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ABSTRACT

Transfer RNA-derived RNA fragments (tRFs) are a
class of small non-coding RNAs that are abundant in
many organisms, but their role in cancer has not been
fully explored. Here, we report a functional genomic
landscape of tRFs in 8118 specimens across 15 can-
cer types from The Cancer Genome Atlas. These tRFs
exhibited characteristics of widespread expression,
high sequence conservation, cytoplasmic localiza-
tion, specific patterns of tRNA cleavage and con-
served cleavage in tissues. A cross-tumor analysis
revealed significant commonality among tRF expres-
sion subtypes from distinct tissues of origins, char-
acterized by upregulation of a group of tRFs with sim-
ilar size and activation of cancer-associated signal-
ing. One of the largest superclusters was composed
of 22 nt 3′-tRFs upregulated in 13 cancer types, all
of which share the activation of Ras/MAPK, RTK and
TSC/mTOR signaling. tRF-based subgrouping pro-
vided clinically relevant stratifications and signifi-

cantly improved outcome prediction by incorporat-
ing clinical variables. Additionally, we discovered 11
cancer driver tRFs using an effective approach for ac-
curately exploring cross-tumor and platform trends.
As a proof of concept, we performed comprehensive
functional assays on a non-microRNA driver tRF, 5′-
IleAAT-8-1-L20, and validated its oncogenic roles in
lung cancer in vitro and in vivo. Our study also pro-
vides a valuable tRF resource for identifying diag-
nostic and prognostic biomarkers, developing can-
cer therapy and studying cancer pathogenesis.

INTRODUCTION

Transfer RNA-derived RNA fragments (tRFs) are a class of
small non-coding RNAs (ncRNAs) that are abundant and
conserved across most organisms (1–8). These fragments
are generated from the cleavage in the stem and loop struc-
ture of mature tRNAs or 3′ trailer sequences of their pre-
cursor transcripts under either stressed or unstressed con-
ditions. Generally, at least five types of tRFs have been de-
fined based on their cleavage sites in tRNAs: 5′- and 3′-
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halves (>30 nt), 5′- and 3′-tRFs (15–30 nt) and 3′U-tRFs
(also named as tsRNAs) (8–10). Recently, 5′-tRFs were
reported to increase in abundance during sperm matura-
tion and act as regulators of offspring metabolism (11–13).
This can be achieved through suppression of endogenous
retroelement-regulated genes, although the mechanism is
unknown. Moreover, a recent study showed that 3′-tRFs
can silence mobility of long terminal repeat retrotrans-
posons in mouse cells through inhibition of reverse tran-
scription and RNAi silencing machinery, respectively (14).
These results indicate that endogenous tRNA-related frag-
ments are biologically functional molecules rather than ran-
dom degradation products of tRNAs. Biogenesis and dis-
covery of tRFs as well as their potential roles in various
biological processes have been further described in recent
reviews (15–17).

So far, the roles of tRNA fragments have only been ex-
plored in tumor development and progression in a handful
of studies. Goodarzi et al. found that tRFs from tRNAGlu,
tRNAAsp, tRNAGly and tRNATyr can competitively bind to
oncogenic protein, YBX1, with pro-oncogenic transcripts,
resulting in inhibition of tumor metastasis in breast can-
cer cells (18). Honda et al. reported a group of 5′-halves
whose expression levels were sex hormone dependent and
were involved in cell proliferation in breast and prostate
cancer (19). Additionally, dysregulation of 3′U-tRFs was
discovered in multiple malignancies (20,21). Recently, Kim
et al. showed that inhibition of a specific tRNA fragment,
LeuCAG3′tsRNA, could induce apoptosis of hepatocellu-
lar cells in vivo and in vitro (22).

However, the biological and clinical significance of 5′-
and 3′-tRFs in solid tumors is not yet clear. We suspect
that they can also have oncogenic or tumor suppressor
roles in cancer development and progression similar to the
families of tRFs described above and well-characterized
microRNAs (miRNAs). Evidence for this is urgently re-
quired. Furthermore, a comprehensive cross-tumor land-
scape of endogenous tRNA-derived fragments could greatly
expand our current knowledge on the biogenesis, character-
istics and function of these tRFs in cancer. This informa-
tion could enable the discovery of potential robust biomark-
ers and therapeutic targets, which have not been previously
identified.

In this study, we have systematically analyzed 5′- and 3′-
tRF profiles using 8118 small RNA sequencing (smRNA-
seq) datasets from 15 common cancer types with large sam-
ple sizes in The Cancer Genome Atlas (TCGA) in an ef-
fort to address the above questions. As a proof of con-
cept, we performed comprehensive functional assays on a
cancer-associated 5′-tRF, 5′-IleAAT-8-1-L20, and validated
its oncogenic role in lung cancer in vitro and in vivo.

MATERIALS AND METHODS

Characterization of the expression profiles of tRFs

tRF annotation for mapping and quantifying tRFs was cre-
ated as described previously (23). miRNA-seq BAM files of
7512 human tumor samples across 15 common cancer types
and 606 corresponding normal tissue specimens (if avail-
able) were downloaded from the Genomic Data Commons

(https://portal.gdc.cancer.gov/). These BAM files contained
both mapped and unmapped sequence reads. First, mapped
reads in these BAM files were remapped to sequence sets
of our CCA-tRNA and pre-tRNA annotation using the
Burrows–Wheeler transform algorithm (24), allowing for
no mismatches per read. Then, these remapped reads were
used to count the number of reads belonging to each of the
candidate tRFs. Finally, the expression of tRFs was quan-
tified as reads per million mapped reads (RPM), which has
been commonly used in previous miRNA studies (25).

Subcellular localization of tRFs

Short RNA-seq data of subcellular compartments (nucleus
and cytoplasm) of A549 cell line in the ENCODE project
were obtained from Gene Expression Omnibus (GSE24565)
and used to quantify the expression of miRNAs, small nu-
clear RNAs (snRNAs), small nucleolar RNAs (snoRNAs),
small cytoplasmic RNAs (scRNAs) and Piwi-interacting
RNAs, as detailed in the Supplementary Methods.

Jensen–Shannon divergence cleavage score

The Jensen–Shannon (JS) divergence is used to compare
two discrete probability distributions, and is calculated as
follows:
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To quantify the distribution pattern of cleavage among
different cancer types (or tissues) and tRNA genes, we de-
fined a JS cleavage score that was modified from methods
developed by Cabili et al. (26), as detailed in the Supple-
mentary Methods.

RPPA protein, miRNA-seq and mRNA-seq data

Reverse-phase protein lysate array (RPPA), miRNA and
mRNA expression profile data of the studied 15 common
cancer types in TCGA were downloaded from ICGC Data
Portal (https://dcc.icgc.org) (Supplementary Table S1). Pro-
cessing and filtering of these data are detailed in the Supple-
mentary Methods.

Functional assays

In vitro and in vivo assays for evaluating the functional role
of 5′-IleAAT-8-1-L20 in lung cancer are described in the
Supplementary Methods.

https://portal.gdc.cancer.gov/
https://dcc.icgc.org
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RESULTS

Identification, quantification and characterization of tRFs
across 15 cancer types

Identification of tRFs from smRNA-seq data presents two
main challenges: (i) lack of evidence-based tRF annota-
tion and (ii) multiple potential mapping loci in the hu-
man genome for most tRFs. Standard analysis procedures
for miRNAs are unable to effectively mine these fragments
(27). Accordingly, we developed a computational workflow
for de novo tRF mining from sequencing libraries of small
RNAs (Figure 1A). The expression level of tRFs was quan-
tified using RPM normalization strategy, the commonly
used method for miRNA analysis (25). To ensure robust
detection, candidates whose 90th quantile RPM value was
<1 for each cancer type were filtered, and the subsequent
analysis was then focused on those remaining. In total, 616
5′-tRFs, 355 3′-tRFs and 62 3′U-tRFs shared by at least
one cancer type were revealed, of which 211 (34.25%), 94
(26.48%) and 4 (6.45%) were commonly identified for all 15
cancer types, respectively (Supplementary Table S1).

It has been reported that tRNAs (and tRFs) are heav-
ily modified and these modifications may lead to biased
quantification of tRFs using smRNA-seq libraries. To eval-
uate the impact of tRNA modification on the quantifica-
tion of tRFs, we analyzed tRFs in cell lines generated from
public database using smRNA-seq and AlkB-facilitated se-
quencing (ARM-seq) methods, respectively (28). The se-
quencing data were downloaded from the Sequence Read
Archive (SRP056032). In ARM-seq, RNA was treated with
a dealkylating enzyme, Escherichia coli AlkB, before re-
verse transcription in library preparation. Two human B
lymphocyte-derived cell lines (GM05372 and GM12878)
were used in this study. Sequencing libraries of AlkB-
treated and untreated RNA were prepared using a NEB-
Next Small RNA Library Prep Kit for an Illumina se-
quencer. Read mapping and quantification of tRFs in these
datasets were analyzed by our tRF computational pipeline.
Although smRNA-seq (i.e. sequencing from untreated sam-
ples) missed some tRFs compared with ARM-seq, the two
methods showed high concordance in the quantification
of tRFs, especially for 3’-tRF (Pearson’s r > 0.9, P-value
<0.001) (Supplementary Figure S1A and B). These results
were expected given the fact that the smRNA-seq method
used by the TCGA involved ligating both adapters before
the reverse transcription step. In fact, if tRNA chemical
modification results in pausing of the reverse transcription,
then the corresponding molecule was not amplified and fi-
nally would not emerge in the sequencing reads (29). In
other words, the detected tRFs in TCGA datasets were ac-
curately quantified.

In addition, because tRFs often have multiple terminal
heterogeneity, traditional methods such as northern blot
analysis or TaqMan reverse transcriptase PCR (RT-PCR)
do not effectively quantify their abundance. To assess the
robustness of our detected fragments, a quantitative Db-
PCR analysis was performed in tumor specimens of a 20 nt
5′-tRF originating from tRNAIleAAT-8-1, termed 5′-IleAAT-
8-1-L20 hereafter (Figure 1B; see Supplementary Meth-
ods). Db-PCR is a TaqMan qRT-PCR-based method and

can distinctively quantify 5′ and 3′ end variants of RNA
fragments at the single-base resolution (30). Db-PCR and
northern blot methods were compared for measuring the
abundance of 5′-IleAAT-8-1-L20 in lung cancer cell lines,
A549 and Calu1. The two methods produced highly concor-
dant measurements of tRF expression (Supplementary Fig-
ure S1C). The sequence of 5′-IleAAT-8-1-L20 was further
verified by Sanger sequencing of Db-PCR products, con-
firming the credibility of Db-PCR (Figure 1C). Db-PCR
was thus used for measuring the abundance of tRFs in sub-
sequent validation experiments.

The distribution of tRF expression relative to miRNAs
in multiple cancer types is shown in Figure 1D (see Sup-
plementary Figure S1D for corresponding normal tissues).
Across cancer types and normal tissues, it was observed that
the abundance of some tRFs was of the same order of mag-
nitude as certain miRNAs. Compared with other tissues,
the global expression levels of tRFs were relatively elevated
in kidney, liver and thyroid tissue, suggesting the tissue-
specific expression of these fragments (Supplementary Fig-
ure S1D). As with miRNAs, the tRF expression level was
skewed with an extremely wide distribution. The top five
fragments accounted for almost half of the total abundance
for each tumor or normal sample (Supplementary Figure
S1F). The 5′- and 3′-tRFs in contrast to 3′U-tRFs were
highly evolutionarily conserved similarly to exons and miR-
NAs (Supplementary Figure S1E), indicating that they were
under highly selective pressure and thus of functional im-
portance. This is not unexpected considering that tRNAs
are strongly conserved and that 5′- and 3′-tRFs have been
reported in yeast, bacteria, plants and mammals (31–34).

The subcellular localization of tRFs was then deter-
mined using short RNA-seq data of two main subcellu-
lar compartments (nucleus and cytoplasm) from the A549
cell line of the ENCODE project. The annotated small
RNAs presented distinct enrichment in the nucleus and cy-
toplasm (Figure 1E; Supplementary Figure S1G and H).
As is known, snRNAs and snoRNAs were found largely
in the nucleus, whereas scRNA and miRNA were largely
in the cytoplasm (35). Of note, these expected observa-
tions (as positive controls) suggest that the protocols for
generating nuclear–cytoplasmic fractionation and smRNA-
seq libraries were efficient, which in turn ensured the ro-
bustness of our results. Specifically, tRFs including 5′-tRFs
and 3′-tRFs were found to be highly enriched in the cyto-
plasm (Figure 1F). Independent Db-PCR validation of ran-
domly selected 5′-tRFs and 3′-tRFs with moderate expres-
sion abundance in A549 cells (shown in Figure 1F) further
confirmed that these fragments are predominantly cytoso-
lic (Figure 1G). Together, the results suggest that cytosolic
distribution of these fragments may be related to their un-
derlying functions.

tRFs result from specific cleavage of tRNAs in cancer

To investigate the underlying mechanism of biogenesis of
tRFs, which remains largely unknown, the relative abun-
dance of different tRNA-related fragments’ size (15–30 nt)
was profiled across tumor types (Figure 2A) and related
normal samples (Supplementary Figure S2A). Strikingly,
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Figure 1. Identification and quantification of endogenous tRFs across 15 cancer types. (A) Schematic illustration of workflow to detect and quantify tRFs.
(B, C) Dumbbell polymerase chain reaction (Db-PCR) was used to validate a 20 nt fragment (5′-IleAAT-8-1-L20) from 5′ end of tRNAIleAAT-8-1 that was
identified using our computational pipeline. The PCR products were then sequenced. Integrated sequence and structure of Db-PCR adapter (light blue),
fragment (dark yellow) and primer (red) are shown in panel (B). (D) Distribution of tRFs and miRNA expression across 15 cancer types. (E) Comparison
of the relative abundance of nucleus versus cytoplasm in ENCODE A549 cell lines across different small ncRNA classes. The total reads of each small
ncRNA class were normalized by RPM and then their relative abundance between the nuclear and cytoplasmic fractions was calculated. (F) Scatter plot
of cytoplasmic over nuclear enrichment for 5′-tRFs (left panel) and 3′-tRFs (right panel) between two replicates in ENCODE A549 cells. (G) Db-PCR
analyses of 5′-M-LysCTT-4-1-L28 and 3′-tRX-000020-L18 in the cytoplasm and nucleus of A549 cell lines. The two tRFs showed moderate expression
abundance in A549 cells and were randomly selected for independent Db-PCR validation. �-Actin and GAPDH are used as the cytoplasmic control and
U6 as the nuclear control. The error bars indicate standard deviation (SD) of three independent experiments. See also Supplementary Figure S1.
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Figure 2. tRFs result from specific cleavage of tRNAs in cancer. (A) Relative abundance of different fragment sizes (15–30 nt) of 5′-tRFs (left panel) and
3′-tRFs (right panel) across cancer types. Shown are the average relative expression values for each fragment size across samples. (B) Distribution of JS
cleavage score calculated across different tRNAs or cancer types. The JS cleavage score used Jensen–Shannon divergence (ranging from 0 to 1) as metric
and JS = 0 represented the same cleavage pattern among tRNAs or cancer types. Cleavage profiles of 5′ (C) and 3′ (D) ends of tRNAs that could generate
5′-tRFs and 3′-tRFs, respectively. Color intensity signifies relative ratio between reads mapped to a given position of tRNAs and total reads mapped to 5′
or 3′ end of tRNAs. Red dots in the right panel represent the number of cancer types harboring a similar cleavage pattern. Above the dashed line indicates
highly specific cleavage of 5′ and 3′ end tRNAs. Examples of two tRNAs, tRNAArgACG-2-1 [E, also shown in panel (C)] and tRNAtRX-000020 [F, also shown
in panel (D)], that were specifically processed in their 5′ and 3′ ends, respectively, inferred from both TCGA and our lung cancer dataset. TCGA-LUSC
and TCGA-LUAD are lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) datasets from TCGA; NSCLC is our non-small cell
lung cancer dataset. Db-PCR analyses of fragments derived from the major and other three minor cleavage positions of the two above-described tRNAs,
tRNAArgACG-2-1 (G) and tRNAtRX-000020 (H), respectively. D1, D2 and D3 represent 5′ end fragments; T1, T2 and T3 represent 3′ end fragments; the error
bars indicate SD across samples (n = 10). See also Supplementary Figure S2.



6 NAR Cancer, 2020, Vol. 2, No. 4

marked size preference was observed in that mature tRNAs
were predominantly processed into 18–20, 23 and 30 nt 5′-
tRFs and into 16–18, 22 and 24–25 nt 3′-tRFs. On average,
these three size ‘peaks’ accounted for 64.6–85.1% (54.1–
85.7% in normal specimens) and 87.2–96.8% (90.6–97% in
normal specimens) of total abundance among 15 cancer
types for 5′-tRFs and 3′-tRFs, respectively. It was also re-
vealed that different tissues and tumor types showed a simi-
lar cleavage pattern with three size ‘peaks’ for both 5′-tRFs
and 3′-tRFs. A quantitative analysis of the pattern of tRNA
cleavage across tRNA genes, tumor types and tissues was
carried out using an entropy-based JS cleavage score (26). A
higher JS cleavage score generally indicates a more specific
cleavage pattern, and conversely, a lower score represents
greater similarity. As expected, the JS cleavage score for the
majority of tRNA cleavage across cancer types (median of
JS cleavage score: 0.22 and 0.19 for 5′-tRFs and 3′-tRFs,
respectively) and tissues (median of JS cleavage score: 0.28
and 0.20 for 5′-tRFs and 3′-tRFs, respectively) was found to
be relatively low (Figure 2B; Supplementary Figure S2B).
This suggests that the cleaved positions of tRNAs are con-
served among different tissues and tumor types. Nonethe-
less, the cleavage pattern among different tRNA types was
found to be relatively specific (median of JS cleavage score:
0.86 and 0.71 in tumors for 5′-tRFs and 3′-tRFs, respec-
tively; 0.85 and 0.71 in normal tissues for 5′-tRFs and 3′-
tRFs, respectively) (Figure 2B; Supplementary Figure S2B),
indicating that the cleaved sites of tRNAs are highly depen-
dent on tRNA families.

To investigate the extent of distinct specific cleavage of
different tRNA types, we constructed a landscape showing
primary cleaved positions in tRNAs based on relative abun-
dance of each size (Figure 2C and D; Supplementary Figure
S2C and D). Overall, it appears that 66.1% and 60.5% of
all tRNAs in GtRNAdb can generate 5′-tRFs and 3′-tRFs
from their 5′ and 3′ ends, respectively (36). When these tR-
NAs were ordered using a k-means clustering, hotspot sites
of cleavage were found in the 5′ or 3′ ends in the majority of
these tRNAs (73.7% and 54.7%, respectively). The median
JS cleavage score was 0.61 and 0.67 in their 5′ and 3′ ends,
respectively, for tumors (Figure 2C and D). For normal
tissues, similar cleavage trends were observed (Supplemen-
tary Figure S2C and D). Moreover, it was found that these
cleavage hotspots differed among tRNA types, whereas they
were consistent with the above identified three ‘peaks’ and
highly conserved across cancer types and related normal tis-
sues. However, it was also observed that patterns of cleavage
of some tRNAs vary in a tumor type-dependent manner.
For example, tRNA Asn-GTT-6-1 specifically produced 18
nt fragments from its 5′ ends in head and neck squamous
cell carcinoma (HNSC) (Figure 2C). Together, these find-
ings confirm that tRNAs are specifically cleaved and these
sites of cleavage are highly dependent on tRNA types.

An independent Db-PCR validation was then performed
for two tRNAs in lung cancer tissues. It was found that
tRNAArgACG-2-1 produced 5′-tRFs and tRNAtRX-000020 pro-
duced 3′-tRFs, respectively. As inferred from both TCGA
and our own lung cancer dataset, the predominantly
cleaved sites of these two tRNAs are 19 nt relative to
5′ end of tRNAArgACG-2-1 and 18 nt relative to 3′ end of
tRNAtRX-000020, respectively (Figure 2E and F; Supplemen-

tary Table S2). The Db-PCR results confirmed our findings
that those fragments derived from the predicted major posi-
tion of cleavage (5′-ArgACG-2-1-L19 and 3′-tRX-000020-
L18) are of much higher abundance than fragments from
the minor sites of cleavage (Figure 2G and H). To further
rule out the potential confounding effect of tRNA modi-
fications on primary cleaved positions in tRNAs, total tu-
mor RNAs were pretreated with an rtStar™ tRF&tiRNA
Pretreatment Kit (Arraystar, USA) to demethylate m1A,
m1G and m3C. Db-PCR analysis was then performed on
these pretreated RNA samples. The distribution of tRF
fragments was similar to that observed in untreated sam-
ples, confirming cleavage specificity of tRNAs (Figure 2G
and H; Supplementary Figure S2E and F). Taken together,
our evidence suggests that tRF processing is under tight cel-
lular regulation.

The dysregulated expression of tRFs in cancer

We evaluated the total 5′-tRF and 3′-tRF expression across
12 solid tumor types for which sufficient (n > 15) cor-
responding normal samples were available (Figure 3A;
Supplementary Figure S3A). Strikingly, it was found that
a majority of cancer types showed a significant enrich-
ment of 5′-tRF fragments compared with normal tissues,
whereas significant depletion of 5′-tRF fragments was ob-
served in kidney renal papillary cell carcinoma (KIRC), thy-
roid carcinoma (THCA) and liver hepatocellular carcinoma
(LIHC) (Figure 3A). Additionally, individual differentially
expressed 5′-tRFs and 3′-tRFs were identified across cancer
types (Figure 3B; Supplementary Figure S3B; Supplemen-
tary Table S3). The cancer types with overenriched 5′-tRFs
fragments had a large fraction of significantly upregulated
5′-tRFs (P-value <0.001), while the significantly dysregu-
lated 5′-tRFs of other tumor types were mainly downreg-
ulated (P-value <0.001). The different patterns of 5′-tRFs’
dysregulation may be due to distinct expression levels of en-
donucleases responsible for 5′-tRF biogenesis, although this
remains unknown. Nevertheless, the findings provide a clue
for discovery of underlying molecular determinants.

Dysregulation of miRNAs revealed a similar pattern with
our identified 5′-tRFs, suggesting a potential relationship
of biogenesis between them (Figure 3B). Further analysis
of dysregulated 5′-tRFs among different tumor types re-
vealed that ∼80% and ∼50% of these 5′-tRFs were signifi-
cantly upregulated and downregulated in at least one cancer
type (Supplementary Table S3), respectively. This indicates
that there is a common and widespread alteration of 5′-
tRFs in cancer. The 5′-ArgTCG-3-1-L19 was significantly
upregulated in eight cancer types and significantly down-
regulated in LIHC [false discovery rate (FDR) <0.01, fold
change >2; Figure 3C; Supplementary Table S3). Among all
tRFs investigated, expression of 5′-ArgTCG-3-1-L19 was
dysregulated in the greatest number of cancer types and thus
selected for experimental validation. Db-PCR analysis us-
ing multiple independent cohorts further confirmed its exis-
tence and common dysregulation across tumor types (Fig-
ure 3D; Supplementary Figure S3C). Notably, downregu-
lated expression of 5′-ArgTCG-3-1-L19 was also validated,
suggesting the robustness of our analysis and supporting
the conclusion that it has specific regulatory roles in LIHC.
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Figure 3. The dysregulated expression of tRFs in cancer. (A) Empirical cumulative distribution plot of the overall 5′-tRF expression levels in tumor and
normal specimens across 12 cancer types. Tumor samples except kidney renal clear cell carcinoma (KIRC) exhibited a significant shift (most toward to the
right side) relative to normal samples. A two-sided Student’s t-test was used to calculate P-values and assess the significance of the shift of the cumulative
distribution curve of the overall 5′-tRF expression levels in tumors relative to normal samples. The overall 5′-tRF expression levels in RPM metric are
shown on the x-axis. (B) The percentage of upregulated and downregulated 5′-tRFs and miRNAs across different cancer types. (C) Example of a 5′-tRF,
5′-ArgTCG-3-1-L19, dysregulated in most tumor types. (D) Db-PCR analyses of 5′-ArgTCG-3-1-L19 in independent cohorts including breast invasive
carcinoma, HNSC, KIRC, LIHC, NSCLC and stomach adenocarcinoma. The bars in panel (D) represent fold changes in tRF expression between tumors
and their adjacent normal tissues. Each bar represents a patient. *P < 0.05, **P < 0.01 and ***P < 0.001 based on a two-sided Mann–Whitney test. See
also Supplementary Figure S3 and Supplementary Table S3.
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tRF expression data reveal KIRC subtypes and improve out-
come prediction

A total of 544 KIRC samples in the TCGA were sequenced
in two different platforms (283 patients using Genome An-
alyzer IIx and 261 patients using HiSeq 2000), which al-
lowed us to naturally treat them as discovery (n = 283) and
validation (n = 261) sets, respectively. KIRC samples were
thus chosen as an example to demonstrate the clinical rel-
evance of tRF expression to patient outcome (see Supple-
mentary Methods). There were no significant differences in
clinical characteristics of patients between the discovery and
validation sets (Supplementary Table S4A). Analyses of 5′-
tRF and 3′-tRF expression profiles in the discovery set both
yielded three stable subgroups using a non-negative matrix
factorization (NMF) consensus clustering approach (Fig-
ure 4A and B). Then, 105 and 35 subtype-specific signatures
were identified for all three 5′-tRF- and 3′-tRF-based sub-
types, respectively, on the basis of a gene scoring schema.
It was thereby found that subtype-specific tRFs for each
group were characterized by a given size range. This sug-
gests that the tRFs with different lengths belong to diverse
classes of small ncRNAs and may therefore exhibit dis-
tinct features of biogenesis and function. The three clusters
emerged again when the same ordering of subtype-specific
signatures from the discovery set was applied to the vali-
dation set (Figure 4A and B). Notably, the percentage of
samples in each subtype was similar between the discovery
and validation sets. Furthermore, 5′-tRF-based and 3′-tRF-
based clusters showed statistically significant differences of
survival in both discovery and validation sets (Figure 4C
and D). Significant prognostic stratification of subtypes for
other cancer types was also observed (Supplementary Fig-
ure S4A).

To further evaluate the clinical value of tRF-based molec-
ular subtypes, a multivariate Cox model analysis was per-
formed and adjusted for the American Joint Committee on
Cancer (AJCC) TNM stage grouping and the Mayo SSIGN
score, respectively. These are commonly used for prognosis
of surgically treated KIRC patients. It was found that the
risk of patients of 3′-tRF-based subtype 3 was twice that
of patients in 3′-tRF-based subtype 2 even after adjusting
for the AJCC TNM or the SSIGN score [HR = 2.28 (1.52–
3.43) and 2.03 (1.33–3.09), respectively; P = 7.23 × 10−5

and 0.00099, respectively; Supplementary Table S4B]. Im-
portantly, patients in the AJCC TNM early stage or with
a low SSIGN score could be further stratified based on 3′-
tRF expression subtypes (Figure 4E and F; Supplementary
Figure S4B). These results indicate that 3′-tRF-based sub-
types can provide independent prognostic information for
KIRC patients. Generally, 5′-tRFs offer less prognostic val-
ues for KIRC patients than 3′-tRFs (Supplementary Figure
S4C; Supplementary Table S4B).

Identification of biologically distinct supercluster via cluster
analysis of tRF expression subtypes across 15 cancer types

To evaluate whether the length of tRFs was also a crit-
ical determinant of tRF-based subtypes for other cancer
types as found above in KIRC, an NMF clustering analysis
was performed using tRF expression profiles and subtype-

specific signatures were then determined across 14 other
cancer types (see Supplementary Methods). This analysis
found that the 3′-tRF expression subtypes for other can-
cer types were also predominantly determined by the three
classes of 3′-tRF size, 15–18 nt (termed 18 nt 3′-tRFs here-
after), precisely 22 nt (termed 22 nt 3′-tRF hereafter) and
>24 nt (termed 24nt 3′-tRF hereafter; Supplementary Table
S5). To identify common biological processes across 3′-tRF
expression subtypes, a pan-cancer analysis was carried out
on 52 3′-tRF-based subtypes containing 120 3′-tRFs that
existed in at least 13 cancer types. Unsupervised clustering
analysis of these 52 tumor subtypes then gave rise to three
‘clusters of clusters’ that we refer to as a supercluster inde-
pendent of tumor tissue of origin (Figure 5A; Supplemen-
tary Table S5). Importantly, the three 3′-tRF-based super-
clusters, that is 3′-tRF superclusters 1, 2 and 3, including at
least 14 types of tumor origins for each supercluster, were
characterized by 24, 22 and 18 nt 3′-tRFs, respectively (Fig-
ure 5A; Supplementary Table S5). These findings indicate
that the size-determined feature of tRF expression subtypes
is largely conserved across different cancer types. More-
over, three superclusters were observed in terms of 5′-tRFs.
Specifically, 5′-tRF supercluster 1 was mainly driven by 15–
20 nt 5′-tRFs (termed 20 nt 5′-tRFs), 5′-tRF supercluster 2
by 5′-tRFs with >25 nt (termed 25 nt 5′-tRFs) and 5′-tRF
supercluster 3 has a relatively weak feature of length (Sup-
plementary Figure S5; Supplementary Table S5). These two
classes of superclusters were closely correlated with each
other in terms of fragment sizes. For example, samples of
3′-tRF supercluster 1 (determined by 24 nt 3′-tRFs) had a
large fraction of overlap with that of 5′-tRF supercluster
2 (determined by 25 nt 5′-tRFs) and 3′-tRF supercluster 3
(determined by 18 nt 3′-tRFs) tended to overlap with 5′-
tRF supercluster 1 (determined by 20 nt 5′-tRFs) (Figure
5A; Supplementary Figure S5). These results suggest that a
similar or the same endonuclease is likely responsible for 24
nt 3′-tRFs and 25 nt 5′-tRFs, while both 18 nt 3′-tRFs and
20 nt 5′-tRFs are likely cleaved by another enzyme or group
of similar enzymes.

An ssGSEA was then performed to detect cancer-
associated modules of each supercluster characteristic of
multiple cross-tissue groups of origin (37). First, 3300
bimodal sets of gene signatures/modules were selected
to comprehensively characterize each supercluster (see
Supplementary Methods; Supplementary Table S5). These
had previously been used to study pan-cancer mRNA
expression subtypes (38). These gene signatures were
further grouped into 22 non-redundant GPs, which typified
a number of cancer hallmarks. Next, an activation score of
each signature across samples was calculated by ssGSEA.
Finally, gene signature activity for each subtype was mea-
sured based on a t-test metric that compared the average
signature activation score of each subgroup with that of
other clusters within the same cancer type. These gene
signatures were then sorted in descending order on the basis
of 25th quantile of signature activity t-test scores across
all subtypes within each supercluster. The most highly en-
riched GP was determined from the top 50 gene signatures.
As shown in Figure 5B, 3′-tRF superclusters 1, 2 and 3
were mainly characterized by GP5 Myc targets/TERT,
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Figure 4. tRF expression data reveal KIRC subtypes and improve outcome prediction. (A, B) Tumors were clustered into three subtypes according to tRF
expression profiles in a discovery set (left panel). Subtype-specific tRF signatures were extracted and then applied to the validation set, yielding similar
three separated groups (right panel). The number and length range of representative tRF features are shown on the right side of the figure. The scale bar
indicates tRF expression after standardization. Kaplan–Meier survival analysis showing significant prognostic differences among 5′-tRF (C) or 3′-tRF (D)
expression subtypes in both discovery (left panel) and validation (right panel) sets. P-value was calculated by a log-rank test. (E) The 3′-tRF expression
subtypes could further stratify patients with TNM stage I into groups with distinct prognosis (right panel). Kaplan–Meier plot of the four TNM stages
is also shown in the left panel. (F) The 3′-tRF expression subtypes could efficiently separate patients with lower Mayo stage, size, grade and necrosis
(SSIGN) score into groups with distinct clinical outcome (right panel). Kaplan–Meier plot of the four SSIGN groups is also shown in the left panel. See
also Supplementary Figure S4 and Supplementary Table S4.

GP3 Tumor suppressing miRNA targets and
GP1 Proliferation/DNA repair, respectively. Notably,
representative signatures of 3′-tRF supercluster 2 were
exactly 22 nt, the length of a majority of mature miRNAs.
The same or similar characteristics of function and struc-
ture between miRNAs and these 3′-tRF signatures suggest
that these 22 nt 3′-tRFs may mediate post-transcriptional
silencing regulation in multiple cancer types (39).

Pathway scores of each sample were further determined
using proteomic data of RPPA (38). The RPPA pathway
activity of each subtype was measured based on the ap-
proach described earlier. Interestingly, it was shown that
Ras/MAPK signaling and the RTK and TSC/mTOR path-

way were highly activated in 3′-tRF supercluster 2. In addi-
tion, we observed weak correlations between 3’-tRFs and
their corresponding precursor tRNAs (r = 0.17, P-value
= 0.03), suggesting that the generation of different tRFs is
somehow regulated and therefore a specific feature of dif-
ferent cancer subtypes. Detailed results on the molecular
characterization of 5′-tRF superclusters are given in Sup-
plementary Figure S5 and Supplementary Table S5. Over-
all, the length of tRFs plays a critical role in the forma-
tion of tRF expression subtypes and these cross-tumor tRF
subtypes are characteristic of common cancer-related pro-
cesses, providing a basic resource to unify cancer research
and therapy.
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Figure 5. Identification of biologically distinct supercluster via cluster analysis of 3′-tRF expression subtypes across 15 cancer types. (A) Unsupervised
hierarchical clustering of 52 3′-tRF pan-cancer subtypes identified three superclusters highly correlated with the length of 3′-tRFs. Heatmap represented
t-test score comparing the 3′-tRF expression level of each 3′-tRF expression subtype with that of other subgroups within the same cancer type. Below
the heatmap (top to bottom): group identification numbers of supercluster; the fraction of subtype-specific 3′-tRF signatures belonging to a given group
defined by length of 3′-tRFs (see Supplementary Table S5); overlapped fraction between samples of 5′-tRF supercluster and 3′-tRF supercluster. Left side
bar shows the length of 3′-tRFs. (B) Biologically distinct characterization among three 3′-tRF superclusters. Heatmap reflected t-test statistic comparing
the single-sample gene set enrichment analysis (ssGSEA) score for gene/protein signatures of each 3′-tRF expression subtype with that of other subgroups
within the same cancer type. Below the heatmap (top to bottom): the stroma, immune and proliferation signatures (top panel); 3300 bimodal gene signatures
(middle panel), grouped into 22 non-redundant gene programs (GPs) symbolizing most cancer hallmarks; RPPA protein signatures (bottom panel). The
most correlated GP with each 3′-tRF supercluster was selected according to the enrichment analysis. See also Supplementary Figure S5, Supplementary
Table S5 and Supplementary Methods for details on clustering.

Discovery of cancer driver tRFs using an effective approach
for accurately exploring cross-cancer and platform trends

To examine whether these above identified tRFs could drive
tumorigenesis, a mining strategy was established that inte-
grated dysregulation of expression and clinical information
of tRFs across different tumor types (Figure 6A; see Supple-
mentary Methods). Since tRFs were overexpressed in most
cancer types, the aim was to screen candidate tRFs with
oncogenic roles. These candidates were expected to be sig-

nificantly upregulated in tumors and their high expression
was significantly associated with worse prognosis. In total,
11 cancer driver tRFs were identified using this screening
method (Figure 6B; Supplementary Table S6). These driver
tRFs did not show any strong tissue specificity (JS score
ranging from 0.15 to 0.22; Supplementary Table S6), while
some of them revealed isodecoder specificity (Supplemen-
tary Table S6). A 20 nt 5′-tRF derived from tRNAIleAAT-8-1

(i.e. ‘5′-IleAAT-8-1-L20’; Figure 1C) was chosen for further
validation because of its unique sequence and upregulation
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Figure 6. Discovery of cancer driver tRFs using an effective approach for accurately exploring cross-cancer and platform trends. (A) Workflow of iden-
tifying tRFs that potentially drive the cancer phenotype. DEtRFs, differentially expressed tRFs; survival tRFs, tRFs significantly associated with patient
survival; Pcomb, integrated P-value using Fisher’s approach. (B) Scatter plot showing 11 candidate cancer superdriver tRFs (red triangle). (C) The ex-
pression level of 5′-IleAAT-8-1-L20 in LUAD (n = 521) and normal lung tissues (n = 46) from TCGA (bars represent median value; P-values are from
two-sided Mann–Whitney test). (D) Kaplan–Meier survival curves of patients grouped by the expression values of 5′-IleAAT-8-1-L20 in the TCGA LUAD
cohort. (E) Growth curves of Calu1 and A549 cells transfected with 5′-IleAAT-8-1-L20 siRNA or control siRNA. (F) Cell proliferation assay using Edu
immunofluorescence in 5′-IleAAT-8-1-L20 knockdown cells or control cells. (G) Migration and invasion assays following knockdown of 5′-IleAAT-8-1-
L20 in Calu1 and A549 cells. The error bars indicate SD of three independent experiments. *P < 0.05, **P < 0.01 and ***P < 0.001 using a two-sided
Student’s t-test. See also Supplementary Figure S6.
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associated with poor prognosis in LUAD (Figure 6C and
D) and LUSC (Supplementary Figure S6A and B). Its up-
regulation in lung tumor tissues was validated in an inde-
pendent non-small lung cancer cohort using Db-PCR (Sup-
plementary Figure S6C). Additionally, the expression of 5′-
IleAAT-8-1-L20 is moderate (median log RPM = 1.3; Sup-
plementary Table S3), comparable with several well-known
lung cancer-associated miRNAs (40–43) Next, the cancer-
related roles of 5′-IleAAT-8-1-L20 were investigated by loss-
of-function (siRNA and antisense inhibitor) and gain-of-
function assays (oligonucleotide mimic) in two lung can-
cer cell lines, Calu1 and A549 (see Supplementary Meth-
ods; Supplementary Table S7). The expression level of 5′-
IleAAT-8-1-L20 was substantially reduced after siRNA was
transfected into cells, whereas the expression of its pre-
cursor, tRNAIleAAT-8-1, was not significantly changed (Sup-
plementary Figure S6D and E). These data show that
siRNA specifically targeted 5′-IleAAT-8-1-L20, which was
also confirmed by a luciferase reporter assay (Supplemen-
tary Figure S6F). As a result, knockdown of 5′-IleAAT-8-
1-L20 significantly suppressed both cell growth and clone
formation in the two cell lines tested (Figure 6E; Supple-
mentary Figure S6G and H). Inhibition of cell viability was
also demonstrated using the Edu immunofluorescence as-
say in 5′-IleAAT-8-1-L20 knockdown cell lines (Figure 6F).
Inhibition of 5′-IleAAT-8-1-L20 was found to significantly
reduce cell migration and invasion in both Calu1 and A549
cell lines compared with control cells (Figure 6G). Overex-
pression of 5′-IleAAT-8-1-L20 also rescued cell phenotypes
in these knockdown cells (Supplementary Figure S6I). Fi-
nally, these in vitro cell-based results were further confirmed
by in vivo tumorigenicity assays in nude mice (Supplemen-
tary Figure S6J–O).

To rule out potential confounding effects of its precur-
sor on our results, another siRNA was designed for target-
ing the 3′ end of tRNAIleAAT-8-1, which is far away from 5′-
IleAAT-8-1-L20 and does not affect the expression of 5′-
IleAAT-8-1-L20. Of note, downregulation of the expression
of tRNAIleAAT that uniquely generated 5′-IleAAT-8-1-L20
had little effect on cell migration and invasion (Supplemen-
tary Figure S6P and Q), suggesting that 5′-IleAAT-8-1-L20
functions independently of its precursor. To further rule out
potential siRNA-induced off-target effects, cell lines over-
expressing 5′-IleAAT-8-1-L20 mimic were also established.
Re-expression of 5′-IleAAT-8-1-L20 significantly promoted
lung cancer cell growth compared to control cell lines (Sup-
plementary Figure S6R and S). Collectively, these findings
suggested that 5′-IleAAT-8-1-L20 plays an oncogenic role
in tumor pathogenesis through promoting tumor cell pro-
liferation, migration and invasion.

5′-IleAAT-8-1-L20 regulates the cell cycle and does not func-
tion as a miRNA

Studies of the function of tRFs have been problematic due
to a lack of a priori knowledge. To determine the functional
roles of 5′-IleAAT-8-1-L20, a guilt-by-association analysis
based on co-expression patterns was performed, an anal-
ysis that has been widely used for studying long ncRNAs
(44). This analysis yielded a total of 491 protein-coding
genes that were significantly co-expressed with 5′-IleAAT-8-

1-L20 in at least eight cancer types. These genes were mainly
enriched in cell cycle/division-related biological processes
(Figure 7A). Additionally, GSEA also found a significant
enrichment of gene signatures in the cell cycle pathway with
regard to the expression levels of 5′-IleAAT-8-1-L20 in the
TCGA LUAD cohort (Figure 7B) (45). Together, these re-
sults suggest a potential role of 5′-IleAAT-8-1-L20 in cell
cycle regulation.

To assess this hypothesis, transcriptomic sequencing data
from 5′-IleAAT-8-1-L20 knockdown Calu1 and A549 cells
or controls were analyzed. Gene Ontology (GO) analysis re-
vealed that these downregulated genes (FDR < 0.05) were
significantly correlated with many cell cycle-associated GO
terms, such as mitotic cell cycle phase transition and cell
cycle phase transition (Figure 7C). GSEA further showed
that gene signatures of G1/S phase transition were signifi-
cantly and negatively enriched in 5′-IleAAT-8-1-L20 knock-
down cells (Figure 7D) and the most downregulated genes
related with cell cycle regulation are also shown in Figure
7D. The results of sequencing analysis in 5′-IleAAT-8-1-L20
knockdown cells validated our hypothesis. Next, the reg-
ulatory consequence of 5′-IleAAT-8-1-L20 on the cell cy-
cle was experimentally explored. Consistent with our ear-
lier hypothesis, knockdown of 5′-IleAAT-8-1-L20 dramat-
ically suppressed the transition from the G1 phase to the
S and G2 phases of cell cycle (Figure 7E). Additionally,
knockdown of 5′-IleAAT-8-1-L20 significantly affected the
expression levels of cell cycle-related proteins, such as cyclin
D1, p27 and phosphorylated RB (Figure 7F), further sup-
porting our hypothesis. Overall, these results indicate that
5′-IleAAT-8-1-L20 plays an important role in cell cycle pro-
gression and that this hypothesis-driven method can be ef-
fectively applied for functional investigation of tRFs.

Depletion of 5′-IleAAT-8-1-L20 induced altered gene ex-
pression along with downregulation of cell cycle-related
genes as described earlier (Figure 7C–F; Supplementary
Figure S7A). Next, we sought to determine whether 5′-
IleAAT-8-1-L20 functions similar to miRNAs in regulat-
ing gene expression. First, the sequence of 5′-IleAAT-8-1-
L20 was systematically blasted in the miRBase (v21). Even
allowing more than one mismatch, no similar sequences
of miRNA with 5′-IleAAT-8-1-L20 were found. Second,
knockdown of 5′-IleAAT-8-1-L20 did not induce significant
global upregulation of 5′-IleAAT-8-1-L20 targets, which
were predicted in the same way as miRNAs (Supplementary
Figure S7B). Third, either overexpression of tRNAIleAAT-8-1

or 5′-IleAAT-8-1-L20 mimic did not inhibit the expression
of antisense reporter (Supplementary Figure S7C). Finally,
analysis of immunoprecipitation experiments (RIP) showed
significant enrichment of has-miR-21 in Argonaute protein
complexes (33-fold versus control), while no significant en-
richment was observed for 5′-IleAAT-8-1-L20 (1.1-fold ver-
sus control) (Supplementary Figure S7D and E). We thus
concluded that 5′-IleAAT-8-1-L20 likely regulates gene ex-
pression in a non-miRNA manner.

DISCUSSION

Recent discovery of the functional role of several types
of tRFs (e.g. tRNA halves, 3′-tRFs and 3′U-tRFs) in tu-
mor pathogenesis prompted us to explore whether other
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Figure 7. 5′-IleAAT-8-1-L20 regulates the cell cycle in a non-miRNA manner. (A) Gene ontology of protein-coding genes significantly co-expressed with
5′-IleAAT-8-1-L20 in at least eight cancer types in TCGA. (B) Enrichment plot of gene signatures for cell cycle pathway with respect to 5′-IleAAT-8-1-L20
expression level in LUAD. ES, enrichment scores. (C) Gene ontology of genes significantly downregulated by knocking down 5′-IleAAT-8-1-L20 in two
lung cancer cell lines, Calu1 and A549. Each cell line has two independent replicates. Cell cycle-associated biological processes are shown in blue color. (D)
Enrichment analysis of gene signatures for cell cycle pathway between control and 5′-IleAAT-8-1-L20 knockdown cell lines: Calu1 and A549. The core
enrichment genes within cell cycle-related gene sets are marked by black line (left panel) and their abundance in control and 5′-IleAAT-8-1-L20 knockdown
cells is presented using a heatmap plot (right panel). The scale bar represents gene expression after standardization. (E) Cell cycle profile of control and
5′-IleAAT-8-1-L20 knockdown cells. *P < 0.05, **P < 0.01 and ***P < 0.001 using a two-sided Student’s t-test. (F) Western blot analysis of cell cycle-
related proteins in control and 5′-IleAAT-8-1-L20 knockdown cells. GAPDH protein was used as a control. Light green, light gold and light blue represent
G1, S and G2 + M, respectively. See also Supplementary Figure S7.
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types (e.g. 5′-tRFs) are also implicated in tumorigenesis
(18–21). Although those classes of tRFs have been reported
in many organisms, any cancer-associated function has re-
mained largely uncharacterized so far. Here, a bioinfor-
matic ‘big data’ approach was taken to functionally and
clinically characterize 5′-tRF and 3′-tRF expression pro-
files in >8000 specimens across 15 tumor types. As far as
we know, this represents one of the largest analyses of 5′-
tRFs and 3′-tRFs across human cancers. In comparison to
previous studies (46–48), our analysis was more robust due
to the filtering of samples/cohorts and narrower selection
of tRFs (25,49). These findings increase our understanding
of the biogenesis, characteristics and functional roles of 5′-
tRFs and 3′-tRFs in cancers.

The cross-tumor analysis depicted a genomic landscape
of endogenous 5′-tRFs and 3′-tRFs. Through this land-
scape, we systematically determined that these tRFs are in-
deed biologically and functionally relevant and not ran-
dom degraded fragments of tRNAs. This analysis provided
the strong evidence that cleavage of tRNA is under tight
cellular regulation and the cleaved position is highly con-
served among different tissues and tumor types. For exam-
ple, mature tRNAs were predominantly processed into 16–
18, 22 and 24–25 nt 3′-tRFs, accounting for the large ma-
jority of 3′-tRFs. These 3′-tRFs are characterized by size-
dependent features and functionality. Notably, frequent and
widespread dysregulation of the expression of 5′-tRFs and
3′-tRFs was observed at the global and individual levels
among most cancer types. Abundance of 5′-tRFs and 3′-
tRFs was generally of the same order of magnitude as miR-
NAs.

Our results revealed significant commonality among tRF
expression subtypes from distinct tissues of origins. Three
biologically distinct superclusters independent of tumor
tissues of origin were identified that were characterized
by commonly activated cancer pathways. For example, a
group of 3′-tRFs with precise 22 nt was found coinci-
dentally upregulated across a majority of (13/15) cancer
types, all of which share the activation of Ras/MAPK,
RTK and TSC/mTOR signaling. These findings provide
us with the possibility that tRF-targeted therapy devel-
oped in one cancer may be extrapolated to other can-
cer types, which may benefit from their similar molecular
patterns.

In addition to these common molecular characteristics
across cancers, heterogeneous tRF expression signatures
were observed within the same cancer type. For instance,
signatures of 18 and 22 nt 3′-tRFs defined distinct tumor
subtypes and this pattern was found to be extremely con-
served among different cancer types. Of note, the 18 and
22 nt 3′-tRFs have been previously termed as tRF-3a and
tRF-3b in many organisms, respectively (32). The findings
of this study further suggest that there are distinguish-
able features of biogenesis and functional performance be-
tween the two types of 3′-tRFs, consistent with more re-
cent discoveries that 18 and 22 nt 3′-tRFs suppressed mo-
bility of endogenous retroviruses through distinct regula-
tory mechanisms in mouse cells (14). The underlying rea-
sons for their differences may be two extra chemical modi-
fications in 22 nt 3′-tRFs. Additionally, 22 nt 3′-tRFs were

associated with miRNA-targeted processes, implying that
they may be involved in post-transcriptional silencing reg-
ulation, as shown in previous studies (7,14,39,50,51).

This study also provided the first dry and wet evidence
that 5′-tRFs may play an important role in tumor oncoge-
nesis and progression. 5′-IleAAT-8-1-L20 was found to be
a cancer driver tRF through integrative bioinformatic anal-
yses, which was experimentally confirmed showing that in-
hibition of 5′-IleAAT-8-1-L20 suppresses cell proliferation,
migration and invasion in lung cancer cell lines and ani-
mal models. Additionally, 5′-IleAAT-8-1-L20 knockdown
inhibited cell cycle progression, as predicted by our gene
co-expression analyses. The results collectively revealed the
oncogenic role of 5′-IleAAT-8-1-L20 in cancer. However,
tRNA fragments derived from the other 13 IleAAT isotypes
showed no significant differences in expression between tu-
mor and normal tissue and/or no significant relationship
with patient survival. It was therefore one specific isode-
coder of an IleAAT isoacceptor, not the group of isode-
coders, that was associated with lung cancer, which was
consistent with previous findings for neuronal homeosta-
sis (52). We detected the protein expression of IIeRS (cy-
toplasmic) and IIeRS2 (mitochondrial) after knockdown
IIeAAT-8-1, and observed that IIeAAT-8-1 silencing has
limited effects on IIeRS and IIeRS2 protein expression
(Supplementary Figure S8). Further investigations are re-
quired to clarify its mechanism of regulating downstream
genes.

Several caveats for our study should be acknowledged.
First, tRNA halves (mainly in 32–34 nt) (21,22) and ‘in-
ternal’ fragments (i.e. i-tRFs) (53) cannot be effectively de-
tected in our analyses since most of the smRNA-seq data
were generated by single-end sequencing for 30 cycles in
TCGA datasets. Compared to tRNA halves, the biologi-
cal and clinical importance of 5′- and 3′-tRFs (tRNA frag-
ments <30 nt) in solid tumors remains largely unknown.
Thus, we exclusively focused on 5′- and 3′-tRFs (tRNA frag-
ments <30 nt) in our analyses. To avoid overlooking po-
tentially important findings, we included tRFs of 30 nt in
our analysis, although these tRFs may be truncated prod-
ucts of longer tRNA halves. To evaluate the potential in-
fluence of these ‘30-proxy’ tRFs, we performed additional
cluster analysis using tRFs whose lengths were <27 nt (Sup-
plementary Figures S9 and S10). These three superclusters
remained unchanged, suggesting that the inclusion of ‘30-
proxy’ tRFs in the analysis did not influence our conclu-
sions. Second, the dysregulation of tRNA expression may
lead to differences in tRF abundance (54). Thus, it will be
necessary to further validate whether the differential expres-
sion of tRF candidates depends on the tRNA gene of its
origin. Third, our comparison between smRNA-seq and
ARM-seq data from human B lymphocyte-derived cell lines
showed that there was a strong correlation between the ex-
pression levels of tRFs quantified by the two methods. How-
ever, we could not exclude the possibility that the detection
and quantification of a few tRFs may be affected by heavy
tRNA modifications, which can lead to incomplete reverse
transcription. Moreover, tRNA modifications are likely to
be involved in the formation of tRFs. As our observation
indicated (Supplementary Figure S11), there is a significant
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correlation between tRNA modifiers and tRF expression in
a cancer type-specific manner.

In summary, our work reported a functional genomic
landscape of tRFs in human cancers and indicates that
tRFs play a critical role in tumor pathogenesis. This work
increases our understanding of biogenesis, characteristics
and function of this class of novel small non-coding tRFs.
It also provides a valuable resource, including the de-
tected tRFs, cancer-associated tRFs and tRF tumor sub-
types, for future efforts to identify diagnostic and prog-
nostic biomarkers, develop cancer therapy and study can-
cer pathogenesis. To make our findings available to the re-
search community, we have recently deposited our results
into a public database OncotRF (http://bioinformatics.zju.
edu.cn/OncotRF/) (23).
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