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Acetaminophen (N-acetyl-para-aminophenol (APAP)) is one of the most-studied drugs 

worldwide. APAP causes liver toxicity after an overdose, with thousands of papers published 

on various aspects of the mechanisms of cell death and organ injury, as well as regeneration 

and recovery. It is also a highly popular experimental model to test the efficacy of various 

potential drugs and chemicals to treat or prevent acute liver injury and promote regeneration. 

The popularity of the APAP overdose model is derived from two main aspects: the clinical 

relevance of the model and the perceived simplicity of the experimental design.

Regarding the clinical relevance, APAP is present in hundreds of prescriptions and over-the-

counter medicines, which are consumed daily by tens of millions of patients worldwide. 

Although considered safe at therapeutic doses, an overdose of APAP dose-dependently 

causes liver injury, which can progress to acute liver failure (ALF) and even death in 

patients [1,2]. In fact, APAP toxicity is the most frequent cause of ALF in the US, the 

UK and many other western countries [3,4]. Mitchell and coworkers [5–7] discovered that 

the sensitivity of mice to APAP toxicity is comparable to that of humans and defined 

the early steps of toxicity in the murine model. Importantly, an APAP overdose in the 

mouse accurately reproduces most of the mechanistic aspects of cell death and liver injury 

observed in patients [8] and human hepatocytes [9], with the only exception being the more 

delayed pathophysiology observed in humans compared to mice. Thus, the mechanistic data 

and therapeutic intervention strategies obtained in the mouse model translate very well to 

the human pathophysiology [10,11]. The only clinically approved antidote against APAP 

toxicity, N-acetylcysteine, was developed based on the early mechanistic insight generated 

by Mitchell and coworkers in the mouse model [12,13]. In addition, the most-promising 

new antidote under clinical development, fomepizole (4-methylpyrazole), is being advanced 

due to preclinical studies in the mouse model that demonstrated that the compound is an 

effective inhibitor of cytochrome P450 2E1 (Cyp2E1) and of c-jun N-terminal kinase (JNK) 

[14,15]; one aspect of this mechanism (Cyp2E1 inhibition) was confirmed in a human 

volunteer trial [16]. Based on this experience, APAP overdose in the mouse is the preferred 
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experimental model to study clinically relevant mechanisms of acute drug hepatotoxicity and 

regeneration and evaluate potential therapeutic targets.

The second aspect that contributes to the popularity of APAP toxicity is the perceived 

simplicity of the model. Fed or overnight fasted mice from most mouse strains develop 

severe liver injury when intraperitoneally injected with a dose of 300–600 mg/kg 

APAP [17]. Thus, it seems simple enough to sacrifice the animals 24 h after APAP 

administration and measure as many parameters related to injury, modes of cell death, 

inflammation, oxidant stress, etc., as possible. However, this simplistic experimental design 

provides a substantial problem for the interpretation of the results. APAP toxicity is a 

complex, time-dependent process involving many different, interrelated mechanistic aspects, 

including drug metabolism, with the formation of a reactive metabolite, GSH depletion 

and protein adducts formation, an initial oxidant stress that activates a mitogen-activated 

protein kinase cascade leading to JNK phosphorylation, phospho-JNK translocation to 

mitochondria with amplification of the oxidant stress and peroxynitrite formation, and 

iron-dependent nitrotyrosine protein adduct formation in mitochondria, eventually leading 

to the mitochondrial permeability transition pore opening and collapse of the mitochondrial 

membrane potential [18,19]. The mitochondrial dysfunction then leads to the release 

of endonucleases, which cause DNA fragmentation. These are the key events leading 

to necrotic cell death [20,21]. However, there are many different mechanisms that can 

affect these central pathways of cell death, including Nrf2 activation with an impact 

on drug metabolism and defense mechanisms [22], autophagy and mitophagy to limit 

the propagation of mitochondrial damage [23], and mitochondrial biogenesis to replace 

damaged mitochondria, limit cell death and facilitate regeneration [24,25], and an extensive 

sterile inflammatory response to promote recovery. However, they may also risk aggravating 

the injury process under certain conditions [26,27]. In addition to these major adaptive 

responses to the stress of injury, there are additional aspects to consider, such as the 

gut microbiome, dietary effects, and genetic background, all of which could influence 

the pathophysiology through modulation of any of the above-mentioned effects, and thus 

ultimately influence cell necrosis. Although the zonation of hepatocytes has been known for 

many years [28], the more recent application of single-cell RNA-sequencing now allows 

for the response of individual hepatocytes and non-parenchymal cells to hepatotoxins 

such as APAP to be studied, and opens up a new dimension in the investigation of 

APAP hepatotoxicity [29,30]. Despite this wealth of information, there are still many 

open questions that need to be investigated and novel interactions that can be discovered. 

However, avoiding pitfalls in experimental design and mistakes in data interpretation is 

critical to relevant progress in this field [31].

Therefore, the objective of this Special Issue on “Recent Advances 

in Acetaminophen Hepatotoxicity”(https://www.mdpi.com/journal/livers/special_issues/

acetaminophen_hepatotoxicity (accessed on 19 June 2022)) is to publish state-of-the-art 

reviews summarizing the newest developments by leading experts and attract additional 

reviews and original manuscripts that can further define the field, advance our understanding 

of the pathophysiology, and identify novel therapeutic targets.
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