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    Introduction 
 Clarifying the mechanism of chromosomal DNA compaction is 

essential for understanding how the nucleus is made within the 

eukaryotic cell. Even in the simplest eukaryotic organisms, such 

as yeast, chromosomal DNA is compacted  � 1,000-fold in the 

interphase nucleus, which contains decondensed chromosomes. 

In mitosis, chromosomal DNA is condensed, but the actual 

compaction is several to 10-fold more than that of interphase 

chromosomes. The structural integrity and strength of the con-

densed mitotic chromosomes may be important for making 

chromosomes able to withstand the pulling force and movement 

toward the opposite spindle poles. If this is the case, mitotic 

condensation might not occur only for the compaction process 

but might also serve to provide the structural integrity and mode 

of packing appropriate for the sister chromatid separation and 

chromosome transportation that occur in anaphase. Understand-

ing the higher order structure of mitotic chromosomes is vital 

for understanding the mechanism of chromosome segregation. 

 Mitotic condensation occurs along the entire chromo-

somal DNA structure. Two distinct chromosomal domains are 

of interest. One is the centromere/kinetochore where kineto-

chore microtubules associate, and the other is the nucleolus-

organizing ribosome RNA – encoding DNA (ribosomal DNA 

[rDNA]) repeats. During mitosis, several proteins are newly as-

sociated with the centromeric chromatin that contains centro-

mere protein A (CENP-A), a histone H3 variant, and form the 

mitosis-specifi c higher order structure that is called the kineto-

chore ( Rieder and Salmon, 1998 ). In mitosis, the nucleolus in 

higher eukaryotes is degraded and reassembled after chromo-

some segregation. In fungi, however, the nucleolus does not de-

grade during mitosis, raising an interesting question regarding 

the mechanism of nucleolar segregation ( Strunnikov, 2005 ). 

 In this study, we examine how condensin, which strongly 

binds to chromosomes upon entry into mitosis, participates in 

the mitotic structural formation of kinetochores and rDNA re-

peats. Condensin consists of fi ve subunits, two of which are 

called the structural maintenance of chromosome (SMC) subunits 

and are essential for chromosome condensation and segregation 

T
he condensin complex has a fundamental role in 

chromosome dynamics. In this study, we report 

that accumulation of  Schizosaccharomyces pombe  

condensin at mitotic kinetochores and ribosomal DNAs 

(rDNAs) occurs in multiple steps and is necessary for nor-

mal segregation of the sister kinetochores and rDNAs. 

Nuclear entry of condensin at the onset of mitosis requires 

Cut15/importin  �  and Cdc2 phosphorylation. Ark1/

aurora and Cut17/Bir1/survivin are needed to dock the 

condensin at both the kinetochores and rDNAs. Further-

more, proteins that are necessary to form the chromatin 

architecture of the kinetochores (Mis6, Cnp1, and Mis13) 

and rDNAs (Nuc1 and Acr1) are required for condensin 

to accumulate specifi cally at these sites. Acr1 (accumula-

tion of condensin at rDNA 1) is an rDNA upstream se-

quence binding protein that physically interacts with Rrn5, 

Rrn11, Rrn7, and Spp27 and is required for the proper 

accumulation of Nuc1 at rDNAs. The mechanism of con-

densin accumulation at the kinetochores may be con-

served, as human condensin II fails to accumulate at 

kinetochores in hMis6 RNA interference – treated cells.

 Dissection of the essential steps for condensin 
accumulation at kinetochores and rDNAs during 
fi ssion yeast mitosis 
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that expressed chromosomally integrated GFP-Cut14 and plasmid-

borne Sad1-RFP, both under the native promoter. The localization 

pattern of Cut14-GFP (Videos 3 and 4) and that of the two intense 

metaphase domains were the same ( Fig. 1 C ). 

 We examined whether these domains were present in a 

dominant-negative Cut3-T19A that failed to enter the nucleus 

during mitosis and produced a phenotype similar to that of a 

temperature-sensitive (ts) mutant ( Sutani et al., 1999 ). Cut3 is 

similar to human hCAP-C and  S. cerevisiae  Smc4. In cells 

that mildly overexpressed Cut3-T19A (using REP81 plasmid), 

Cut14-GFP signals did not enter the mitotic nucleus ( Fig. 1 D , 

right). Cut3-T19A was nonphosphorylatable by Cdc2 kinase 

and could not rescue the ts  cut3  phenotype ( Sutani et al., 1999 ). 

Wild-type overproduced Cut3 formed a normal complex with 

Cut14-GFP that was enriched in the two nuclear domains in 

metaphase ( Fig. 1 D , left). 

 In another mutant in importin  �  ( cut15-85 ), chromosomes 

did not condense, revealing a  cut  phenotype resembling the 

condensin mutant ( Matsusaka et al., 1998 ). No signal for Cut14-

GFP was observed in the mitotic nuclei ( Fig. 1 E ), indicating 

that the lack of condensation was caused by the absence of con-

densin in the mitotic nuclei. In the same mutant, the non-SMC 

subunit Cnd1-GFP was also not enriched in any domain of the 

mitotic nuclei ( Fig. 1 F ). The previous results that Cut3 was 

abundant in the mitotic nuclei of  cut15-85  ( Matsusaka et al., 

1998 ) are likely caused by nonspecifi c binding of the polyclonal 

antibodies against a contaminating antigen. 

 The other domain is overlapped with 
the kinetochores 
 To examine whether the other enriched domain was a centro-

mere/kinetochore, we constructed double-labeled cells using 

the plasmid-borne Mis12-RFP gene under the native promoter. 

Live images showed that the Mis12-RFP dotlike images over-

lapped with the dotlike portions of condensin subunit Cnd1-

GFP in metaphase ( Fig. 2 A ). In the enlarged frame ( Fig. 2 A , 

13 min), the kinetochore signals of Mis12-RFP completely over-

lapped with the three dot signals of Cnd1-GFP. 

 Condensin ’ s kinetochore localization 
requires Cnp1, Mis6, and Mis13 
 We examined whether the kinetochore localization of condensin 

depended on the presence of certain kinetochore proteins. To this 

end, a strain that expressed Cut14-GFP and Sad1-RFP was crossed 

with  mis6-302 ,  cnp1-1 ,  mis13-1 ,  mis16-53 , and  mis18-262 , and the 

resulting strains were cultured. Cnp1 is centromeric histone H3, 

similar to vertebrate CENP-A and  S. cerevisiae  Cse4, whereas 

Mis6 is needed for recruiting Cnp1 and is similar to vertebrate 

CENP-I. Mis13 ( S. cerevisiae  Dsn1 and human hMis13;  Obuse 

et al., 2004 ;  Kiyomitsu et al., 2007 ) is the subunit of the Mis12 

complex. Mis16 and Mis18 are required for chromatin priming 

of the CENP-A loading and correspond to human RbAp46/48 

and hMis18, respectively ( Hayashi et al., 2004 ;  Fujita et al., 2007 ). 

In  Fig. 2 B , the kinetochore signals of condensin were diminished 

in the  mis6-302 ,  cnp1-1 , and  mis13-1  backgrounds at 36 ° C, 

whereas the signals of the other rDNA domain remained intense. 

In the wild type,  mis16-53 , and  mis18-262 , however, both domains 

in mitosis. In spite of the wealth of information obtained by in-

vestigating the condensin complex in budding yeast ( Strunnikov 

et al., 1995 ;  Freeman et al., 2000 ), fi ssion yeast ( Saka et al., 

1994 ;  Sutani et al., 1999 ;  Aono et al., 2002 ), fl y ( Steffensen et al., 

2001 ), worm ( Hagstrom et al., 2002 ), and vertebrates ( Hirano 

and Mitchison, 1994 ;  Saitoh et al., 1994 ;  Hirano et al., 1997 ; 

 Ono et al., 2003 ;  Wignall et al., 2003 ), an understanding of its 

functions in chromosome condensation and segregation at the 

molecular level is surprisingly meager. 

 Results 
 Condensin is enriched in two distinct 
domains of the mitotic nucleus 
 To observe the mitotic localization of condensin in living cells, 

the GFP-tagged condensin gene Cnd1-GFP integrated into the 

chromosome was expressed under the native promoter. Cnd1, a 

non-SMC subunit of condensin ( Sutani et al., 1999 ), is similar to 

human hCAP-D2 and  Saccharomyces cerevisiae  Ycs4. The in-

tegrated  Schizosaccharomyces pombe  strain also carried a plas-

mid that expressed the RFP-tagged centrosome marker Sad1 so 

that the two colors, green Cnd1 and red Sad1, were visualized 

in the same cells. Sad1 served as a marker for mitotic progres-

sion, as it localized at the centrosome-equivalent spindle pole 

bodies (SPBs) and also at the nuclear membrane throughout the 

cell cycle ( Hagan and Yanagida, 1995 ). 

 Videos of cells that expressed both Cnd1-GFP and Sad1-

RFP were made using a DeltaVision microscope. Images of 

Cnd1-GFP at 2-min intervals are shown in  Fig. 1 A  (top), and 

merged images with Sad1-RFP are also shown ( Fig. 1 A , bottom). 

In late G2 cells displaying one SPB, the Cnd1-GFP signals were 

dispersed in the nucleus and cytoplasm. In mitotic cells having the 

separated SPBs, however, the signals became intense in nuclei. 

 The Cnd1-GFP signals were enriched in the nuclei from pro-

phase to metaphase until telophase, with two intense domains 

clearly seen until metaphase ( Fig. 1 A , arrowheads in the inset at 

12 min). The images of two other metaphase nuclei taken at 1-min 

intervals are shown ( Fig. 1 B  and Videos 1 and 2, available at http://

www.jcb.org/cgi/content/full/jcb.200708170/DC1). One of the two 

intense domains was between the separated SPBs in metaphase, 

which is similar to the localization of centromere/kinetochore, and 

the other domain resembled the nucleolus. For comparison, the nu-

cleolar domain in the mitotic nucleus, which was revealed by the 

double stain of ethidium bromide – DAPI ( Umesono et al., 1983 ), 

is shown together with the signal of the other condensin subunit 

Cut14-GFP (hCAP-E/Smc2; see below). The ethidium bromide –

 enhanced nucleolus was merged with the larger condensin-positive 

domain ( Fig. 1  A, bottom right). Mis12-RFP (a centromere/kineto-

chore marker similar to budding yeast Mtw1 and human hMis12; 

 Goshima et al., 1999 ;  Aoki et al., 2006 ) signals were the same 

as the smaller dotlike signals of mitotic Cnd1-GFP ( Fig. 2 A ). 

These distinct domains were always observed in metaphase but 

were no longer discernible in anaphase. In addition, a subpopula-

tion of condensin remained in the middle of the separated daughter 

nuclei in late anaphase ( Fig. 1 A,  arrow) and disappeared in telo-

phase. To determine whether the aforementioned localization dy-

namics were the same for the other subunit, we made another strain 
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 Figure 1.    Mitotic nuclear accumulation of condensin and its loss in two mutants.  (A) Time-lapse images of the wild-type  S. pombe  cultured at 36 ° C. Cells 
expressed the condensin subunit Cnd1-GFP (green) and the SPB and nuclear envelope protein Sad1-RFP (red). In the inset, the arrowheads indicate the two 
enriched nuclear domains. The arrow in the merged images shows the condensin in the middle of the two separated daughter nuclei. (bottom) The mitotic 
nucleus containing Cut14-GFP and stained with the ethidium bromide – DAPI mixture, which revealed the nucleolar domain in the mitotic nucleus. (B and C) 
Two example cells in metaphase at 1-min intervals are shown that expressed Cnd1-GFP Sad1-RFP (B) or Cut14-GFP Sad1-RFP (C). (D) Time-lapse images for 
a wild-type cell carrying plasmid REP81-Cut3WT (left) or REP81-Cut3 T19A (right). (E and F) Time-lapse images of mutant  cut15-85  that expressed Cut14-GFP 
(E) or Cnd1-GFP (F) and Sad1-mCherry. (A and D – F) The numbers in the panels indicate time in minutes. Bars: (A, top; and B – F) 10  μ m; (A, bottom) 2  μ m.   
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 Figure 2.    Cnp1, Mis6, and Mis13 are required for localizing condensin at the kinetochore.  (A) Cells cultured at 26 ° C in EMM2 were observed for the co-
localization of Cnd1-GFP with Mis12-RFP, a centromere/kinetochore protein. The numbers in the right panels indicate time in minutes. The enlarged images 
of Cnd1-GFP (left), Mis12-RFP (middle), and the merged images (right) at 13 min are shown in the insets. (B) Cut14-GFP and Sad1-RFP were observed in the 
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wild-type,  mis6-302 ,  cnp1-1 ,  mis13-1 ,  mis16-53 ,  and mis18-262  mutants cultured at 26 ° C and were shifted to 36 ° C for 8 h. (C) Chromosomally integrated 
Cnp1/CENP-A – GFP expressed under the native promoter was observed in the wild-type and  cut14-208  mutant cultured at 36 ° C for 2 h. (D) A ChIP assay 
was performed using extracts of block-released  nda3-311  mutant that expressed Cut14-Flag. The probes were from the central centromere, cnt1 (c10, c9, 
and c7.5), imr1 (c4 and c1), the outer centromere dg, and the noncentromeric  lys1  + . WCE, whole cell extract; IP, immunoprecipitate. Quantitative data 
are shown at the bottom (see Results for details). (E) A ChIP assay was performed using extracts of block-released  cdc25-22  mutant that expressed Cut14-
Flag. Extracts of  cdc25  cells (blocked in G2 at 36 ° C and released to 26 ° C) were prepared at 0 min (G2 phase), 25 min (prometaphase), 50 min (meta/
anaphase), and 75 min (telophase or G1/S phase). The probes used were from the central centromere, cnt1 (c9), imr1 (c4), and the three arm probes arm1 
(SPBC28F2.08c coding region), arm2 (SPBC29B5 noncoding region), and arm3 (ars2004). In the bottom panel, the percent frequencies of different types 
of cells are indicated.   (F) A ChIP assay was performed using extracts of asynchronous wild-type,  mis6-302 , and  cnp1-1  mutants that expressed Cut14-Flag. 
These strains were cultured at 26 ° C and were shifted to 36 ° C for 8 h. Real-time PCR was performed using the primers of cnt1, imr1,  lys1  + , and rDNA (N1). 
The levels of precipitated cnt1 and imr1 were diminished in  cnp1-1  and  mis6-302  mutants. Because the asynchronous cultures were used, the differences 
between wild-type and mutant cells were relatively small. Error bars represent SD. Bars: (A and C) 10  μ m; (B) 2  μ m.   

 

were enriched by Cut14-GFP. Condensin accumulation at the 

kinetochores thus required Cnp1, Mis6, and Mis13 (central centro-

meric proteins throughout the cell cycle) but not Mis16 and Mis18 

(not present at the kinetochore during mitosis;  Fujita et al., 2007 ). 

 In the reverse experiment, mitotic kinetochore localiza-

tion of Cnp1-GFP was observed in  cut14-208  ( Fig. 2 C ), but 

missegregation occurred, suggesting that condensin did not 

affect the recruitment of Cnp1. This is quite different from the 

case of budding yeast ( Yong-Gonzalez et al., 2007 ), in which 

condensin is required for Cse4 localization at the centromere. 

 Mitotic condensin is bound to the central 
centromeric chromatin 
 The  S. pombe  centromere consists of the central core (cnt and imr) 

and the outer repetitive region (otr;  Takahashi et al., 1992 ). Chro-

matin immunoprecipitation (ChIP) was performed to determine 

the centromeric region to which condensin was bound in meta-

phase, anaphase, and G1/S phase. We constructed a strain that ex-

pressed chromosomally integrated Cut14-Flag under the native 

promoter and then crossed the resulting strain with a cold-sensi-

tive  nda3-311  that was reversibly defective in  �  tubulin ( Hiraoka 

et al., 1984 ). Cells of  nda3-311  cultured at 20 ° C for 8 h failed to 

produce the spindle, resulting in mitotic arrest. Then, by releasing 

the cells to 36 ° C, the spindle was rapidly assembled, and, 3 min 

later, the cells were in metaphase. After 15 min and 30 min, the 

cells were in anaphase and G1/S phase, respectively (Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200708170/DC1). 

Five probes (c10, c9, c7.5, c4, and c1) from the central cnt and imr 

and one (dg) from the outer region were used (Table S1). Pericen-

tromeric  lys1  +  was also used. The central region is associated with 

Cnp1, Mis6, and Bub1 ( Saitoh et al., 1997 ). 

 Cut14-Flag (+) was coprecipitated with the central probes 

(but not with the outer dg or  lys1  + ) in metaphase and anaphase but 

was greatly diminished in G1/S phase ( Fig. 2 D ). The control that 

did not express Cut14-Flag ( � ) showed no coprecipitated DNA. 

Condensin accumulation in the central centromere peaked in 

metaphase. Basically identical results were obtained in the  cdc25  

mutant block-release experiment ( Fig. 2 E ). At the timing of ana-

phase,  � 50 min after the temperature release, the maximal associ-

ation of Cut14-Flag at the centromere occurred. It is interesting to 

note that association of condensin with the arm regions was negli-

gible in prometaphase but increased from anaphase to telophase. 

 We then tested whether the levels of kinetochore DNA in 

ChIP were altered using the asynchronous cultures of wild type, 

 mis6-302 , and  cnp1-1  that were chromosomally integrated with 

Cut14-Flag. As shown in  Fig. 2 F , condensin enrichment at cnt1 

and imr1 was reduced in  mis6-302  and  cnp1-1  but not in wild 

type. At  lys1 +  , such reduction was not observed. In the rDNA 

N1 region, the ChIP signals increased, suggesting that Cut14-

GFP unbound to the kinetochore in  mis6  and  cnp1  mutants 

might associate with the rDNA. 

 Kinetochore accumulation of human 
condensin II requires hMis6 
 In human cells, there are two condensin complexes, I and II, and 

II is enriched in the kinetochores during mitosis ( Ono et al., 2003 , 

 2004 ). We evaluated whether kinetochore localization of condensin 

II is dependent on the presence of hMis6/CENP-I using CENP-A 

as the centromere/kinetochore marker ( Fig. 3 ). The RNAi 

method was applied to hMis6 as described previously ( Goshima 

et al., 2003 ), and the localization of hCAP-H2, a component of 

condensin II, was determined using the metaphase chromosome 

spread method ( Ono et al., 2003 ).  Fig. 3 A  (right) shows three 

chromosomes that are derived from those framed in the left panel 

(bottom right). Kinetochore localization of hCAP-H2 was abol-

ished by hMis6 RNAi, whereas the arm localization of hCAP-H2 

remained. The control RNAi ( Fig. 3 B ) revealed that the kineto-

chore localization of hCAP-H2 overlapped with CENP-A ( Ono 

et al., 2004 ). The percent frequencies of chromosomes that showed 

the hCAP-H2 signals on kinetochores were quantifi ed ( Fig. 3 C ). 

The kinetochore signals of hMis6 were diminished by RNAi as 

reported previously ( Fig. 3 D ;  Goshima et al., 2003 ). 

 Condensin accumulation at rDNAs 
requires Nuc1 
 We hypothesized that condensin was enriched along the rDNAs, 

as the cytological behavior of the second domain highly resem-

bled that of the nucleolus. Thus, we examined whether condensin 

was normally enriched during mitosis in  nuc1-632 , a ts mutant 

defective in the large subunit of RNA polymerase I. Nuc1 affects 

the higher order structure of rDNA repeats, and its inactivation 

causes the nucleolar collapse ( Hirano et al., 1989 ). We constructed 

a  nuc1-632  mutant that expressed Cut14-GFP. As shown in 

 Fig. 4 A , the Cut14-GFP signals in the kinetochore were not af-

fected, but those at the presumed rDNAs were greatly diminished 

in  nuc1-632  cultured at 36 ° C for 6 h. There was a tendency that the 

nuclear signals of condensin in  nuc1  mutant were diffused in the 

nucleoplasm. We then used the nucleolar marker of Gar2 (required 

for ribosome RNA processing;  Gulli et al., 1995 ) – monomeric 

Cherry (mCherry) and observed it together with Cut14-GFP in the 

mitotic  nuc1  mutant ( Fig. 4 B ). The part of condensin signals that 

overlapped with Gar2-mCherry disappeared in  nuc1-632 . 
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 sequences (NTSs; N1, N2, N3, and N4), autonomously replicat-

ing sequence (ARS), external transcribed sequence, and 18S, 

5.8S, and 28S rRNA coding sequences (Table S1). The binding 

of condensin to NTS and ARS was intense in metaphase but di-

minished in G1/S phase. There was no association of condensin 

with the transcribed regions throughout mitosis. 

 Association of condensin with rDNAs 
peaks in metaphase 
 To determine whether condensin physically interacts with 

rDNAs, ChIP was performed using the block-release experiment 

of  nda3-311  mutant that expressed Cut14-Flag and the nine 

probes in the rDNA unit ( Fig. 4 C ): four nontranscribing 

 Figure 3.    RNAi of hMis6 diminishes condensin 
II at human kinetochores.  (A and B) Kinetochore 
localization of hCAP-H2 on the spread meta-
phase chromosomes is diminished in cells after 
RNAi knockdown. Metaphase spread chromo-
somes were prepared in HeLa-transfected cells 
for 48 h by siRNA of hMis6 (A) or luciferase 
(B; control). Cells were stained by Hoechst33342 
for DNA (blue), anti – CENP-A antibody for the 
centromere/kinetochore (red), and anti – hCAP-
H2 for the condensin (green) antibodies. The 
enlarged images correspond to the dashed 
boxes in the left panel. (C) The percent frequen-
cies of metaphase chromosomes showing the 
hCAP-H2 signals on kinetochores; the control 
was 98.2% ( n  = 112), whereas depleted hMis6 
was only 18.3% ( n  = 131). (D) HeLa transfected 
by siRNA of luciferase or hMis6 were fi xed for 
48 h and stained by Hoechst33342 (blue), anti-
hMis6 (red), and anti – hCAP-H2 (green) anti-
bodies. Bars, 10  μ m.   
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 We then performed the Cdc25 block-release experiment 

followed by the ChIP assay using extracts of  cdc25  mutant at 0 

and 50 min (the period from metaphase to anaphase) after the 

temperature shift. Condensin was bound to the rDNA noncoding 

N1 region at 50 min but not to the coding 28S (Fig. S1 B). 

We then examined whether the degree of condensin association 

with rDNAs was diminished in the asynchronous  nuc1-632  mu-

tant culture by ChIP experiment. The binding of Cut14-Flag to 

 Figure 4.    Nuc1 is required for localizing condensin at rDNAs.  (A) Localization of Cut14-GFP was examined in the  nuc1-632  mutant cultured at 36 ° C for 
6 h. (B) Localization of Cut14-GFP was examined in the  nuc1-632  mutant with the nucleolar protein Gar2-mCherry. (C) A ChIP assay was performed using a 
block-release  nda3-311  mutant that expressed Cut14-Flag. Nine DNA probes derived from the rDNA repeat unit were used: NTS (N1 – N4), ARS, external 
transcribed sequence, and 18S, 5.8S, and 28S coding sequences. WCE, whole cell extract; IP, immunoprecipitate. The negative control ( � ) is the strain that 
did not carry Cut14-Flag. Quantitative enrichment is shown on the right. (D) A ChIP assay was performed using extracts of asynchronous wild-type and  nuc1-
632  mutant that expressed Cut14-Flag. The wild-type and  nuc1-632  mutant were cultured at 26 ° C and shifted to 36 ° C for 6 h, and immunoprecipitation was 
performed. Real-time PCR was used to amplify and quantify DNAs with the PCR primers (N1, N3,  lys1  + , and cnt1). Error bars represent SD. Bars, 2  μ m.   
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 Figure 5.    Enrichment of condensin at rDNAs requires a nucleolar protein, Acr1, which interacts with the rDNA upstream activator complex.  (A) Cut14-GFP was 
observed in mitotic cells of the  acr1-936  mutant and the control wild type cultured at 36 ° C for 4 h. (B) A ChIP assay was performed using extracts of asynchro-
nous wild-type and  acr1-936  mutant that expressed Cut14-Flag. The wild-type and  acr1-936  mutant were cultured at 26 ° C and shifted to 36 ° C for 4 h, and 
immunoprecipitation was performed. Real-time PCR was used to amplify and quantify DNAs with the PCR primers (N1, N2, N3,  lys1  + , and cnt1). Error bars 
represent SD. (C) Localization of Acr1 was examined in the strain that expressed Acr1-GFP. (D) A ChIP assay was performed using the strain that expressed Acr1-
Flag. Two rDNA probes (N2 and 18S) and four control probes (cnt1, imr1, dg, and  lys1  + ) were used. (E, top) Preparation of proteins coprecipitated with Acr1-
Flag and the Flag-only control for liquid chromatography – tandem mass spectrometry. The positions of identifi ed protein names are indicated. The two bands 
were obtained for Acr1-Flag (Fig. S2 D, available at http://www.jcb.org/cgi/content/full/jcb.200708170/DC1). (bottom) Four proteins (Rrn5, Rrn11, Rrn7, 
and Spp27) were coprecipitated with Acr1-Flag. emPAI, exponentially modifi ed protein abundance index ( Ishihama et al., 2005 ). Bars: (A) 2  μ m; (C) 10  μ m.   
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full/jcb.200708170/DC1) established that Acr1-Flag is stably 

bound to Rrn5-Myc. Three of the Acr1-coprecipitated proteins 

(Rrn5, Rrn11, and Rrn7) form the RNA polymerase I core tran-

scription factor ( Liu et al., 2002 ). In budding yeast, similar ones 

were identifi ed as the upstream binding factor of rDNA (up-

stream activation factor;  Keys et al., 1996 ). Spp27 is similar to 

human SMARCD1 (identity of 45%) and budding yeast Uaf30 

(identity of 34%), both of which are implicated in transcrip-

tional regulation ( Siddiqi et al., 2001 ). Careful homology search 

indicated that Acr1 was weakly similar to  S. cerevisiae  RRN9, a 

component of the upstream activation factor complex (Fig. S2, 

E and F). Thus, Acr1 may not be an orphan. The Rrn9-like pro-

teins contained two conserved domains (Fig. S2, E and F). 

 The phenotypes of  acr1-936  
 Both mitotic and interphase phenotypes are seen in  acr1-936  

( Fig. 6  and Fig. S2, A – C). When mutant cells cultured at 26 ° C 

were shifted to 36 ° C, the cell number increase decayed around 

8 h, and cell viability decreased 4 – 6 h after the shift (Fig. S2 A, 

left). Condensed chromosomes ( � 10%) and lagging chromo-

somes ( � 5%) were mixed with interphase phenotypes that dis-

played the ringlike nuclear chromatin shape ( � 40%;  Fig. 6 A , 

insets). These phenotypes were similar to those in  nuc1-632 . 

The frequencies of condensed and lagging chromosomes peaked 

around 8 h at 36 ° C (Fig. S2 A, right). Another prominent pheno-

type was the absence of a long extended spindle (Fig. S2, B and C). 

The maximum spindle length was 3 – 5  μ m, which is in sharp 

contrast to the 3 – 11- μ m anaphase spindle in wild-type mitosis. 

 We tested the hypothesis that Nuc1 localization requires 

Acr1 by observing Nuc1-GFP in  acr1-936 . The Nuc1-GFP signals 

were dispersed in the nucleus and were greatly diminished in the 

nucleolus ( Fig. 6 B ). Thus, Acr1 is needed for recruiting Nuc1. 

 Cut17/Bir1/survivin and Ark1/aurora are 
needed for condensin ’ s accumulation at 
kinetochores and rDNAs 
 The aforementioned results suggested that condensin accumula-

tion at the two distinct nuclear domains might be indepen-

dent, requiring different gene functions. Therefore, we examined 

whether there was a mutant defective in condensin accumulation 

at both domains after condensin entered the nucleus. The  cut17/
bir1/survivin  mutant was a candidate because it is defective 

in chromosome condensation and segregation ( Morishita et al., 

2001 ). Indeed, condensin did not accumulate at either the kineto-

chores or rDNAs in  cut17-275  cultured at 36 ° C for 3 h, but it did 

enter the mitotic nucleus ( Fig. 7  A, top). In mitosis, intense sig-

nals were seen in distinct domains in the wild-type nucleus but 

were diffused in the  cut17  nucleus. The signals were scarcely 

observed in the interphase nuclei (showing one Sad1-mCherry 

signal). This was consistent with the previous fi nding that Cut3 

failed to accumulate in the mitotic nucleus by expression of the 

aurora kinase-dead Ark1-K118R ( Petersen and Hagan, 2003 ). 

 To further study the possible role of Ark1, we constructed 

a strain that expressed Ark1-K118R ( Fig. 7  A, bottom). Over-

produced Ark1-K118R caused the strong dominant-negative 

effect in chromosome segregation. Nuclear signals of condensin 

Cut14-GFP in cells that expressed Ark1-K118R were diffused 

NTS (N1 and N3) was reduced in the  nuc1  mutant at restrictive 

temperature ( Fig. 4 D ). 

 Condensin accumulation at rDNAs requires 
Acr1 (Spbc17D1.04) 
 We isolated a ts mutant from a collection of  � 1,000 randomly 

mutagenized strains ( Hayashi et al., 2004 ) through the search of 

strains that exhibited the phenotype similar to that of  nuc1-632 . 

One strain, 936, was defective in condensin accumulation at 

rDNAs ( Fig. 5 A ). Plasmids carrying Spbc17D1.04 (GenBank/

EMBL/DDBJ accession no.  CAA20428.1 ) in chromosome II 

completely rescued the ts phenotype. Tetrad dissection of the 

cross between 936 and  mad2  Δ  deletion indicated that they were 

tightly linked (1.2 cM). The  mad2  +  gene is only 38 kb apart 

from Spbc17D1.04, so the 936 strain was the most likely mutant 

in the Spbc17D1.04 gene that encoded a 29-kD protein classi-

fi ed as a sequence orphan in the Sanger Center  S .  pombe  data-

base. The Cys 58  residue was changed to Tyr 58  in Spbc17D1.04. 

We hereafter refer to Spbc17D1.04 as Acr1 (accumulation of 

condensin at rDNA 1). Gene disruption showed that the  acr1  +  

gene was essential for viability (unpublished data). A high-copy 

suppressor encoding Tbp1/Spac29E6.08 was isolated (unpub-

lished data). Tbp1 is the TATA-binding transcription initiation 

factor ( Mitsuzawa et al., 2001 ). 

 To observe the localization of condensin, Cut14-GFP and 

Sad1-RFP were expressed in  acr1-936 , which was cultured at 

36 ° C for 4 h. The Cut14-GFP signals were normal for kinetochore 

localization but were diminished in the nucleolar localization in 

mitotic cells ( Fig. 5 A ), like in  nuc1 . Thus, Acr1 was required for 

the nucleolar localization of condensin but not for the kineto-

chores. ChIP was performed to examine whether condensin was 

associated with noncoding N1, N2, and N3 in wild-type and  acr1-
936  mutant. Results ( Fig. 5 B ) show that the association with N1, 

N2, and N3 took place in wild type but was diminished in  acr1-
936 . Association with the  lys1  +  gene was not diminished, whereas 

association with centromeric DNA increased in  acr1-936 . A pos-

sible reason for this is that the unbound Cut14-Flag to rDNA in 

 acr1  mutant might associate with the centromeric cnt1 DNA. 

 Acr1-GFP, which was constructed and chromosomally in-

tegrated under the native promoter, showed nucleolar localiza-

tion throughout the cell cycle ( Fig. 5 C ). A ChIP assay was 

performed using chromosomally integrated Flag-tagged Acr1 

under the native promoter. Probes of the noncoding N2 and the 

coding 18S intensely coprecipitated with Acr1-Flag, but the con-

trol probes did not ( Fig. 5 D ), suggesting that Acr1 was bound to 

both transcribed and nontranscribed regions of rDNA. 

 Acr1 associates with the upstream 
activation factor complex 
 To identify Acr1-interacting proteins, we performed mass spec-

trometry using the Flag-tagged Acr1 strain. Proteins precipitated 

with anti-Flag antibodies were subjected to mass spectroscopic 

analysis ( Obuse et al., 2004 ). Four proteins (Rrn5, Rrn11, Rrn7, 

and Spp27) coprecipitated with Acr1 ( Fig. 5 E ). To confi rm that 

Acr1 is bound to Rrn5, a strain containing Myc-tagged Rrn5 

and Acr1-Flag was made and used for immunoprecipitation. 

Results (Fig. S2 D, available at http://www.jcb.org/cgi/content/
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 Figure 6.     acr1-936  had both mitotic and interphase defects.  (A) DAPI-stained wild-type,  nuc1-632 , and  acr1-936  cells that were cultured at 36 ° C for 4 – 8 h. 
The insets correspond to the white dashed boxes in the left panels. (B) Localization of Nuc1 was dispersed in the nucleus in the  acr1-936  mutant. Bars, 10  μ m.   

as in  cut17  cells and were hardly observed in interphase. Mitotic 

enrichment of Cut14-GFP at the kinetochore and rDNA was not 

observed at all in Ark1-K118R – overproducing cells. 

 We then took videos of Cut14-GFP during mitosis in the 

 cut17  mutant at 36 ° C or in cells overproducing Ark1-K118R at 

26 ° C ( Fig. 7 B ). Enriched localization of Cut14-GFP at the centro-

mere and rDNA was not seen during the entire mitotic stage. Local-

ization of Cnp1, Mis6, Nuc1, and Acr1 was not affected at all in 

 cut17  mutant cells (Fig. S3, A – D; available at http://www.jcb.org/

cgi/content/full/jcb.200708170/DC1), suggesting that the infl uence 

of Cut17 on the localization of condensin was not through the loca-

tion of these kinetochore and rDNA-binding proteins. Rather, Ark1/

aurora might directly phosphorylate condensin for its recruitment. 

 Unequal segregation of sister kinetochores 
in a condensin mutant 
 The role of kinetochore- and rDNA-enriched condensin in chromo-

some segregation was investigated. Sister kinetochore separation 



1125ACCUMULATION OF CONDENSIN IN MITOSIS  •  NAKAZAWA ET AL.

 Figure 7.    Condensin entered the nucleus but failed to accumulate at the two distinct domains in the  cut17  mutant and the dominant-negative Ark1/
aurora cells.  (A, top) Wild-type and  cut17-275  mutant cells that expressed Cut14-GFP and Sad1-mCherry were cultured at 26 ° C, shifted to 36 ° C for 3 h, 
and observed. (bottom) The wild-type cells carrying the inducible plasmid REP1-Ark1WT or REP1-Ark1-K118R were cultured in the absence of thiamine at 
26 ° C. (B) Time-lapse series of the Cut14-GFP and Sad1-mCherry images in the wild-type or  cut17-275  cells cultured at 36 ° C for 3 h (top) and in the cells 
expressing wild-type Ark1 or the dominant-negative Ark1 K118R are shown. Bars, 10  μ m.   
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 Figure 8.    Proper segregation of sister kinetochores and rDNAs requires condensin.  (A) Cen2-GFP was used to examine the segregation phenotype of 
centromeric DNA in the condensin mutant  cut14-208 . The wild type,  mis6-302 , and  mis12-537  were used as the control strains. These were fi rst grown 
at 26 ° C and were shifted to 36 ° C for 2 h (wild type and  cut14-208 ) or 8 h ( mis6-302  and  mis12-537 ). The frequency of equal or unequal segregation is 
shown at the bottom of the images. (B) Kymographs for Cen2-GFP are shown for the wild type and  cut14-208 , which also expressed Sad1-RFP for the SPB 
marker. Images were taken at 10-s intervals. The frequency of each phenotype is indicated in parentheses. The arrow in the bottom panel (cell 2) shows 
the two closely situated splits of Cen2-GFP signals upon the presumed onset of anaphase. (C) The rDNA repeat unit was used for the FISH probe in the 
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wild-type and condensin mutant cells. DAPI and anti-Sad1 antibodies were used to stain DNA and to immunostain the SPBs, respectively. (D) Steps required 
for condensin to be accumulated at mitotic kinetochores and rDNAs in  S. pombe.  Cut15, importin  � ; Cut17, Bir1/survivin; Ark1, aurora; Cnp1, CENP-A; 
Mis6, CENP-I; Mis13, hMis13; Nuc1, pol I largest subunit; Acr1, accumulation of condensin at rDNA. Bars: (A) 5  μ m; (B), 2  μ m; (C) 10  μ m.   

 

and segregation have not been examined in  S. pombe  condensin 

mutants. Centromere-binding protein mutants invariably have 

unequal chromosome segregation ( Nabeshima et al., 1998 ;  Hayashi 

et al., 2004 ). Whereas the bulk of chromosome DNAs are not 

separated in condensin mutants, a portion of chromosomal DNAs, 

presumably centromeric, are separated by the spindle ( Saka 

et al., 1994 ). 

 The Cen2-GFP strain was used as the centromere marker 

( Yamamoto and Hiraoka, 2003 ). Three mutants ( cut14-208 ,  
mis6-302 , and  mis12-537 ) and the wild type were cultured at 

36 ° C. Hoechst33342 (red) and Cen2-GFP (green) showed nu-

clear DNA and Cen2 DNA, respectively ( Fig. 8 A ). In the wild-

type cells ( n  = 103), Cen2-GFP was equally segregated (1:1). 

In contrast, in the two mutants ( mis6-302 ,  n  = 108;  mis12-537 , 

 n  = 109), there was unequal segregation of Cen2-GFP (2:0) in 

66.7% and 18.3% of cells, respectively. DNA staining displayed 

the large and small daughter nuclei frequently observed in these 

mutants ( Hayashi et al., 2004 ). In  cut14-208  ( n  = 109), Cen2-

GFP was segregated in a 1:1 ratio in 88.8% of the cells ( Fig. 8 A , 

left) and in a 2:0 ratio in 11.2% of cells ( Fig. 8 A , right). The fi -

delity of sister kinetochore segregation was reduced in  cut14-
208 , as in  mis12-537 . Thus, the condensin defect decreased the 

fi delity of sister kinetochore segregation, whereas the bulk of 

the chromosomal DNA remained associated. 

 To monitor the dynamics of sister kinetochores, kymo-

graphs of Cen2-GFP (green) were made for the wild-type and 

 cut14-208  mutant at 36 ° C using Sad1-RFP (red) as the centro-

some marker. The time course for normal sister kinetochore seg-

regation was the same in two types of wild-type cells ( Fig. 8 B ). 

The splitting of sister kinetochores before the onset of anaphase 

was clearly observed in all of the wild-type cells. In contrast, 

such sister kinetochore splitting was often not observed before 

the onset of anaphase in 11 videos taken of  cut14-208  ( Fig. 8 B,  

bottom; cell 1). Of the 11 videos, 9 showed a 1:1 sister kineto-

chore separation in later mitosis. Of these nine, four did not show 

splitting in the metaphase. The remaining 2 of the 11 videos 

showed cells with a 2:0 ratio that did not exhibit sister kineto-

chore separation later in mitosis and also did not show splitting 

before the onset of anaphase, but two closely situated splits oc-

curred near one of the SPBs upon the presumed onset of ana-

phase ( Fig. 8 B,  bottom; cell 2; arrow). Similar phenotypes were 

reported in the centromere mutants  mis6  and  mis12  ( Goshima 

et al., 1999 ;  Appelgren et al., 2003 ). The lack of nonsplitting in 

metaphase suggested that the normal bioriented sister kineto-

chores under tension did not form in the condensin mutant. 

 Condensin is required for the segregation 
of rDNAs 
 We then examined rDNAs in the condensin mutant at 36 ° C us-

ing the full-length 10.9-kb rDNA repeat unit as the FISH probe 

( Uzawa and Yanagida, 1992 ). DAPI and anti-Sad1 antibodies were 

used to stain the DNA and SPBs in fi xed cells, respectively. 

The wild-type cells had normal separation ( Fig. 8 C , top; third 

row) and segregation ( Fig. 8 C , top; fourth row). In the  cut14  

 condensin mutant at 36 ° C for 2 h, however, the rDNA FISH 

signals remained in the middle without any indication of segre-

gation, whereas chromosomal DNA (DAPI) was partly extended 

by anaphase spindle elongation ( Fig. 8 C , bottom; third and fourth 

rows). The nucleolar rDNA required condensin for proper sepa-

ration in anaphase. 

 Discussion 
 The fi ndings of this study indicate that  S. pombe  condensin is en-

riched at kinetochores and rDNAs in metaphase. ChIP experi-

ments suggested that the accumulation was caused by the binding 

of condensin to the central centromeric chromatin and the non-

coding region of rDNAs. We identifi ed several essential proteins 

for recruiting and accumulating condensin at the kinetochores 

and rDNAs. The interaction of condensin with rDNAs or kineto-

chores was previously reported in various organisms ( Freeman 

et al., 2000 ;  Cabello et al., 2001 ;  Aono et al., 2002 ;  Bhalla et al., 

2002 ;  Hagstrom et al., 2002 ;  Ono et al., 2003 ,  2004 ;  Jager et al., 

2005 ;  Oliveira et al., 2005 ), but, to our knowledge, the specifi c 

enrichment factors for condensin are not well known. 

 As  S .  pombe  performs closed mitosis, condensin must be 

moved into the nucleus upon entry into mitosis. We confi rmed 

that Cdc2-dependent phosphorylation of a condensin subunit, 

Cut3/Smc4, at the T 19  residue ( Sutani et al., 1999 ) is essential 

for entry into the mitotic nucleus. In addition, Cut15, one of the 

two importin  �  proteins in  S. pombe  ( Matsusaka et al., 1998 ; 

 Umeda et al., 2005 ), is needed for condensin to be transported 

into the nucleus, probably through the importin role of Cut15. 

In contrast, Cut17/Bir1/survivin ( Morishita et al., 2001 ) is required 

to recruit the condensin to the docking sites of both kineto-

chores and rDNAs. Consistently, overexpression of dominant-

negative Ark1-K118R allowed the localization of Cut14-GFP 

in the nucleus but abolished the enriched localization of Cut14-

GFP at the kinetochores and rDNAs. Therefore, we speculate 

that Cdc2 and Cut15/importin  �  are required for the nuclear 

localization of condensin, whereas Cut17/Bir1/survivin and 

Ark1/aurora are needed for mitotically enriched localization to 

the chromosomal docking sites. The similar phenotypes of the 

 cut15  and  cut17  mutants and dominant-negative Cut3-T19A 

and Ark1-K118R suggest that condensin recruitment is essential 

for proper condensation and segregation ( Fig. 8 D ). Using kymo-

graphs of Cen2-GFP and the FISH method, we could show that 

sister kinetochores fail to split in metaphase and that rDNAs do 

not segregate at all in a condensin mutant, respectively. 

 Mutant analyses show that the centromere/kinetochore pro-

teins Cnp1, Mis6, and Mis13 are required for the accumulation of 

condensin at the kinetochores. In their mutants, condensin accu-

mulated at the rDNAs but not at the kinetochores, suggesting that 

they are kinetochore-specifi c enrichment factors for condensin. 
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We examined whether the same is true in human cells using 

hMis6/CENP-I RNAi. Kinetochore localization of condensin II 

is greatly diminished in hMis6 RNAi, suggesting that Mis6, 

which was originally identifi ed as a recruitment factor of Cnp1/

CENP-A ( Takahashi et al., 2000 ) and was recently reported to 

be needed for the recruitment of newly synthesized CENP-A in 

vertebrate cells ( Okada et al., 2006 ), is required for the accumu-

lation of condensin at the kinetochores in both  S. pombe  and 

human cells. 

 However, our results are against a simple hypothesis that 

Cnp1 is needed and is suffi cient for recruitment of condensin. 

Condensin recruitment was abolished in the  mis13  mutant, 

which is independent of the Cnp1/CENP-A pathway ( Hayashi 

et al., 2004 ). In  mis16  and  mis18  mutants, which are defective 

in priming centromeric chromatin to recruit Cnp1/CENP-A 

( Hayashi et al., 2004 ;  Fujita et al., 2007 ), condensin was lo-

cated at the centromere/kinetochore. In  mis16  and  mis18  mu-

tant cells, newly synthesized Cnp1 may not be recruited, but 

preexisting Cnp1 remains at the centromere/kinetochore. 

Furthermore, Mis16/RbAp46 and Mis18 were absent in the mitotic 

kinetochore of  S. pombe  and human cells ( Fujita et al., 2007 ). 

We suppose that mitotic condensin requires several centromere/

kinetochore proteins to be properly recruited. The kinetochore 

docking site for mitotic condensin is not identifi ed, but it may 

be a mitotically modifi ed molecule or mitosis-specifi c chromo-

some DNA topology at the kinetochore. The formation of such a 

site requires multiple centromeric/kinetochore proteins, includ-

ing Cnp1/CENP-A, Mis6, and Mis13. Understanding the nature 

of the docking site defi nitively requires further investigation. 

 In the  nuc1  and  acr1/rrn9  mutants, condensin is enriched 

at the kinetochores but not at the rDNAs: ts  nuc1  mutant cells 

had a collapsed nucleolus, showing a ringlike nuclear chromatin 

structure ( Hirano et al., 1989 ). We show that Acr1 is a nucleolar 

protein that binds to subunits of the rDNA upstream transcrip-

tion activator complex and shares two conserved domains with 

Rrn9-like proteins in fungi. The phenotypes of  acr1/rrn9  at 36 ° C 

were mixed with the mitotic defects in the absence of full spindle 

extension and the collapsed nucleolus. Nuc1 localization at 

rDNAs was diminished in the  acr1  mutant so that Nuc1 and 

Acr1 seemed to share a common function. We do not consider 

these proteins to be recruitment factors for condensin but regard 

them as the chromatin architectural proteins that are required for 

the formation of the docking site at rDNA for condensin. It re-

mains to be determined whether the nature of the docking sites 

at rDNAs and the kinetochore share something in common. 

 The levels of kinetochore- and rDNA-bound condensin 

were highest in metaphase, decreased in anaphase, and negligi-

ble in G1/S phase. Because the intracellular levels of condensin 

were not altered during the cell cycle ( Sutani et al., 1999 ), the 

decrease should represent the dissociation of condensin from the 

docking sites. We hypothesize that the association-dissociation 

cycle of condensin is regulated by two mitotically activated 

kinases, Cdc2 and aurora/Ark1 (Cut17/Bir1 is the subunit of the 

holoenzyme). Although Cdc2 directly phosphorylates conden-

sin, it remains to be determined whether aurora directly regu-

lates condensin. The involvement of aurora for the mobilization 

of condensin to the mitotic chromosome was previously reported 

in fl y and yeast ( Giet and Glover, 2001 ;  Morishita et al., 2001 ; 

 Petersen and Hagan, 2003 ). 

 In vertebrate cells, aurora B is required for the kinetochore 

localization of condensin II ( Ono et al., 2004 ). This is consistent 

with the fi nding that  S. pombe  condensin ’ s recruitment to the 

centromere/kinetochore requires Cut17/Bir1 and Ark1 but 

leaves a question about the role of condensin accumulation for 

rDNA segregation. In vertebrate cells, condensin ’ s enrichment 

at rDNAs and the implication of aurora in rDNA segregation are 

unclear. In  S. cerevisiae , however, Ipl1/aurora is required for the 

condensin enrichment in and the segregation of rDNAs ( Lavoie 

et al., 2004 ;  Sullivan et al., 2004 ). In fungi, condensin and au-

rora kinase may be critical for mitotic segregation of the nucleo-

lus, which remains as the bulky intranuclear structure during 

anaphase. In vertebrates, the nucleolus is degraded and dis-

appears during mitosis and may not require the massive accumula-

tion of condensin at rDNAs in mitosis. 

 A possibility is that aurora directly affects the association 

of condensin with mitotic chromosomes. In  S. pombe , Cnp1, 

Mis6, Nuc1, and Acr1 were normally localized in  cut17-275  

mutants, suggesting that the requirement for Ark1/aurora and 

Cut17/survivin in condensin ’ s recruitment to kinetochores and 

rDNAs is not via the direct interactions with these proteins. 

Ark1/aurora may confer the ability to interact with the mitotic 

kinetochore and rDNA chromatin on the condensin complex by 

direct phosphorylation. 

 The kymograph result suggested that there was a defect in 

the kinetochore – microtubule interaction in the condensin mu-

tant, as the nonsplitting kinetochore was stuck to one spindle 

pole during the period of metaphase; the sister kinetochores did 

not appear to be under the normal tension in metaphase. Kineto-

chore microtubules might require the assistance of condensin to 

be properly attached to the kinetochore. Alternatively, bioriented 

sister kinetochore formation might be defective in the absence of 

condensin.  Wignall et al. (2003)  showed that depletion of con-

densin in frog extracts inhibited microtubule growth and organi-

zation around chromosomes, reducing the percentage of sperm 

nuclei capable of forming spindles and causing dramatic defects 

in anaphase chromosome segregation. Similar fi ndings were made 

using RNAi of human cells ( Ono et al., 2004 ). The kinetochore-

driven spindle assembly seems to become defective if con-

densin is depleted. However, we observed no extensive defect in 

the  S. pombe  spindle formation in condensin mutant cells within 

the resolution of light microscopy. In  S. pombe , the spindle may 

form in the absence of proper interaction between the kineto-

chore and the kinetochore microtubule. Alternatively, the pheno-

typic difference might be caused by variations in inactivating 

condensin (ts mutation versus depletion). 

 How, then, does mitotic condensin accumulate at the kineto-

chores and rDNAs? One hypothesis is that kinetochores and 

rDNAs contain many docking sites, although their nature is un-

known. To examine this issue, it is important to determine the 

abundance of condensin at these sites in comparison with other 

chromosomal regions. One estimate for the number of conden-

sin complexes per cell is  � 3,000 in the postreplicative state 

( Sutani et al., 1999 ). We reestimated this number and obtained 

basically the same number (unpublished data). Therefore, each 
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proteins, three optical sections were collected at 0.5- or 1-min intervals at 
26 ° C or 36 ° C. The vertical separations between these sections were 0.5  μ m. 
For observation of the Cen2-GFP signals, the real-time z-sweep acquisition 
protocol based on OAI technology (Applied Precision) was used in 1.5- μ m 
optical space. Image projection and deconvolution were performed using 
an imaging workstation (SoftWoRx; Applied Precision). 

 Immunofl uorescence microscopy and FISH method 
 The procedures for DAPI staining, immunofl uorescence microscopy, and 
FISH were previously described ( Hagan and Hyams, 1988 ;  Uzawa and 
Yanagida, 1992 ). Antibodies used were anti-Sad1 ( Hagan and Yanagida, 
1995 ) for SPB staining and TAT1 for staining  �  tubulin (a gift from K. Gull, 
Biological Laboratory, University of Kent, Canterbury, UK). Double staining 
of chromatin and the nucleolus region was previously described ( Umesono 
et al., 1983 ). Immunofl uorescence in HeLa cells and primary antibodies 
against hMis6 and CENP-A were previously described ( Goshima et al., 
2003 ). Anti – hCAP-H2 antibody ( Ono et al., 2003 ) was a gift from T. Hirano 
(Chromosome Dynamics Laboratory, RIKEN Discovery Research Institute, 
Saitama, Japan). A microscope (Axiovert 200M; Carl Zeiss, Inc.) was used 
to observe the HeLa cells. Images of the spread chromosome were ac-
quired at 0.2- μ m steps in the z axis and were deconvolved using Axio-
Vision imaging software (Carl Zeiss, Inc.). 

 ChIP assay 
 The ChIP method was performed as previously described ( Saitoh et al., 
1997 ) with slight modifi cations. Immunoprecipitation was performed using 
anti-Flag M2 antibody (Sigma-Aldrich). Real-time PCR was performed on 
the Exicycler (Bioneer). The PCR primers used are shown in Table S1. 

 RNAi method 
 The siRNA for hMis6 RNAi was previously described ( Goshima et al., 2003 ). 
The cell culture and transfection procedures were based on those previously 
described ( Goshima et al., 2003 ) using Oligofectamine (Invitrogen). 

 Mitotic chromosome spread 
 Chromosome spread analysis was performed as previously described ( Ono 
et al., 2003 ) with slight modifi cations. HeLa cells transfected with siRNA 
were incubated for 48 h. 100 ng/ml nocodazole was added, and cells 
were incubated for 4 h more. Cells were swollen in a hypotonic solution 
(1:6 diluted PBS with Milli-Q water [Millipore]) followed by spreading the 
cells with Cytospin 4 (Thermo Fisher Scientifi c) at 1,300 rpm for 10 min. 

 Mass spectrometry 
 The procedures used here were performed essentially as previously de-
scribed ( Ohta et al., 2002 ). For immunoprecipitation of Acr1, the extrac-
tion buffer was modifi ed (25 mM Tris-HCl, pH 7.5, 15 mM EGTA, 15 mM 
MgCl 2 , 60 mM  � -glycerophosphate, 15 mM  p -nitrophenylphosphate, 0.5 mM 
Na 3 VO 4 , 0.1 mM NaF, 0.1% NP-40, 1 mM PMSF, 1% trasylol, and 
protease inhibitor cocktail [Sigma-Aldrich]). Immunopurifi ed samples were 
separated on a 12.5% SDS-PAGE gel, and the region of the gel containing 
proteins from 250K to 20K was cut at  � 1 – 2-mm intervals. After in-gel di-
gestion with modifi ed trypsin (Roche), the resulting peptides were analyzed 
by online liquid chromatography – tandem mass spectrometry on a mass 
spectrometer (Finnigan LTQ; Thermo Fisher Scientifi c). All tandem mass 
spectra were searched against the  S. pombe  nonredundant protein data-
base, including common contaminants such as trypsin and keratin, with the 
Mascot program (Matrix Science Ltd.). 

 Online supplemental material 
 Videos 1 – 4 show images of Cnd1- or Cut14-GFP taken with Sad1-RFP 
using a DeltaVision microscope (Videos 1 and 2 for Cnd1-GFP and Sad1-
RFP; Videos 3 and 4 for Cut14-GFP and Sad1-RFP). Fig. S1 shows mitotic 
phenotypes of  nda3-311  Cut14-Flag and ChIP assay in the  cdc25-22  mu-
tant. Fig. S2 shows the phenotypes of  acr1  mutant cells and the interaction 
of Rrn5-Myc with Acr1-Flag that contained the domains conserved in Rrn9 
family proteins. Fig. S3 shows that the localization of Cnp1, Mis6, Nuc1, 
and Acr1 proteins was normal in the  cut17-275  mutant. Table S1 shows 
PCR primers for the ChIP assay. Online supplemental material is available 
at http://www.jcb.org/cgi/content/full/jcb.200708170/DC1. 

 We are greatly indebted to Tatsuya Hirano for anti – hCAP-H2 antibodies, Yasushi 
Hiraoka for yeast strains, Iain Hagan for pArk1 plasmids, and Minoru Yoshida 
for a series of plasmids. 

 This work was supported by a specially promoted research grant from 
the Ministry of Education, Culture, Sports, Science and Technology of Japan as 
well as by the Japan Science and Technology Corporation. 

condensin localizes with the mean  � 8-kb intervals when con-

densin is maximally bound to the chromosomes (the postrepli-

cative cell contains 24 Mbp). Our estimate based on ChIP is that 

approximately three condensins may be present in the 3-kb non-

coding rDNA upstream in metaphase, as only three primers in 

1-kb intervals in the noncoding region could precipitate conden-

sin. There are  � 150 rDNA repeats, so  � 900 condensins may be 

bound to rDNAs in the postreplicative mitotic cells (3  ×  150  ×  2). 

We presumed that each kinetochore (central centromere) DNA 

contained  � 30 or more condensin, as all of the ChIP primers 

constructed every 0.5-kb interval in the 15-kb-long central cen-

tromere region could precipitate condensin. As  S. pombe  has 

three centromeres,  � 180 (90  ×  2) condensins may be accumu-

lated in the kinetochore DNAs. If these rough calculations are 

valid, approximately one third of the whole condensin is bound 

to the kinetochores and rDNAs. The docking sites for condensin 

should be abundant in these regions. One condensin per 0.5 kb 

and 1 kb for kinetochores and rDNAs, respectively, is 16- and 

8-fold more than that in the other regions on average. The de-

fective phenotypes of the condensin mutant strongly suggest 

that enriched condensin is important for proper segregation of 

the sister kinetochores and rDNAs.  Wang et al. (2005)  reported 

that one condensin was present at  � 2.0-kb intervals in the rDNA 

repeat region of  S. cerevisiae , whereas one condensin was pre-

sent at 10.7-kb intervals in the whole genome. We speculate that 

condensin forms the supramolecular protein – DNA complex at 

kinetochores and rDNAs in metaphase that contain the docking 

site that might share a common structural feature. 

 Materials and methods 
 Strains, plasmids, and media 
 An  S. pombe  haploid wild-type strain 972  h  -  and its derivative mutant 
strains were used. The  acr1-936  ts mutant was isolated from a library of 
1,015 ts mutants ( Hayashi et al., 2004 ). The GFP-tagged  cut14  +  and 
 cnd1  +  genes were described previously ( Sutani et al., 1999 ). The chromo-
somally integrated strains with the epitope (3Flag, 8Myc, GFP, and 
mCherry)-tagged Cut14, Sad1, Gar2, and Acr1 were made in the same 
manner. Plasmids carrying the Sad1-RFP and Mis12-RFP genes were used 
for the SPB and kinetochore markers, respectively ( Aoki et al., 2006 ). The 
Cnp1/CENP-A – GFP strain was described previously ( Takahashi et al., 
2000 ). The Cen2-GFP strain was previously constructed ( Yamamoto and 
Hiraoka, 2003 ) and was provided by the Yeast Genetic Resource Center 
(http://yeast.lab.nig.ac.jp). The Nuc1-GFP strain was a gift from Y. Hiraoka 
(Kobe Advanced ICT Research Center, National Institute of Information 
and Communications Technology, Kobe, Japan). The pRep81-Cut3WT and 
T19A plasmids were described previously ( Sutani et al., 1999 ). The 
pRep1-Ark1WT and K118R plasmids were gifts from I. Hagan (Paterson 
Institute for Cancer Research, University of Manchester, Manchester, UK;  
Petersen and Hagan, 2003 ). The culture media used for  S. pombe  were 
complete YPD, SPA sporulation medium, and minimal EMM2 medium 
( Saka et al., 1994 ). The cell number was measured using a hematology 
analyzer (Sysmex F-800; Toa Medical Electronics). HeLa cells were grown 
at 37 ° C in DME (Invitrogen) supplemented with 10% FBS, 1% penicillin-
streptomycin, and 1% antibiotic-antimycotic. 

 Live cell analysis 
  S. pombe  cells were cultured at 26 ° C in EMM2 medium and were shifted 
to 36 ° C for the appropriate duration. Before observation under a micro-
scope (DeltaVision; Applied Precision), exponentially growing cells were 
transferred to a glass-bottomed dish (IWAKI Glass) coated with concana-
valin A (Wako). Time-lapse images were recorded by the 3D microscopy 
system using the DeltaVision system. The objective lenses used were oil 
immersion lens (PlanApo 60 ×  or UplanSApo 100 ×  NA 1.4; Olympus). 
For observations of the GFP-tagged proteins with RFP or mCherry-tagged 
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