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Synapses have been known for many years to be the crucial target of pathology

in different forms of dementia, in particular Alzheimer’s disease (AD). Synapses and

their appropriate activation or inhibition are fundamental for the proper brain function.

Alterations in synaptic/neuronal activity and brain metabolism are considered among the

earliest symptoms linked to the progression of AD, and lead to a central question in AD

research: what is the role played by synaptic activity in AD pathogenesis? Intriguingly, in

the last decade, important studies demonstrated that the state of activation of synapses

affects the homeostasis of beta-amyloid (Aβ) and tau, both of which aggregate and

accumulate during AD, and are involved in neuronal dysfunction. In this review we aim

to summarize the up-to-date data linking synaptic/neuronal activity with Aβ and tau;

moreover, we also intend to provide a critical overview on brain activity alterations in

AD, and their role in the disease’s pathophysiology.
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RELATION BETWEEN SYNAPTIC ACTIVITY AND Aβ

HOMEOSTASIS

Synapses are considered to be an early site of dysfunction/pathology in AD (Selkoe, 2002), and
loss of synapses is the best pathologic correlate of cognitive impairment in AD patients (Terry
et al., 1991). For many years it has been known that Aβ peptide, one of the main players in AD
pathology derived by the β- and γ-secretase cleavage of the amyloid precursor protein (APP), can
induce morphological and functional alterations to synapses and synaptic plasticity (Selkoe, 2002;
Coleman and Yao, 2003; Almeida et al., 2005). Surprisingly, elegant studies from RobertoMalinow’s
and David Holtzman’s groups demonstrated that, in turn, synaptic activity affects Aβ: increased
activity enhances secretion of Aβ, while reduced activity inhibits it (Kamenetz et al., 2003; Cirrito
et al., 2005). This discovery represented an important breakthrough in the field. For the first time
it was shown that Aβ homeostasis was controlled by the main target of Aβ itself: synapses and their
state of activation.

Since inhibition of synaptic activity reduces Aβ secretion, reduced activity appears to be positive
for AD. Thus, our and other groups investigated the effect of chronic inhibition of synaptic activity
on transgenic AD mice to explore whether it could indeed protect synapses. Chronic reduction of
synaptic activity by unilateral whisker ablation, diminishes plaque burden in the deafferented barrel
cortex of AD mice (Tampellini et al., 2010; Bero et al., 2011). On the contrary, chronic unilateral
activation of the perforant pathway by optogenetic light activation (an experimental approach
which also induced epileptic seizure in the studied AD mouse cohort), increases the amount of
amyloid plaques (Yamamoto et al., 2015). Despite the reduction of amyloid plaques, we found
that levels of synaptophysin and number of synapses were also reduced by chronic inhibition of
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activity in AD, but not wild-type, mouse brains (Tampellini
et al., 2010). In addition, reduced activity worsened memory
impairments in AD mice compared to controls (Tampellini
et al., 2010). Intriguingly, in brain areas where plaques were
reduced intraneuronal Aβ was increased, and presented an
inverse correlation with levels of synaptophysin (Tampellini et al.,
2010). Intraneuronal Aβ accumulation has been observed in
human AD brains, in several rodent models of AD (Gouras et al.,
2000; D’Andrea et al., 2001; Busciglio et al., 2002; Mori et al.,
2002; Oddo et al., 2003; Cataldo et al., 2004; Echeverria et al.,
2004; Cruz et al., 2006; Oakley et al., 2006; LaFerla et al., 2007),
and, more recently, also in brains of aged mouse lemur primates
(Roy et al., 2014). Within neurons, Aβ accumulates on the outer
membrane of multivesicular bodies, both in somas and neurites
(Takahashi et al., 2002; Casas et al., 2004; Cataldo et al., 2004),
and is associated with early pathological alterations in dendrites,
axonal terminals and synapses (Takahashi et al., 2004; Bayer and
Wirths, 2010; Gouras et al., 2010). Clearance of intraneuronal Aβ

by immunotherapy was shown to protect synapses and improve
memory in in vitro and in vivomodels of AD (Billings et al., 2005;
Tampellini et al., 2007).

On the other hand, synaptic activity induced by specific
activation of synaptic (but not extra synaptic) NMDA receptors
(Lu et al., 2001), produced beneficial effects on AD transgenic
neurons by reducing levels of intraneuronal Aβ and increasing
levels of synaptic proteins (Tampellini et al., 2009, 2011).
These outcomes are in line with the protection exerted by
environmental enrichment, which has been demonstrated to
enhance synaptic activity and plasticity (Eckert and Abraham,
2013), in AD mouse models (Lazarov et al., 2005; Briones
et al., 2009; Gerenu et al., 2013). Activity-dependent decrease of
intraneuronal Aβ might be explained with the relocation of Aβ

from the inside to the outside of neurons (enhanced secretion);
however, we demonstrated that degradation is also involved. The
activity-dependent reduction of Aβ42, one of themost pathologic
isoforms of Aβ, have been shown to occur via neprilysin
(Tampellini et al., 2009), a neutral endopeptidase which is the
most efficient Aβ degrading enzyme (Iwata et al., 2000). During
activation, neprilysin relocates to the cell surface and shows
increased colocalization with Aβ42, suggesting enhanced Aβ

degradation (Tampellini et al., 2011). We are inclined to think
that this pool of Aβ42 might derive from APP processing in
synaptic endosomes with activation (as further discussed), and
might then be transported to the neuronal surface (Rajendran
et al., 2006).

During synaptic activity APP traffics anterogradly toward
synapses, where it is endocytosed (Tampellini et al., 2009). This
last observation complements data showing that enhanced Aβ

secretion upon synaptic activation requires endocytosis (Cirrito
et al., 2008). Therefore, a production of Aβ might occur at
synapses with activity, as also supported by increased levels of β-
C-terminal fragments (βCTFs; Kamenetz et al., 2003; Tampellini
et al., 2009). Activity-dependent Aβ secretion has been observed
in patients after brain injury: Aβ levels were reduced in the
interstitial fluid (ISF) with worsened neurological status, and
increased with improved neurological condition (Brody et al.,
2008). Since, Aβ has been experimentally shown to inhibit

synapses and impair synaptic plasticity (Hsieh et al., 2006;
Shankar et al., 2008), one hypothesis on the physiologic role
of activity-dependent Aβ secretion suggests that it might serve
as feedback mechanism to prevent synaptic hyperactivation
and excitotoxicity (Kamenetz et al., 2003). Intriguingly, further
studies demonstrated that low concentrations (in the range of
picomoles) of Aβ enhance LTP, and are involved in memory
formation (Puzzo et al., 2008, 2011; Garcia-Osta and Alberini,
2009), providing evidence for a physiological function of
secreted Aβ.

Altogether, the reported data suggest that, despite promoting
Aβ secretion, synaptic activity might have a protective role
against AD.

RELATION BETWEEN SYNAPTIC ACTIVITY
AND TAU HOMEOSTASIS

Tau is one of the microtubule-associated proteins that bind
and stabilize neuronal microtubules during development
of neuronal processes, establishment of cell polarity and
intracellular transport (Binder et al., 1985; Drechsel et al., 1992;
Mandelkow and Mandelkow, 1998). When phosphorylated, tau
detaches from microtubules; abnormal tau phosphorylation
in neurons is a hallmark of AD and other neurodegenerative
diseases (including frontotemporal dementia, and progressive
supranuclear palsy), and is accompanied by aggregation, and
progressive intraneuronal tau accumulation. In addition to its
buildup within neurons, more recent studies demonstrated that
tau is also released in the extracellular space (Gómez-Ramos
et al., 2006; Avila, 2010); and that increased levels of tau (total
and phosphorylated) in the human’s cerebrospinal fluid (CSF)
are associated with an increased risk of developing AD (Blennow
et al., 2010).

Tau protein is traditionally considered to be localized in
axons; however, when neurons are exposed to Aβ oligomers,
tau relocates to somatodendritic compartments in association
with loss of spines and microtubule breakdown (Zempel et al.,
2010). More recent data demonstrated the presence of tau at
synapses in physiologic and pathological conditions (Pooler et al.,
2014). Tau localizes in both pre and post-synaptic compartments,
and the number of synaptosomes containing tau did not differ
between control and AD human brains; however, a particular
form of phosphorylated-tau (pS396/pS404) and tau oligomers
were specifically found in AD synaptosomes (Tai et al., 2012).

Little is known on the link between tau and synaptic
activity. Recent studies showed that synaptic activation enhances
secretion of tau in vitro and in vivo (Pooler et al., 2013;
Yamada et al., 2014). Synaptic activity was also shown to
induce tau translocation to excitatory synapses, precisely in
dendritic spines and post-synaptic compartments, in wild-type
neurons (Frandemiche et al., 2014). In the same study, authors
demonstrated that also Aβ oligomers induce tau localization to
synapses; intriguingly, such translocation requires the residue
S404 of tau to be phosphorylated, the same observed specifically
in AD synaptosomes (Tai et al., 2012). Synaptic activation
induces tau phosphorylation on residue T205; however, this
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phosphorylation is not mandatory for tau translocation to
synapses (Frandemiche et al., 2014).

The localization of tau in dendrites is considered to be
pathologic, because it is associated with loss of spines, as
mentioned above (Zempel et al., 2010), and because it targets the
kinase Fyn to post-synaptic compartments (Ittner et al., 2010).
Fyn mediates Aβ toxicity, and its reduction or its overexpression
attenuated or enhanced, respectively, synaptic alterations and
cognitive impairments in AD transgenic mice (Chin et al., 2004,
2005). Fyn entry to post-synaptic compartment is tau dependent:
in mice overexpressing the tau amino-terminal projection
domain (PD) only (from amino acid 1 to 255, excluding the
microtubule binding domain and the carboxy-terminal tail
region), the tau-PD fragment does not enter dendrites, and Fyn
post-synaptic targeting is diminished (Ittner et al., 2010). As
result, AD transgenic mice crossed with tau-PD overexpressing
mice showed decreased susceptibility to excitotoxic seizure, and
improved memory (Ittner et al., 2010), suggesting protective
effects when tau (and Fyn) access to dendrites is reduced. A
recent paper shows that tau localization into spines is enhanced
by phosphorylation. Low levels of endogenous tau are observed
in dendritic spines of hippocampal neurons: when specific
phosphorylation sites are replaced with glutamic acid to mimic
phosphorylation (including the S404 site), tau localization in
spines increases (Xia et al., 2015).

In the light of what reported so far, the translocation of
tau to spines and post-synaptic compartments with synaptic
activity might have negative implications for AD. However,
more studies are required before ending to this conclusion.
For example, what phosphorylated forms of tau are specifically
present in spines and synapses during activity? Synaptic activity
and Aβ seem to induce phosphorylation on different sites
of tau (Frandemiche et al., 2014): perhaps, activity-induced
tau phosphorylation might be more physiologic, while Aβ-
induced tau phosphorylation might be more toxic. In addition,
the observed activity-induced tau phosphorylation on residue
T205 was reported to not be mandatory for tau targeting to
synapses (Frandemiche et al., 2014), raising the possibility that
tau translocation to spines with activity might occur without
phosphorylation; and this would also be an intriguing subject to
explore. Finally, another important question to answer is whether
synaptic activation increases Fyn targeting to spines and post-
synaptic compartments. Synaptic localization of Fyn has been
shown to worsen the phenotype in models of β-amyloidosis;
however, it has also been reported that, despite total levels of Fyn
are unchanged between human AD and control, in AD brains
Fyn levels are increased in somas, where it colocalizes with tau
tangles, and are decreased in synaptic compartments (Ho et al.,
2005), suggesting a physiologic role of Fyn at synapses.

FUNCTIONAL ALTERATIONS IN
ALZHEIMER’S DISEASE BRAIN: MAY
SYNAPTIC ACTIVITY BE BENEFICIAL?

In the last decade several studies reported that functional
alterations are common in the brain of AD patients. Even

more intriguingly, neuronal dysfunction has been observed in
non-demented older subjects with amyloid deposition before
memory impairments (Sperling et al., 2009), which suggests it
to be an early event in AD pathophysiology. Data have been
provided for both increased and decreased neuronal excitability
in AD patients, and in animal models of AD. Hippocampal
hyperactivity has been observed in MCI patients (Bakker et al.,
2012), and in young presenilin 1 (PSEN1) E280A mutation
carriers (Reiman et al., 2012). Some mouse models of AD
present episodes of epileptic seizure (Palop et al., 2007; Marchetti
and Marie, 2011), and enhancement of GABAergic inhibitory
transmission, or use of antiepileptic drugs showed protection
(Sanchez et al., 2012; Verret et al., 2012; Levenga et al., 2013;
Hall et al., 2015). On the other hand, reduced hippocampal
activation has been observed to correlate with clinical decline
in elderly (O’Brien et al., 2010). Glucose metabolism in young
subject with predisposition to develop AD (ApoE4 carriers)
is reduced several decades before the appearance of the first
symptoms (Reiman et al., 2004), suggesting reduced brain
activity. In addition, synaptic plasticity is decreased in several
mouse models of AD (Trinchese et al., 2004; Shankar et al.,
2008; Marchetti and Marie, 2011; Warmus et al., 2014; Menkes-
Caspi et al., 2015) and by exposure to Aβ (Hu et al., 2009;
Tu et al., 2014). How to interpret these mixed outcomes, and
to reconcile these apparently contradictory results of reduced
synaptic transmission and increased excitability in AD is still
debated, as recently reviewed (Stargardt et al., 2015).

There is evidence for a protective effect of synaptic activity
against AD (Swaab and Bao, 2010; Tampellini and Gouras,
2010). Higher educational attainment or participation in
intellectually stimulating activities is associated with reduced
risk of developing AD (Stern et al., 1994; Stern, 2006); in
addition, in memory disorder clinics is common practice to
encourage patients to be involved in brain stimulating activities
(solving puzzles, crossed words, among others). Deep brain
stimulation of the fornix in AD patients resulted in better
outcomes in cognition, memory, and quality of life (Smith
et al., 2012). The higher activity observed in early stages of
AD might be an adaptive response boosting neuroprotection.
A recent study compared brain activity of young subjects with
cognitively normal older people having brain Aβ deposition:
the study outcome revealed that older people had Aβ-related
hyperactivation, which resulted to be a compensatory/protective
mechanism reflecting neural plasticity (Elman et al., 2014).

Synaptic activity has been demonstrated to be important
for neuronal survival: it is involved in the activation of
survival pathways, including transcription of Activity-regulated
Inhibitors of Death (AID) (a set of pro-survival genes), and
resistance to apoptosis-inducing compounds (Bas-Orth and
Bading, 2013). Importantly, local ATP synthesis at synapses
is activity-driven, and it is fundamental for correct synaptic
efficacy (Rangaraju et al., 2014). Enhanced synaptic activity
was recently shown to be part of the protective mechanism
exerted by rapamycin in models of AD. Rapamycin treatment
increases levels of the presynaptic protein SV2 and the frequency
of excitatory postsynaptic currents reducing Aβ oligomers
synaptotoxicity (Ramírez et al., 2014).
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FIGURE 1 | Protective effects of synaptic activity. With synaptic

activation: (1) intraneuronal levels of Aβ (red) are reduced, (2) Aβ secretion is

augmented, (3) neprilysin-induced Aβ degradation is enhanced, (4)

transcription of pro-survival genes (AID) increases, (5) local ATP synthesis rises

at synapses, and (6) tau secretion is augmented.

The activity-dependent Aβ secretion might also work as
protective mechanism to prevent Aβ buildup in the brain. One
of the most accepted biomarker for AD risk/diagnosis is the
decrease of Aβ42 in the CSF, which can be observed up to
10 years before conversion of MCI to AD (Buchhave et al.,
2012). As observed in a study on PSEN1 mutation carriers, when
Aβ42 begins to accumulate in the brain, its release in the CSF
declines (Potter et al., 2013). In line with these finding, also
levels of Aβ42 in the ISF are reduced in AD transgenic mouse
models with aging (Cirrito et al., 2003; Hong et al., 2011). One
proposed mechanism suggests that ISF Aβ42 is progressively
sequestered within forming plaques in youngmice; in old plaque-
rich mice, ISF Aβ42 (which is less concentrated than in young
mice ISF) would not derive from new biosynthesis but rather
from less soluble Aβ42 deposits present in the brain parenchyma
(Hong et al., 2011). Another possible mechanism to explain
reduction of Aβ42 in ISF and CSF is its progressive reduced
secretion by neurons. We demonstrated that AD transgenic
neurons, but not wild-type neurons, secrete less Aβ1-42 in
the medium, and accumulate it in distal neurites with time in
culture (Tampellini et al., 2011). Thus, activity-enhanced Aβ

secretion might be a physiologic event to enhance efflux of

Aβ42 to the CSF. In young PSEN1 E280A mutation carriers,

Aβ1-42 levels in the CSF are increased compared to control
(Reiman et al., 2012). As mentioned above, the same subjects
showed increased hippocampal activity; however, no differences
in dementia ratings, and neuropsychological test scores were
found in comparison with the control group, suggesting
compensatory/protective effect of enhanced activation.

Finally, activity-induced Aβ secretion might avoid
intraneuronal accumulation of Aβ, and induce new Aβ

(especially Aβ42) biosynthesis, preventing mobilization of less
soluble, and potentially more toxic Aβ species from the brain
parenchyma.

CONCLUSION

The relation between synaptic/neuronal activity and AD
pathology is complex and of high interest for AD research, since
it affects the homeostasis of APP, Aβ and tau, and since functional
alterations can be detected very early in subjects at risk for AD.

We hypothesize that physiologic synaptic activation (without
induction of epileptic seizure) might be protective for neuronal
preservation, and persistence of normal cognitive functions
during aging (Figure 1). The higher activity observed in
preclinical or early MCI patients might be the protraction
of a compensatory/defensive response attempting to promote
survival pathways, and preventing Aβ accumulation within
neurons by maintaining its degradation and physiological
secretion.

Unveiling new mechanisms linking synaptic activity with
APP/Aβ and tau biology might provide new important findings
on AD pathogenesis, and could lead to novel therapeutic
approaches.
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