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To better understand the molecular mechanism for the pathogenesis of follicular thyroid carcinoma (FTC), this study aimed at
identifying key miRNAs and their target genes associated with FTC, as well as analyzing their interactions. Based on the gene
microarray data GSE82208 and microRNA dataset GSE62054, the differentially expressed genes (DEGs) and microRNAs (DEMs)
were obtained using R and SAM software. The common DEMs from R and SAM were fed to three different bioinformatic tools,
TargetScan, miRDB, and miRTarBase, respectively, to predict their biological targets. With DEGs intersected with target genes
of DEMs, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were
performed through the DAVID database. Then a protein-protein interaction (PPI) network was constructed by STRING. Finally,
the module analysis for PPI network was performed by MCODE and BiNGO. A total of nine DEMs were identified, and their
function might work through regulating hub genes in the PPI network especially KIT and EGFR. KEGG analysis showed that
intersection genes were enriched in the PI3K-Akt signaling pathway andmicroRNAs in cancer. In conclusion, the study of miRNA-
mRNA network would offer molecular support for differential diagnosis between malignant FTC and benign FTA, providing new
insights into the potential targets for follicular thyroid carcinoma diagnosis and treatment.

1. Introduction

Follicular thyroid carcinoma (FTC) is the second most com-
mon thyroid malignancy after papillary thyroid carcinoma
[1]. The advances in diagnostic techniques have made it
easier to identify thyroid malignancy in recent years [2].
Unfortunately, it is still difficult to distinguish the follicular
architecture of a malignancy follicular thyroid carcinoma
(FTC) from that of follicular thyroid adenoma (FTA), which
enjoys a better prognosis [3]. Currently, fine-needle aspi-
ration (FNA) is the most reliable, widely used, and cost-
effective preoperative test for initial evaluation of thyroid
nodules, but it has a low accuracy for both FTC and FTA
[4]. Understanding the pathogenesis of FTC at the molecular
level significantly contributes to its diagnosis and therapy,
particularly for an accurate differentiation between FTC and
FTA.

There is emerging evidence that has demonstrated the
participation of multiple genes and cellular pathways in the

occurrence and development of FTC [5–7]. More impor-
tantly, as the endogenous noncoding small regulatory RNAs,
microRNAs (miRNAs) have also indicated its role in numer-
ous and wide-ranging biological processes, including cell
proliferation, differentiation, development, apoptosis, patho-
genesis disease resistance, tumorigenesis, and lipogenesis [8–
10]. To date, however, a precise molecular mechanism for
the FTC progression remains unclear. Though many studies
using microarray technology have explored the differentially
expressed microRNAs (DEMs) or differentially expressed
genes (DEGs) between FTC and FTA [11–14], these results
show little overlap since the samples are limited and the
results contain significant false-negatives. Recent two works
give more precise results for DEMs [15] and DEGs [16] by
using multiple databases for cross-validation. However, they
have not studied inverse interaction relationships between
DEMs and their target DEGs, particularly the pathways in
the interaction network. Since the regulatory control network
existing between miRNAs and mRNAs plays an intricate
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role in biological pathways [17], an integrated analysis of the
interaction relationship would benefit a lot for understanding
their underlying molecular mechanisms.

In this study, we screened out DEMs and DEGs between
FTC and FTA via microarray technology and integrated
bioinformatics analyses. Intersection genes between DEGs
and DEMs-target genes were extracted, classified, and exten-
sively analyzed. We explored the enrichment in Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway terms, constructed miRNA-target gene
network, and investigated protein-protein interaction (PPI)
network along with its key hub genes and significant mod-
ule. We found several differentially expressed mRNAs and
miRNAs and revealed their inverse relationships that might
promote the progress of FTC. More importantly, we showed
that mRNAs targeted by miRNAs are mainly enriched in the
PI3K-Akt signaling pathway and microRNAs in cancer. Our
results provide the potential candidate biomarkers for FTC
diagnosis, pathogenesis, and drug targets, shedding new light
on its development at the molecular level.

2. Materials and Methods

2.1. Microarray Data. Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo) is a public repository for
curated gene expression datasets, original series, and plat-
form records. From GEO we obtained miRNA expression
profile GSE62054 [15] which contains eight adenoma samples
and 17 FTC samples, and gene expression profile GSE82208
[16] which includes 24 thyroid adenoma samples and 27 FTC
samples. To give a comparison, we also obtained RNA-Seq
data for FTA and FTC from European Nucleotide Archive
(ENA, PRJEB11591) and The Cancer Genome Atlas (TCGA,
TCGA-BJ-A0ZF) to identify differentially expressed mRNAs
and miRNAs.

2.2. Identification of DEMs and DEGs. We used software
R (version 3.5.0, https://www.r-project.org/) and packages
from Bioconductor (http://www.bioconductor.org/) to con-
duct significance analysis of DEGs and DEMs between
FTC samples and FTA samples, respectively. The microarray
data were first preprocessed using the algorithm “RMA,”
which contains background adjustment and normalization
with the quantile method. Then the Moderated T statistic
approach was applied to select significant DEGs or DEMs
with “limma” package [18] of Bioconductor. Finally, DEGs or
DEMs were annotated through annotation table downloaded
from the GEO website. P values were adjusted by the default
Benjamini & Hochberg (BH) false discovery rate method.
The adj.P value < 0.05 and |logFC| > 1 were considered
as significantly different for DEGs, while adj.P value < 0.05
and |logFC| > 0.8 were used for DEMs. We also choose
a set of different values of |logFC| to show their impacts
on the final results. For the RNA-seq data from ENA, we
downloaded three samples for each set of FTA and FTC. All
the sequencing reads were aligned to the human reference
genome (GRCh38) by software Tophat2. Then we used soft-
wareHTSeq to calculate read counts for each gene, the results
of which were used to find differentially expressed genes with

“edgeR” package [19]. For the RNA-seq data from TCGA,
we use another five samples from the above ENA database
to find differentially expressed miRNA by using “edgeR”
package as well. To ensure that the targets are not false
positives, we used the Significance Analysis of Microarrays
(SAM) (http://statweb.stanford.edu/∼tibs/SAM/), a super-
vised learning software, to identify DEMs and DEGs. We
set Delta value to 0.75 for miRNA and 1.25 for mRNA,
respectively, such that we get a false discovery rate less
than 0.01. The random number seed was 1234567, and the
number of permutation was optimized to 100. The common
results from R and SAM methods were selected as the final
outcomes.

2.3. IntegratedAnalysis ofDEMs andDEGs. TargetScan (http://
www.targetscan.org/vert 71/), miRDB (http://www.mirdb
.org/), and miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/
php/index.php) are three different integrated databases to
predict the biological targets of miRNAs.We used all of them
to retrieve the target genes of DEMs. The target genes shown
in all three databases were selected. The selected target genes
of DEMs which were found overlapping with the DEGs
were designated as “intersection genes” and extracted via the
online tool Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/ven-
ny/index.html). The miRNA-intersection genes regulation
network was constructed and visualized using Cytoscape
[20]. The cumulative weighted context++ score < -0.1 was
applied as the cut-off criteria. Targets with lowest context
scores are the most representative ones. Therefore, we use
context score to screen out target genes in order to obtain
a more reliable result. A hierarchical clustering analysis of
intersection genes was constructed using the online tool
Morpheus (https://software.broadinstitute.org/morpheus/).
Average linkage method was performed with one minus
Pearson correlation. The heatmap was constructed based on
the gene expression values in each sample.

2.4. Functional and Pathway Enrichment Analysis for Inter-
section Genes. Gene ontology (GO, http://www.geneon-
tology.org/) is a framework for the model of biology, which
describes gene functions and classifies them along three
aspects: molecular function (MF), cellular component (CC),
and biological process (BP) [21]. Kyoto Encyclopedia of
Genes and Genomes (KEGG, http://www.genome.jp/kegg/)
is a collection of the database for understanding high-level
gene functions and utilities of the biological system [22].
The Database for Annotation, Visualization and Integrated
Discovery (DAVID, https://david.ncifcrf.gov/home.jsp) is a
tool that provides a comprehensive set of functional anno-
tation tools to investigate the biological meaning behind a
mass of genes [23]. To provide a function-level analysis for
intersection genes, GO term enrichment analysis and KEGG
pathway enrichment analysis were conducted using DAVID.
We considered P value < 0.05 to have statistical significance
and achieve significant enrichment.

2.5. PPI Network Construction andModules Analysis for Inter-
section Genes. Search Tool for the Retrieval of Interacting
Genes (STRING, https://string-db.org/) is a freely accessible
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Table 1: Aberrant miRNAs and their most probable target genes.

miRNA ID Expression P value adj.P value logFC Most probable target genes
hsa-miR-7-2-3p down-regulated 0.0001655 0.001986 -1.363672 VMA21, VEGFA, TMEM50B, QSER1, LMAN1
hsa-miR-767-5p up-regulated 0.000997 0.0028464 0.820405 RNF138, SH3GLB1, PEG10, SFT2D3, MYCN
hsa-miR-7-5p down-regulated 0.0011923 0.0036794 -1.922032 SNCA, EGFR, IRS1, KLF4, IRS2, RAF1
hsa-miR-663b up-regulated 0.0016628 0.0038779 0.891045 CCND2, LRRC58
hsa-miR-130b-5p down-regulated 0.0017059 0.0042245 -0.906782 NOTCH2, CGNL1, ANKRD28, TFRC, PLP1
hsa-miR-144-5p down-regulated 0.0021107 0.0052289 -0.904925 SYNPO2
hsa-miR-1179 down-regulated 0.0021463 0.007189 -1.640942 CDK6, BLOC1S2, USP46, ID2, PPP1R12A
hsa-miR-137 up-regulated 0.0028163 0.0192025 1.039935 NCOA2, KIT, KDM1A, CTBP1, CXCL12, MITF, ESRRA,
hsa-miR-328-3p down-regulated 0.0039217 0.0477905 -0.871384 H2AFX, ADNP, ARL6IP1

biological database to evaluate protein-protein interaction
(PPI) information. The STRING (version 10) contains
9,643,763 proteins from 2031 organisms. In order to figure
out the interactive relationships among intersection genes,
the DEGs were mapped to STRING with the confidence
score > 0.7 set as the cut-off criterion. Then the PPI network
was constructed and visualized using Cytoscape. Besides,
the plug-in Molecular Complex Detection (MCODE) [24]
was used to screen the most significant module of the PPI
network with the following criteria: Max. Depth = 100, K-
Core = 2, Mode Score Cutoff = 0.2, and Degree Cutoff =
2. Moreover, the function and pathway enrichment analysis
were conducted for intersection genes in each module with
the plug-in Biological NetworkGeneOntology (BiNGO). AP
value < 0.05 was considered to have significant differences. To
give a comparison with the result from STRING, we also used
the BioGRID, another interaction repository which stores a
curated set of data, to illustrate PPI results.

3. Results

3.1. Identification of DEMs and DEGs in FTC. A total of
348 DEGs were identified from GSE82208 which contains 24
FTA samples and 27 FTC samples. Of these, 289 genes were
upregulated, and 59 genes were downregulated. Meanwhile, a
total of 9 DEMs were identified fromGSE62054 using P value
<0.05. Among them, 6 miRNAs were significantly down-
regulated (hsa-miR-7-2-3p, hsa-miR-7-5p, hsa-miR-130b-5p,
hsa-miR-144-5p, hsa-miR-1179, and hsa-miR-328-3p), while
the expression levels of the left miRNAs (hsa-miR-767-5p,
hsa-miR-663b, hsa-miR-137) increased conversely in FTC
(Table 1). The DEGs and DEMs identified from ENA and
TCGA databases are shown in the Supplementary Tables S1
and S2, respectively. The results from different thresholds of
|logFC| are shown in Supplementary Figure S1, and their GO
and KEGG analyses are shown in the Supplementary Tables
S3, S4, S5, and S6.

3.2. Integrated Analysis of DEMs and DEGs. The miRNAs
could interact with their mRNA targets, resulting in the
post-transcriptional suppression of their target genes. After
predicting potential candidate targets of miRNAs using
TargetScan, miRDB, and miRTarBase, a total of 456 target
genes for 9 DEMs were identified. Table 1 shows the most
probable target genes of DEMs. Furthermore, 15 intersection

genes were found between target genes and DEGs. Among
them, 12 genes were downregulated, and 3 genes were
upregulated. A hierarchical clustering analysis of intersection
genes revealed the differential expression in FTC compared
to FTA (Figure 1). For further elucidation of interactions
between the aberrant miRNAs considered herein and the
intersection genes, the miRNA-intersection gene network
was constructed using Cytoscape (Figure 2).ThemiRNAs are
listed in Table 1.

3.3. Go Term Enrichment and KEGG Pathway Analyses
of Interactions between the Potential Targets of Aberrant
miRNAs and DEGs. To explore the biological functions
of the 15 intersection genes concerning the regulation of
FTC pathogenesis, we uploaded all intersection genes to
DAVID tofind out overrepresentedGO categories andKEGG
pathways. The information we obtained regarding biological
function indicated that these 15 intersection genes were
enriched in 5 Gene Ontology Biological Process (GO BP), 1
Gene Ontology Cellular Component (GO CC), and 4 Gene
Ontology Molecular Function (GO MF) terms as well as 5
KEGG pathway terms (Table 2). Among these biological pro-
cesses, the intersection genes were mainly associated with the
regulation of phosphatidylinositol 3-kinase signaling. In the
cell component (CC) ontology, the intersection genes were
enriched in cyclin-dependent protein kinase holoenzyme
complex. Besides, the molecular function (MF) analysis indi-
cated that the intersection genes were significantly enriched
in phosphatidylinositol-4,5-bisphosphate 3-kinase activity.
Moreover, Table 3 shows the most significantly enriched
pathways of the intersection genes through KEGG analysis.
The genes were mainly enriched in the PI3K-Akt signaling
pathway and microRNAs in cancer.

3.4. PPI Network Construction and Module Selection. To
understand the connection between intersection genes fur-
ther, 15 intersection genes were used to construct the PPI
network (Figure 3). Based on the information from the
STRING database, the top 5 intersection genes (according
to degrees) were screened out and selected as hub genes,
which showed a strong association with other node proteins,
as depicted inTable 4. For visualizing the connection between
hub genes and their regulated miRNAs, hub genes were
highlighted by red color in Figure 2. Among these hub
genes, the EGFR showed the highest node degree 5, and
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Figure 1: Hierarchical clustering analysis of intersection genes. Each row represents one of the intersectiongenes, and each column represents
a tissue sampled from follicular thyroid tumors. FTA or FTC. Column “FTA” represents follicular thyroid adenoma, while column “FTC”
represents tissue from follicular thyroid cancer.The heatmap was constructed based on gene expression values in each sample. Red and blue
colors indicate higher expression and lower expression, respectively.
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Table 2: Gene ontology analysis of intersection genes.

Category Term Count P value Benjamini Genes

GOTERM BP DIRECT

GO:
0014066∼regulation

of
phosphatidylinositol
3-kinase signaling

3 0.001364 0.128529 EGFR, KIT, IRS1

GOTERM BP DIRECT
GO: 0046854∼

phosphatidylinositol
phosphorylation

3 0.001973 0.085255 EGFR, KIT, IRS1

GOTERM BP DIRECT

GO: 0048015∼
phosphatidylinositol-

mediated
signaling

3 0.0025 0.066478 EGFR, KIT, IRS1

GOTERM BP DIRECT

GO:
0008284∼positive
regulation of cell
proliferation

4 0.003875 0.041446 EGFR, CCND2, KIT,
IRS1

GOTERM BP DIRECT
GO: 0010628∼positive
regulation of gene

expression
3 0.014438 0.29193 CDK6, KIT, KLF4

GOTERM CC DIRECT

GO: 0000307∼cyclin-
dependent protein
kinase holoenzyme

complex

2 0.011466 0.285394 CCND2, CDK6

GOTERM MF DIRECT

GO: 0046934∼
phosphatidylinositol-
4,5-bisphosphate
3-kinase activity

3 8.55E-04 0.028534 EGFR, KIT, IRS1

GOTERM MF DIRECT

GO: 0005088∼Ras
guanyl-nucleotide
exchange factor

activity

3 0.002904 0.048361 EGFR, KIT, IRS1

GOTERM MF DIRECT

GO:
0004716∼receptor
signaling protein
tyrosine kinase

activity

2 0.007088 0.117378 EGFR, KIT

GOTERM MF DIRECT

GO: 0004714∼
transmembrane
receptor protein
tyrosine kinase

activity

2 0.026689 0.299626 EGFR, KIT

Table 3: KEGG pathway analysis of intersection genes.

Term Count % P value Benjamini Genes
hsa04151: PI3K-Akt signaling pathway 5 33.33333 6.41E-04 0.012844 EGFR, CCND2, CDK6, KIT, IRS1
hsa05206: MicroRNAs in cancer 4 26.66667 0.004956 0.071044 EGFR, CCND2, CDK6, IRS1
hsa05200: Pathways in cancer 4 26.66667 0.012004 0.114885 EGFR, CDK6, KIT, CXCL12
hsa04068: FoxO signaling pathway 3 20 0.012396 0.117275 EGFR, CCND2, IRS1

its related miRNA was miR-7-5p. In addition, the most
significant module was selected (Figure 4), and the corre-
sponding GO enrichment analysis (Table 5) showed that the
genes in this module are mainly associated with positive
regulation of cyclin-dependent protein kinase activity. The
PPI interaction derived from the BioGRID database is shown

in Supplementary Figure S2. It showed that both EGFR and
KIT appear in the top 2 hub genes.

4. Discussion

Thedistinction between awell-encapsulated,minimally inva-
sive FTC and a benign follicular adenoma may be difficult.
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Table 4: Top 5 hub genes in PPI network and their related DEMs (node degree: the number of edges incident to the node; related miRNAs:
miRNAs that target the gene).

Name Expression Node Degree Related DEM
EGFR up-regulated 5 miR-7-5p (down)
KIT down-regulated 4 miR-137 (up)
CCND2 down-regulated 4 miR-663b (up)
KLF4 up-regulated 3 miR-7-5p (down)
CXCL12 down-regulated 2 miR-137 (up)

Table 5: GO enrichment analysis for the most significant module in PPI network.

GO-ID P value Corr. P value Description Genes in test set
45737 3.87E-06 1.69E-03 positive regulation of cyclin-dependent protein kinase activity CCND2|EGFR
42127 1.23E-05 1.91E-03 regulation of cell proliferation CCND2|KIT|KLF4|EGFR
45860 1.75E-05 1.91E-03 positive regulation of protein kinase activity CCND2|KIT|EGFR
33674 1.96E-05 1.91E-03 positive regulation of kinase activity CCND2|KIT|EGFR
51347 2.18E-05 1.91E-03 positive regulation of transferase activity CCND2|KIT|EGFR
50679 5.53E-05 4.03E-03 positive regulation of epithelial cell proliferation CCND2|EGFR
45859 6.68E-05 4.07E-03 regulation of protein kinase activity CCND2|KIT|EGFR
43549 7.47E-05 4.07E-03 regulation of kinase activity CCND2|KIT|EGFR
51338 8.37E-05 4.07E-03 regulation of transferase activity CCND2|KIT|EGFR
79 1.03E-04 4.07E-03 regulation of cyclin-dependent protein kinase activity CCND2|EGFR

CCND2

IRS1 EGFR

CXCL12KIT

KLF4

SLC25A15

SLC26A7

FBN1

CDK6

Figure 3: Protein-protein interaction networks for intersection
genes.

EGFR

KLF4

KIT

CCND2

Figure 4: The most significant module of PPI network.

Since FTA tends to have a better prognosis [25], it is of great
importance to understand the molecular mechanisms of the
proliferation, apoptosis, and invasion of FTC. The miRNAs
are a group of noncoding small RNAs that play an important

role in regulating a spectrum of basic cellular processes [26].
Endogenous miRNAs interact with the 3󸀠-UTR of target
mRNA to suppress post-transcription of genes [27]. Our
study results are consistent with previous reports [15, 16]
that aimed at screening out DEGs or DEMs. However, these
reports did not unleash or investigated the interaction mech-
anisms between theDEMs and their targetDEGs, particularly
the pathways in the interaction network. In this work, in
order to improve the accuracy and reliability, we made use of
multiple bioinformatics approaches and predicting databases
to construct the miRNA-mRNAnetwork, having reduced the
false negative results at the most extent.

In this study, the gene expression profile data GSE82208
and microRNA expression profile GSE62054 were down-
loaded from the GEO database to identify DEGs and
DEMs, respectively. It was identified that downregulated
miRNAs include hsa-miR-7-2-3p, hsa-miR-7-5p, hsa-miR-
1179, hsa-miR-130b-5p, hsa-miR-144-5p, and hsa-miR-328-
3p, and upregulated miRNAs include hsa-miR-767-5p, hsa-
miR-663b, and hsa-miR-137. There are 15 intersection genes
between DEGs and DEMs target genes, of which two genes
were upregulated while 13 were downregulated. The protein-
protein interaction (PPI) network for intersection genes was
screened out, with which top 5 hub genes and the most
significant module were selected and analyzed for concerning
biological functions. The top 5 hub genes in the PPI network
were EGFR, KIT, CCND2, KLF4, and CXCL12.

Generally, there exists a negative correlation between
miRNAs and their target genes. The miRNAs could down-
regulate the expression of the target genes by diminishing the
stability transcription or inhibiting translation [27, 28]. The
dysregulation ofmiRNAsplays a vital role in the pathogenesis
of multiple cancer types, including FTC [29]. In this study,
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we identified 9 DEMs, including six downregulated and
three upregulated miRNAs in FTC compared to FTA. The
significantly downregulated miRNA miR-7-5p targets 2 hub
genes EGFR and KLF4, whose expressions were upregulated
accordingly. It is known that miR-7-5p functions as a tumor
suppressor, inhibiting proliferation, migration, and invasion
of thyroid papillary cancer cells. The epidermal growth factor
receptor (EGFR) family of receptor tyrosine kinases lies
at the head of complex signal transduction cascade that
modulates cell proliferation, survival, adhesion, migration,
and differentiation. We found that EGFR has the highest
degree among all the miRNA-target genes (Table 4), which
further validates its essential role in tumor progression and
metastasis [30, 31]. We also suggest that downregulated miR-
7-5p can significantly upregulate EGFR, which is consistent
with previous studies showing that the knockdown of miR-
7-5p could increase the expression of EGFR in dental pulp
stem cells [32]. In addition, KLF4was identified as a potential
therapeutic target for eliminating ATC cells [33]. Our results
support the hypothesis that miR-7-5p could regulate the
development of FTC by targeting EGFR and KLF4.

Our study shows that KIT and CXCL12 are decreased in
FTC, both of whichmight be regulated by the increased miR-
137. We attribute our results to the fact that KIT signaling
can promote cell proliferation and survival, while getting
decreased in human follicular thyroid cancer [34, 35]. More-
over, CXCL12might serve as an effective novel supplementary
diagnostic marker for PTC [36]. As a comparison, it has been
proved that miR-137 could downregulate KIT or CXCL12
in other cancers such as small cell lung cancer [37], acute
myeloid leukemia [38], and glioblastoma [39]. However,
recent research has shown that miR-137 was downregulated
in thyroid cancer and inhibits proliferation and invasion by
targeting EGFR [40], and it could act as a tumor suppressor
in papillary thyroid carcinoma [41]. We believe that accu-
mulating data would lead to a better understanding of the
molecular regulation mechanism between miR-137 and KIT
in FTC.

CCND2 is a promising target in differentiating FTC
from FTA [42]. We suggest that it is downregulated and
could be targeted by upregulated miR-663b. However, few
works have studied about miR-663b, except for the fact that
its downregulation could repress proliferation and induce
apoptosis in osteosarcoma [43] or exert its tumor-suppressive
function in the pancreatic cancer [44]. Our new results on the
interactions between miR-663b and CCND2would provide a
new perspective to differentiate FTC from FTA.

Since each mRNA may be targeted by several miRNAs
and participate in different biological functions, miRNA can
affect the multiple biological processes and pathways through
a miRNA-mRNA network. Our KEGG analysis showed that
most of the intersection genes were enriched in the PI3K-Akt
signaling pathway and microRNAs in cancer. Moreover, the
analysis of the most significant module showed that the genes
in this module were mainly associated with positive regula-
tion of cyclin-dependent protein kinase activity. Among the
hub genes which play a critical role in the biological process,
both miR-7-5p and miR-137 could regulate 2 hub genes, and
miR-663b could regulate one hub gene. It indicates the fact

that one miRNA can target multiple genes, which has also
been observed before [45]. Our results suggest that several
pathwayswere regulated by amiRNA-mRNAnetwork during
the tumorigenesis and progression of FTC.

This study identified several key genes and miRNAs, as
well as potential biomarkers in predicting the progression of
FTC.We found that EGFR, KIT, CCND2, KLF4, and CXCL12
might be the key aberrant genes that figure prominently in
the pathogenesis of FTC. The main dysregulated miRNA,
including miR-7-5p, miR-663b, and miR-137, could regulate
the expression of target hub genes and further affect the
biological process of FTC. Note that we have applied the
same analysis approaches on RNA-seq data to validate our
results (i.e., ENA for DEG and TCGA for DEM). We found
that most of our intersection genes also appear in the new
experiments (Supplementary Table S1), while only a few
common DEMs obtained (Supplementary Table S1). We
think that the different databases indeed have an impact
on finding differentially expressed miRNA and more exper-
iments are needed. Overall, our results offered molecular
support for the differential diagnosis between malignant fol-
licular thyroid cancer and benign follicular thyroid adenoma.
More importantly, it provided new insights into the poten-
tial targets for follicular thyroid carcinoma diagnosis and
treatment.
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