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Objectives: This tutorial describes and illustrates statistical methods to detect time trends possibly including
abrupt changes (referred to as change-points) in the consumption of antibiotics in the community.

Methods: For the period 1997–2017, data on consumption of antibacterials for systemic use (ATC group J01)
in the community, aggregated at the level of the active substance, were collected using the WHO ATC/DDD
methodology and expressed in DDD (ATC/DDD index 2019) per 1000 inhabitants per day. Trends over time and
presence of common change-points were studied through a set of non-linear mixed models.

Results: After a thorough description of the set of models used to assess the time trend and presence of
common change-points herein, the methodology was applied to the consumption of antibacterials for systemic
use (ATC J01) in 25 EU/European Economic Area (EEA) countries. The best fit was obtained for a model including
two change-points: one in the first quarter of 2004 and one in the last quarter of 2008.

Conclusions: Allowing for the inclusion of common change-points improved model fit. Individual countries
investigating changes in their antibiotic consumption pattern can use this tutorial to analyse their country
data.

Introduction

The European Surveillance of Antimicrobial Consumption Network
(ESAC-Net1, formerly ESAC) is an international network of surveil-
lance systems that enables data on antibiotic consumption to be
collected across the EU/European Economic Area (EEA). With these
data, various aspects of antibiotic consumption in the community
(i.e. primary care sector), including changing trends in consump-
tion of main antibiotic groups, have been studied in a previous
series of articles.2–7 However, while these changes could have
occurred gradually, which would require a time-trend, they could
also have occurred more abruptly, which would necessitate the in-
clusion of changes in the time-trend, referred to as change-points.
Comparison of the location of these change-points with the timing
of public campaigns could provide valuable insights into the
effectiveness of such campaigns.

Change-points, also referred to as transition-points, switch-
points or break-points, are usually estimated using either the
likelihood framework8–10 or the Bayesian framework.11–13 When
comparing the two approaches, the likelihood framework is com-
putationally faster and does not require the specification of prior
distributions while the Bayesian framework is less sensitive to
starting values and allows the location of the change-points to be
data-driven.14,15 For this tutorial, we focus on an adaptive
Bayesian model in which both the number of common change-
points and their location(s) are data-driven.16 This model was
applied in this series of articles that reviews temporal trends, sea-
sonal variation and presence of change-points, and composition
of antibiotic consumption in the community for the period
1997–2017.17–22

In subsequent sections of this tutorial, the data and the applica-
tion of the adaptive Bayesian model to antibiotic consumption in
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the EU/EEA community are presented step by step. The data struc-
ture and procedures used to fit the models are presented in
Appendix 1 (available as Supplementary data at JAC Online).

Data

This tutorial explains how a change-point model can be fitted to
quarterly data on antibiotic consumption in the community of 25
EU/EEA countries for the period 1997–2017. Data were expressed
in DDD (ATC/DDD index 2019) per 1000 inhabitants per day and
aggregated at the level of the active substance, in accordance
with the WHO ATC classification.23 The methods for collecting the
data are described in the introductory article of this series.24 The
structure of the dataset is presented in Appendix 1 (available as
Supplementary data at JAC Online).

Consumption of antibacterials for systemic use (ATC J01) for a
subset of countries that reported quarterly data for at least
15 years during the period 1997–2017 is presented in Figure 1.
These longitudinal profiles show clear seasonal variation in anti-
biotic consumption with upward winter peaks and downward
summer troughs, associated with seasonality in viral and bacterial
pathogens.25 In addition, the profiles demonstrate homogeneity
within and heterogeneity across countries. The less complete ser-
ies were for countries that did not join the network since its start,
missed intermittent calls for quarterly data, or did not yet submit
quarterly data for the more recent years.

Methodology

The different steps taken in analysing quarterly antibiotic con-
sumption data are described in subsequent sections. An illustration

of how the methodology can be applied is also presented. All mod-
els are fitted in a fully Bayesian way. To ensure convergence,
we recommend the use of two chains with 110 000 iterations, of
which the first 10 000 iterations must be discarded, i.e. burn-in.
Thinning, i.e. discarding samples, to every 5th sample is recom-
mended because of the autocorrelation present for some of the
parameters in the model. The code used to fit the models can be
found in Appendix 2 (available as Supplementary data at JAC
Online).

Model without change-points

To model antibiotic consumption data, we needed a model that
accounts for (a) homogeneity in observations within countries, (b)
heterogeneity in observations between countries and (c) seasonal
variation. One admissible approach is the non-linear mixed model
in which random effects represent the country-specific deviations
from the average and a sine wave captures the seasonality. An ad-
vantage of this model is that it does not require balanced data,
which makes it a very suitable approach for modelling the combin-
ation of complete and incomplete longitudinal profiles for antibiot-
ic consumption in the community. The non-linear mixed model is
formulated as:

Yij ¼ b0 þ b0ið Þ þ b1 þ b1ið Þtij þ bS
0 þ bS

0i þ bS
1tij

� �
sin xtij þ d
� �

þ eij;

(Eq. 1)

where Yij is the total antibiotic consumption in the community
(in DDD per 1000 inhabitants per day) for country i (i ¼ 1;2; . . . ;N)
at timepoint tij (j ¼ 1;2; . . . ;84), time = 1 corresponds to the start
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Figure 1. Seasonal variation in consumption of antibacterials for systemic use (J01) in the community, expressed in DDD (ATC/DDD index 2019) per
1000 inhabitants per day, in 13 countries reporting consumption per quarter for at least 15 years, 1997–2017.
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of the study (first quarter of 1997), b ¼ ðb0;b1; b
S
0;b

S
1;x; dÞ is a vec-

tor of fixed effects where b0 is the general intercept, b1 is the gen-
eral change in antibiotic consumption over time, bS

0 is the general
amplitude, bS

1 is the general change in amplitude over time, x is
the frequency of the sine wave (¼ 2p=T with T ¼ 4) and d is the
phase shift of the sine wave, bi ¼ ðb0i; b1i; b

S
0iÞ is the vector of ran-

dom effects where b0i is the country-specific deviation from the
general intercept, b1i is the country-specific deviation from the
general change in antibiotic consumption over time and bS

0i is the
country-specific deviation from the general amplitude. We as-
sume bi � Nð0;DÞ where D is a 3%3 diagonal covariance matrix.
We assume that all eij are independent and normally distributed
with mean zero and constant variance r2

e .

Model with one common change-point

Inclusion of a common change-point, which signals an abrupt
change in the evolution of antibiotic consumption over time,
modifies Equation 1 as follows:

Yij ¼ ðb0 þ b0iÞ þ ðb1 þ b1iÞtij þ ðbCP þ bCPiÞðtij � CPÞþ
þðbS

0 þ bS
0i þ bS

1tijÞ sin ðxtij þ dÞ þ eij;
(Eq. 2)

where the fixed effects b0; b1;b
S
0; b

S
1;x and d, and the random

effects b0i; b1i and bS
0i are defined as before, xþ=max(x;0), CP repre-

sents a common change-point, bCP is the general difference in the
linear trend after versus before the change-point, bCPi is the country-
specific deviation from the general difference in the linear trend
after versus before the change-point and eij is an unexplained error
term. The location of this common change-point is data-driven.

Model with additional common change-points

Inclusion of additional common change-points generalizes
Equation 2 as follows:

Yij ¼ ðb0 þ b0iÞ þ ðb1 þ b1iÞtij þ
XK

k¼1

�
bkþ1 þ bðkþ1Þi

�
ðtij � CPkÞþ

þðbS
0 þ bS

0i þ bS
1tijÞ sin ðxtij þ dÞ þ eij;

(Eq. 3)

Where xþ, the fixed effects b0;b1; b
S
0;b

S
1;x and d, and the random

effects b0i; b1i and bS
0i are defined as before, K is the number of

common change-points, for k ¼ 1;2; . . . ;K, CPk represents the kth

common change-point, bkþ1 is the general difference in the linear
trend after versus before the kth change-point, bðkþ1Þi is the coun-
try-specific deviation from the general difference in the linear
trend after versus before the kth change-point and eij is an unex-
plained error term. The model with one change-point is gradually
extended by including additional change-points of which the loca-
tions are again data-driven. When including more change-points
than present in the data, the model will experience difficulties in
obtaining convergence.

Model selection

The Deviance Information Criterion (DIC) is typically used to se-
lect the model that explains the data best in a Bayesian

setting.26 The DIC is a Bayesian equivalent to the Akaike
Information Criterion (AIC) and is composed as the sum of the
posterior expectation of the deviance (D), which measures
goodness of fit, and a penalty term for model complexity (pD),
which is given by the difference between the posterior expect-
ation of the deviance (D) and the deviance evaluated at the
posterior mean (DðhÞ). Because pD is not invariant to reparame-
terization and can become negative, pV [which estimates the
effective number of parameters in the model as Var(Deviance)/
2] can be used instead. In model comparison, a smaller DIC
represents a better fitting model. Convergence of the algorithm
can be checked using trace plots.27

Prior specification

To fit the above models in a fully Bayesian way, prior distributions
need to be specified. As a reflection of our lack of knowledge about
the regression coefficients, uninformative priors can be used. For
the change-points, this translates to a uniform distribution over
the whole time-range for the first common change-point, and a
uniform distribution over the time-range following the previous
change-point for additional change-points to avoid switching
of change-points which would result in difficulties with model
convergence. For the fixed and random effects, a normal prior with
a large variance was used to reflect lack of prior knowledge.
The selected priors are specified as follows:

b0;b1; bðkþ1Þ;b
S
0; b

S
1; d � Normal (0, 1000), independently

with k=1, . . . K and K the number of change-points,

C1 � Uniform (1,84),

Ck � Uniform (Ck�1,84),

b0i � Normal(0,r2
b0

),

b1i � Normal(0,r2
b1

),

bðkþ1Þi � Normal(0,r2
bðkþ1Þ

),

bS
0i �Normal(0,r2

bS
0

). (Eq. 4)

For the hyperparameters, an uninformative inverse gamma distri-
bution is used, which is specified as follows:

r2
b0
; r2

b1
; r2

bðkþ1Þ
; r2

bS
0
;r2

e � IGammað0:001;0:001Þ; independently;

(Eq. 5)

where x � IGammaða; bÞ means that 1=xhas a Gamma distribu-
tion with mean a=b and variance a=b2.28

Application of the methodology

We illustrate the methodology discussed above using ESAC-Net
quarterly data on antibiotic consumption in the community for 25
EU/EEA countries during the period 1997–2017.

We considered the following models:

Model 1: Non-linear mixed model without change-points
Model 2: Non-linear mixed model with one unknown com-
mon change-point (C1)
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Model 3: Non-linear mixed model with two unknown com-
mon change-points (C1 and C2 with C1 <C2)
Model 4: Non-linear mixed model with three unknown com-
mon change-points (C1, C2 and C3 with C1 <C2 <C3)

The results in Table 1 clearly indicate the need for at least one
common change-point, which is reflected by the big decrease in
DIC from Model 1 to Model 2. Including an additional unknown
common change-point (Model 3) decreased the DIC further.
Including a third common change-point (Model 4) resulted in non-
convergence, indicating that a non-linear mixed model with two
common change-points (Model 3) was the best fitting model for
antibiotic consumption in the community. A summary of the pos-
terior distributions for the model parameters in Models 1–3 is given
in Table 1.

The estimate for the first unknown change-point obtained from
fitting Model 2 was 44.529 (last quarter of 2007). Allowing a se-
cond change-point, positioned the first change-point at 29.028
(first quarter of 2004) and the second change-point at 48.839 (last
quarter of 2008).

The average observed, predicted and predicted linear con-
sumption of antibacterials for systemic use expressed in DDD per
1000 inhabitants per day illustrated that Model 3 fitted the data
well (Figure 2). The observed and predicted consumption of anti-
bacterials for systemic use expressed in DDD per 1000 inhabitants
per day for three selected countries (Belgium, Sweden and the
Netherlands) shows that the country-specific predictions closely
followed the observed values (Figure 3).

Discussion

In this tutorial, the methodology of an adaptive change-point
analysis is explained and applied to quarterly data on antibiotic
consumption in the community for 25 EU/EEA countries in the
period 1997–2017. The inclusion of change-points in the non-lin-
ear mixed models used earlier29 to describe the trend and season-
al variation in antibiotic consumption over time was motivated by
the need to allow for abrupt changes which then could be com-
pared with the timing of public awareness campaigns, e.g. the
European Antibiotic Awareness Day, policy changes, e.g. changing
the reimbursement of antibiotics, or other interventions.30 This
analysis can be performed at the third level of the ATC classifica-
tion, as shown in the example presented here for antibacterials for
systemic use (ATC J01), but could also be performed at any other
ATC level, e.g. to study the evolution of consumption of amoxicillin/
clavulanic acid over time. Analyses can be performed using
consumption data expressed in DDD per 1000 inhabitants per day,
as shown in the example presented here, but could also be
performed using data expressed in any other metric of antibiotic
consumption, e.g. packages or prescriptions per 1000 inhabitants
per day. Analyses can be performed for multiple countries, as
shown in the example presented here for 25 EU/EEA countries, but
could be performed for a smaller subset of countries as well, e.g.
only Northern European countries. Analyses of antibiotic consump-
tion in one specific country could be conducted after removing the
now-redundant random effects (boi; b1i; b kþ1ð Þi and bS

0i) from the
models. Analyses of yearly antibiotic consumption could be con-
ducted after removing the now-redundant sine wave from the
models.

While the fitted change-points were motivated by the need to
account for abrupt changes following antimicrobial awareness
campaigns, several other events could serve as an explanation for
the observed changes in antibiotic consumption. Examples include
shortages in specific compounds (e.g. narrow-spectrum penicillins
in Belgium),31 product restrictions (e.g. EMA recommendations on
fluoroquinolones),32 changes in package size possibly driven by
companies packaging practices,33,34 and accordance of package
size with treatment recommendations35 or even a pandemic
(COVID-19).36

The models described in this tutorial could be extended
by including country-specific latent indicators, thus allowing the
common change-point to be switched off for individual countries.
A limitation of this approach is that it hinders convergence, often
limiting the model to the inclusion of one common change-point
with a country-specific latent indicator. Because the model with
two change-points fitted the data best, we did not consider includ-
ing country-specific latent indicators as a valuable alternative in
the current setting. Another option that makes the models
described in this tutorial even more flexible would be to include

Table 1. Estimates for model fit and parameters: posterior means
(standard errors)

Parameters Model 1 Model 2 Model 3

DIC(pD) 5105.98 4877.68 4759.9

DIC(pV) 5119.56 4958.78 4864.17

b0 17.784 (1.258) 17.392 (1.286) 18.046 (1.410)

b1 0.001 (0.010) 0.014 (0.026) #0.017 (0.022)

b2 – #0.009 (0.041) 0.054 (0.039)

b3 – – #0.051 (0.050)

C1 – 44.529 (1.278) 29.028 (1.186)

C2 – – 48.839 (4.168)

bS
0 3.790 (0.345) 3.803 (0.351) 3.808 (0.342)

bS
1 #0.012 (0.003) #0.012 (0.002) #0.012 (0.002)

d 0.397 (0.017) 0.397 (0.016) 0.399 (0.015)

r2
b0

42.970 (14.345) 41.289 (15.914) 40.711 (15.455)

r2
b1

0.002 (0.001) 0.015 (0.007) 0.007 (0.004)

r2
b2

– 0.035 (0.017) 0.029 (0.014)

r2
b3

– – 0.042 (0.025)

r2
bS

0

2.543 (0.856) 2.556 (0.847) 2.572 (0.847)

r2
e 2.146 (0.084) 1.794 (0.072) 1.646 (0.067)

DIC(pD): Deviance Information Criterion calculated using a penalty
term for model complexity (pD); DIC(pV): Deviance Information Criterion
calculated using an estimate for the effective number of parameters in
the model (pV); b0, general intercept; b1, general change in antibiotic
consumption over time; b2, general difference in the linear trend after
versus before the first change-point; b3, general difference in the linear
trend after versus before the second change-point; C1, location of the
first change-point; C2, location of the second change-point; b0

S, general
amplitude; b1

S, general change in amplitude over time; d, phase shift of
the sine wave; r2

b0
, random intercept variance; r2

b1
, random slope vari-

ance; r2
b2

, random difference (after versus before the first change-point)
variance; r2

b3
, random difference (after versus before the second

change-point) variance; r2
bS

0

, random amplitude change variance; r2
e ,

residual variance.
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Figure 2. The average observed (dots), predicted (solid line) and predicted linear (dashed line) consumption of antibacterials for systemic use
expressed in DDD (ATC/DDD index 2019) per 1000 inhabitants per day obtained from fitting Model 3.
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Figure 3. The average observed (dots, triangles and stars) and predicted (solid, dashed and dotted lines) consumption of antibacterials for systemic
use expressed in DDD (ATC/DDD index 2019) per 1000 inhabitants per day obtained from fitting Model 3 for three selected countries: Belgium,
Sweden and the Netherlands from top to bottom.
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country-specific rather than common change-points (with coun-
try-specific latent indicators). However, the added complexity
often limits the number of change-points that could be included to
one single change-point. Because our main interest was in the
trend of antibiotic consumption over time for the EU/EEA, we pre-
ferred the inclusion of a higher number of common change-points
over the inclusion of country-specific change-points. For individual
countries, investigating the trend and changes in their own anti-
biotic consumption might be a valuable exercise when evaluating
the impact of public awareness campaigns, changes in regulations
and other national or international interventions.

In conclusion, allowing for the inclusion of common change-
points improved model fit. Individual countries investigating
changes in their antibiotic consumption patterns can use this tu-
torial to analyse their country data.
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