Regional lymph node metastasis is considered one of the 
most important prognostic factors (32). Accurate detection 
of lymph node metastasis in TSCC can help to select the 

appropriate treatment strategy. To predict late cervical 
metastasis in early TSCC, Ariji et al. (33) developed a DL 
model based on intraoral Doppler ultrasound images, with 
an AUC of 0.883. Several studies were also conducted to 
predict lymph node metastasis in early-stage TSCC. Ren 
et al. (34) found that T2 weighted imaging  radiomics 
signature was an independent predictor of occult lymph 
node metastasis. Shan et al. (35) used clinicopathologic 
features to construct four ML models, which showed 
better performance than the depth of invasion (DOI), 
neutrophil-to-lymphocyte ratio, and tumor budding. Yuan 
et al. (36) extracted texture features from MR images and 
constructed six ML models, among which the Naïve Bayes 
model achieved the best performance. Kubo et al. (37) used 
radiomics features of lymph nodes to construct ML models 
for predicting occult cervical lymph node metastasis. Zhong 
et al. (38) built artificial neural network (ANN) models 
incorporating computed tomography radiomics of the 
primary tumor with traditional lymph node evaluation to 
detect cervical lymph node metastasis. Both studies showed 
promising results. Kudoh et al. (39) also found that the 
model based on positron emission tomography radiomics 
features performed well in predicting cervical lymph node 
metastasis in TSCC. Wang et al. (40) showed that models 
based on MR radiomics signature from the primary tumor 
with 10 mm peritumoral extensions and clinicopathological 
characteristics had the highest AUC of 0.995 in the training 
cohort and 0.872 in the testing cohort. These satisfactory 
results have revealed the promising prospect of ML.

Prognosis prediction

Surgical resection is the primary treatment for TSCC, but 
the postoperative recurrence rate cannot be ignored. In a 
multicenter international study, 27.8% of the patients with 
early-stage TSCC experienced recurrence, which indicated 
that patients with a high risk of recurrence may require 
early intervention to improve prognosis (4). Therefore, 
the assessment of the risk of recurrence has an important 
impact on the treatment strategy for TSCC.

Almangush et al. (4) showed that patients with TSCC 
whose DOI exceeded 4 mm had a higher risk of local 
recurrence. Alabi et al. (41) compared four ML models 
with a DOI-based model and found that all the ML models 
performed significantly better than the DOI-based one. 
In another research, they constructed two ANN models 
to estimate the risk of locoregional recurrence in early-
stage TSCC based on several parameters of 311 early-stage 
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TSCC patients. The parameters included T stage, WHO 
histologic grade, DOI, tumor budding, and perineural 
invasion. The accuracy of the ANN model was 92.7%, 
which was higher than that of the logistic regression model. 
The study also indicated that the number of tumor buds 
and DOI were the most important prognostic factors (42). 
Another study suggested that ML models could provide 
a more accurate prediction of overall survival in patients 
with TSCC compared to a nomogram (43). The excellent 
performance of the ML models has shown their potential to 
assist clinical decisions.

Discussion and summary

As the most common type of OCSCC, TSCC is malignant 
and has a high recurrence rate. The difficulties in diagnosis 
and prognosis prediction for TSCC still need to be 
addressed. In recent years, ML has been applied to the 
analysis of TSCC medical data and performed well in 
various aspects, such as early detection and recurrence 
risk evaluation. Despite promising results, ML has its 
limitations, such as the bias caused by differences in image 
quality due to various scanners with different parameters, 
time consumption caused by manual ROI delineation, and 
the difficulty in explaining the biological significance of 
radiomics features (44-46). Although some measures have 
been employed to solve these problems, such as image 
normalization to standardize image quality, semi-automatic 
or automatic ROI delineation, and radiogenomics which 
focuses on the relationship between imaging phenotypes 
and genomics (47-49), the challenges are still notable. 
Therefore, more efforts are required to improve ML to 
make it more helpful for diagnosis and prognosis prediction 
in TSCC. 
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