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1  | INTRODUC TION

There are 15 FDA-approved therapies for the treatment of prostate 
cancer (PC). Although androgen blocking therapies have greatly 
improved the 5-year survival rate of prostate cancer patients, the 
majority of patients eventually develop a castration resistant form 
of metastatic prostate cancer (mCRPC). Ten of the FDA-approved 
PC drugs are known to provide some therapeutic benefit against 
mCRPC, although the overall prognosis for mCRPC remains unfa-
vorable. Poly (ADP)-ribose polymerase-1 (PARP-1) is critical for 
maintaining chromatin in an accessible state for transcription of 
pro-tumorogenic genes downstream of the PC androgen receptor 

(AR) signaling cascade.1,2 Presently, the majority of PARP-1 inhib-
iting cancer therapies are competitive antagonists of NAD+, which 
is the substrate for PARP-1. Rucaparib, which has a 3D chemical 
fingerprint similar to the clinical PARP-1 inhibitors Olaparib and 
Velaparib,3 is the only PARP-1 inhibitor that is clinically approved for 
treatment of mCRPC. The limited number of treatment options for 
mCRPC and the limited diversity of PARP-1 inhibitors for the treat-
ment of mCRPC present obstacles for treating patients who are not 
responsive to existing therapies.

To address the need for identifying new PARP-1 inhibitors, we 
previously performed a high-throughput cell-free reporter assay of 
50 000 + small molecules. To reduce the likelihood of identifying 
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Abstract
The prognosis for metastatic castration-resistant prostate cancer is unfavorable, and 
although Poly(ADP)-ribose polymerase-1 (PARP-1) inhibitors have shown efficacy in 
the treatment of androgen-receptor dependent malignancies, the limited number of 
options present obstacles for patients that are not responsive to these treatments. 
Here	we	utilize	an	integrated	screening	strategy	that	combines	cellular	screening	as-
says, informatics, in silico computational approaches, and dose-response testing for 
reducing a compound library of confirmed PARP-1 inhibitors. Six hundred and sixty-
four validated PARP-1 inhibitors were reduced to 9 small molecules with favorable 
physicochemical/ADME	properties,	unique	chemical	 fingerprints,	high	dissimilarity	
to existing drugs, few off-target effects, and dose-responsivity in the 1 µmol/L - 
20	µmol/L	range.	The	top	9	unique	molecules	identified	by	our	integrated	screening	
strategy will be selected for further preclinical development including cytotoxicity 
testing,	 effects	 on	mitosis,	 structure-activity	 relationship,	 physicochemical/ADME	
studies, and in vivo testing.
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redundant NAD + mimetics or non-specific inhibitors of PARP-1, 
the cell-free assay was designed to identify small molecules that 
inhibited	 the	 histone	H4	binding	 domain	 of	 PARP-1.3 Six hundred 
and sixty-five compounds were identified as structurally distinct in-
hibitors of PARP-1, all of which had IC50 values below or similar to 
the currently known PARP-1 inhibitors. Using 3D chemical finger-
print clustering of the positive hits, a single compound with the least 
structural similarity to any known PARP-1 inhibitor was selected. 
This compound, 5F02, has been tested in vitro and in vivo, and is 
currently undergoing further preclinical development.3,4	 Here,	we	
utilize	a	screening	strategy	that	integrates	cellular	screening,	infor-
matics, computational approaches, and dose-response testing to re-
duce the remaining 664 small molecules to the top 9 candidates for 
further development. Selections are made on the basis of favorable 
predicted	physicochemical/ADME	properties,	unique	chemical	 fin-
gerprints, dissimilarity to existing drugs in development, and fewest 
off-target effects.

2  | E XPERIMENTAL METHODS

2.1 | Cell culture and migration assay

Ninety-six-well plates with silicone stoppers were purchased from 
Playtpus	Technologies	 (CMA5.101).	PC3	cell	 lines	were	purchased	
from	 ATCC	 and	 cultured	 in	 96-well	 plates	 in	 10%	 RPMI	 (Gibco	
A1049101) supplemented with non-essential amino acids (Gibco 11-
140-050) and penicillin/streptomycin (Gibco 10378-016). Cell lines 
were	 confirmed	 as	 mycoplasma	 negative	 using	 Lonza	 Mycoalert	
mycoplasma detection kit (LT07-118). Each well was seeded with 
1 × 105 cells (passage number < 8) and cultured for 48 hours. Silicone 
stoppers were removed, and entire wells were imaged immediately 
on	Biotek	Cytation3	 imaging	system	(t	=	0).	Medium	was	removed	
from each well by vacuum and all wells were replenished with se-
rum-free	RPMI	supplemented	with	6.5	µmol/L	test	inhibitors,	0.13%	
DMSO,	 10	 µmol/L	 Olaparib	 (Adooq	 A10111-10),	 or	 50	 µmol/L	
Rucaparib	 (Adooq	A10045-5).	Twenty-four	hours	after	stopper	re-
moval samples were imaged again. Each plate was run in triplicate 
using	a	scheme	of	one	unique	sample	per	well,	and	3	plates	per	run.	
Data	were	analyzed	using	ImageJ	MRI	Wound	Healing	Tool	plugin.	
All	area	measurement	data	were	normalized	to	t	=	0	control	values.	
The cutoff criteria for positive hits was µs−σs	≥	µv + 3σv, where µ is 
mean, s is sample, σ is standard deviation, and v is vehicle. Statistics 
were performed with GraphPad Prism software on samples meeting 
the	cutoff	criteria	using	one-way	ANOVA,	with	FDR	=	0.05.	Multiple	
comparisons were corrected for using the two-stage linear step-up 
procedure of Benjamini, Krieger and Yekutieli.

2.2 | Chemical purity

Experimental inhibitors tested were obtained from the ChemDiv 
Representative Diversity Set, comprising 50 000 molecules. Samples 

were validated by ChemDiv 1H-NMR	 and	 HPLC/LCMS.	 All	 com-
pounds	met	a	minimum	requirement	of	≥95%	purity,	and	elemental	
analysis revealed carbon, hydrogen, and nitrogen values were within 
0.4% of expected values.

2.3 | Cell viability assay

Cells were seeded and cultured in 96-well plates for 48 hours, as 
described	above.	Wells	were	treated	for	24	hours	in	quadruplicate	
with	no	stimulus	 (NT),	0.13%	DMSO	(veh),	20uM	Olaparib	 (Adooq	
A10111-10),	 50uM	Rucaparib	 (Adooq	A10045-5),	 or	 70%	 ethanol.	
Media	were	removed	from	each	sample	and	replaced	with	PBS	con-
taining	0.5	ug	propidium	iodide	(Thermo	P1304MP)	and	1uL	Oligreen	
(Thermo O7582). Samples were imaged on Biotek Cytation3 using 
GFP	and	RFP	 filter	 sets.	Oligreen	 fluorescence	was	used	 to	quan-
tify	all	cells,	and	propidium	iodide	fluorescence	was	used	to	quantify	
dead cells. Cells were counted using Trainable Weka Segmentation 
plugin for ImageJ/FIJI (Arganda-Careeras 2017). %Live cells were 
computed as 100*(All cells – Dead cells).

2.4 | Chemical taxonomy

Small molecule taxonomy was determined using Classyfire applica-
tion.5	Molecules	were	queried	using	SMILES	IDs,	and	direct	parent	
data were reported for each sample.

2.5 | SWISS-ADME screening

Samples	were	input	into	SWISS-ADME	system	using	SMILES	IDs	and	
all data output were saved in .csv format. Samples meeting the fol-
lowing criteria were considered positive hits for favorable physico-
chemical	properties:	20	<	TPSA	<130;	−0.7	<	(xLogP3/wLogP)/2	<	5;	
0	 <	 [-Log(SILICOS-IT)]-1.2	 <	 6;	 150	 <	MW	<500;	 0.25	 <	 Fraction	
Csp3 < 1; 0 < rotatable bonds < 9. Samples having the follow-
ing	 PAINS	 alerts	 were	 removed:	 ene_six_het_A,	 hzone_phenol_B,	
anil_di_alk_A,	quinone_A,	azo_A,	imine_one_A,	mannich_A,	anil_di_
alk_B,	anil_di_alk_C,	ene_rhod_A,	hzone_phenol_A,	ene_five_het_A,	
anil_di_alk_E. All samples flagged as Brenk alerts were removed, ex-
cept	 for	 those	 flagged	 as	 quaternary	 nitrogens.	 Samples	with	 low	
predicted intestinal absorption, synthetic accessibility > 3.5, or > 2 
CyP	enzymes	inhibited	were	also	excluded.

2.6 | 2D and 3D chemical fingerprinting

For	2D	fingerprinting,	 samples	were	 input	 into	 the	ChemMine	da-
tabase	using	SMILES	format.	Single	 linkage	distance	matrix	hierar-
chical clustering was performed, selecting Z-scores for the display 
value. Data were exported into .csv format. 3D chemical finger-
printing	was	performed	using	Canvas	1.6	software.	Molecules	were	
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clustered	 into	a	10	×	10	matrix	based	on	self-organizing	maps	cal-
culated as the sum of fingerprint distances for all 665 positive hits 
from the cell-free assay, as described previously.3 All raw data were 
imported	into	GraphPad	Prism	software	for	heatmap	visualization.

2.7 | Drug similarity

To determine if any of our top hits were in clinical use, compounds 
were	 input	 into	 the	DrugBank	5.0	database	by	SMILES	 ID.	To	de-
termine the phase of research for each compound and all similar 
compounds,	 the	ChemMine	EI	search	algorithm	was	used	to	 inter-
rogate	the	ChEMBL	database	for	molecules	with	a	similarity	cutoff	
of	≥	0.85.	The	table	view	was	used	to	determine	the	max	phase	of	
each molecule.

2.8 | Multiple Targets

Molecules	were	entered	 into	the	ChEMBL	database	by	SMILES	ID	
and	 the	 heatmap	 view	was	 used	 to	 visualize	 targets	 of	molecules	
for which data were available. Data were exported to .csv format, 
pChEMBL	activity	values	were	made	binary,	and	data	were	imported	
into	Graphpad	Prism	for	heatmap	visualization.

3  | RESULTS

3.1 | Inhibitors of cellular migration

Six hundred and sixty-four compounds having cell-free inhibitory 
activity on PARP-1 were tested in vitro using a high-throughput 
cellular migration assay developed by Platypus Technologies.6 This 
assay served to evaluate whether any compound could reduce meta-
static potential of prostate cancer cells (Figure 1A). Each inhibitor 
was tested on PC3 cell lines at 6.5 µmol/L concentration and open 
area was evaluated immediately after the removal of silicone stop-
pers, and again 24 hours later. Area measurements were calculated 
using	the	MRI	Wound	Healing	Tool	plugin	for	ImageJ	(Figure	1B).	The	
rationale for using PC3 cell lines was that they are of neuroendo-
crine origin and are resistant to androgen blocking therapies, which 
is the typical context in which PARP-1 inhibitors are used.7-9 Using 
0.13%	DMSO	as	 vehicle,	 10	uM	Olaparib	 as	 a	weak	 inhibitor,	 and	
50	µmol/L	Rucaparib	as	a	strong	inhibitor,	the	z-factor	of	the	assay	
was computed as > 0.6, an ideal value for high-throughput screen-
ing.10 Neither Olaparib nor Rucaparib affected cell viability at the 
time points tested (Figure 1C). For each plate screened, molecules 
were considered positive hits if the mean of the test sample minus 
its	standard	deviation	was	greater	than	or	equal	to	the	mean	of	the	
vehicle minus three standard deviations of the vehicle. Statistical 
testing was performed on hits meeting the above criteria, and hits 
with	q	value	<	0.05	were	selected	for	further	screening	(Figure	1D).	
This screening method reduced our library of 664 hits to 66 small 

molecules exhibiting cell migration inhibiting activity. The distribu-
tion surface of positive hits was plotted,11 and demonstrated that 
there was no systematic error in hit distribution (Figure S1).

3.2 | Favorable physicochemical and 
ADME properties

The chemical diversity of the top 66 hits was determined by sub-
mitting all compounds into a chemical taxonomic application, which 
clusters chemicals on the basis of a classification system called 
ChemOnt.5 The 66 compounds clustered into 34 direct parent 
groups,	of	which	hydroquinolones	benzothiazoles,	quinolone	deriva-
tives,	and	phenyl-1,2,4-triazoles	were	overrepresented	(Figure	2A).	
To determine whether any of the top 66 small molecules had favora-
ble	physicochemical,	ADME,	or	medicinal	properties	for	in	vivo	use	
and	preclinical	 development,	we	utilized	SWISS-ADME,	 a	 chemin-
formatics database for predicting small molecule properties.12 With 

F I G U R E  1   PARP-1 inhibitors with phenotypic effects in cellular 
assays. (A) Principle of migration assay in which cells are imaged 
immediately after stopper removal (step 2) and again after 24 h 
of culture in serum-free medium (step 4). (B) Example of images 
of areas of interest immediately after stopper removal (t = 0), 
and	after	24	h	of	culture	for	samples	treated	with	0.13%	DMSO	
(Veh), 6.5 µmol/L experimental inhibitors (in this case 5_B06), or 
50 µmol/L Rucaparib; yellow outline denotes outer boundary of 
computed	open	area	using	ImageJ	MRI	Wound	Healing	Tool	plugin.	
(C) Propidium iodide and Oligreen viability assay performed on 
cells	receiving	no	treatment	(NT),	0.13%	DMSO	(Veh),	20	µmol/L	
Olaparib, 50 µmol/L Rucaparib, or 70% ethanol. (D) Example of 
positive hits identified from experimental plate 1 of 8 using µs−σs 
≥	µv + 3σv criteria; blue shaded area highlights region considered 
positive hits; Statistics performed using one-way ANOVA, 
FDR = 0.05; multiple comparisons were corrected for using the 
two-stage linear step-up procedure of Benjamini, Krieger and 
Yekutieli



4 of 8  |     DIVAN et Al.

respect to lipophilicity and water solubility, the database provides 
values using several different algorithms. To determine which algo-
rithm	was	most	appropriate	for	our	use,	we	queried	compounds	in	
which we had previously performed wet physicochemical studies4 
and compared the predicted results to the actual values. Lipophilicity 
(cLogP) was most closely approximated by averaging the output of 
two computational algorithms, xLogP3 and wLogP (Figure 2B).13,14 
For	water	 solubility,	 the	default	 parameter	 used	by	 SWISS-ADME	
is the ESOL method.15 The SILICOS-IT method provided the closest 
approximation to our empirical values.12 A minor adjustment to the 
SILICOS-IT output further improved the prediction accuracy (See 
methods for details) (Figure 2C). These adjustments were applied 
and	integrated	into	SWISS-ADME	cutoffs	for	size,	polarity,	satura-
tion, and flexibility. Pan assay interference compounds (PAINS)16 
were excluded based on those known to be most promiscuous,17 
and putatively toxic compounds were excluded based on existing 
SWISS-ADME	criteria.18 Overall, this approach reduced the list of 
66 hits to 19 non-PAINS and non-toxic compounds with favorable 
physicochemical properties, belonging to 12 direct parent groups 
(Figure	 2D).	 The	 top	 19	 compounds	 were	 queried	 for	 predicted	
gastrointestinal absorption, blood–brain barrier permeability, cy-
tochrome P oxidase inhibition, synthetic accessibility, and whether 
they	were	substrates	for	P-glycoprotein	efflux	pumps.	By	requiring	

that all compounds have gastrointestinal absorption, and no more 
than 2 of 5 cytochrome P oxidases inhibited, the list of 19 posi-
tive	hits	was	 reduced	 to	3	benzothiazoles	 and	1	phenyloxadiazole	
(Figure 2E).

3.3 | Unique chemical fingerprints

Although taxonomic classification demonstrated high diversity of the 
top 66 hits, it did not provide any comparisons with existing PARP-1 
inhibitors. To address this shortcoming, we performed single linkage 
distance	matrix	hierarchical	clustering	using	ChemMine19	and	que-
ried our top hits against 27 known PARP-1 inhibitors (Figure 3A). 
Values were filtered to include only those compounds that had >0.8 
dissimilarity from any known PARP-1 inhibitors, which reduced the 
list to 6 compounds (Figure 3B, Figure S2A). We also performed a 
3D fingerprint comparison using Canvas 1.6 software which binned 
similar	molecules	 based	 on	 self-organizing	maps	 calculated	 as	 the	
sum of fingerprint distances for the 66 positive hits from the migra-
tion assay (Figure S3). By superimposing the 3D fingerprints of the 
27 known PARP-1 inhibitors, a region of least similarity was identi-
fied, wherein each molecule had less than 0.05 Tanimoto similarity 
to any known PARP-1 inhibitor (Figure 3C). Eleven compounds, two 

F I G U R E  2    Top hits using SWISS-
ADME	application	for	prediction	of	
physicochemical,	PK,	ADME,	and	
medicinal properties. (A) Chemical 
diversity of top 66 compounds identified 
by cellular migration assay, prior to in 
silico	screening	by	SWISS-ADME.	(B)	
Comparison of cLogP values obtained 
empirically for compounds 5F02, FC-7220, 
MC270016,	MC270017,	MC270019,	
MC270021	(4),	and	SWISS-ADME	
predicted values using xLogP3, wLogP, or 
the average of both predicted values. (C) 
Comparison of solubility values (-Log(S)) 
obtained empirically for the compounds 
described in (B), compared to solubility 
values	predicted	by	the	SWISS-ADME	
SILICOS-IT method, and adjustment 
of those values (SILICOS-IT_Adj). (D) 
Chemical diversity of top 19 non-PAINS, 
non-toxic compounds, meeting adjusted 
SWISS-ADME	cutoff	for	favorable	
physicochemical properties. (E) Chemical 
structures of top 4 molecules predicted to 
have optimal physicochemical properties, 
high gastrointestinal absorption, and 
inhibitory potential against 2 or fewer CyP 
enzymes;	CyP	is	cytochrome	P	oxidase;	
Pgp is P-glycoprotein efflux pump; BBB is 
blood–brain barrier
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of which overlapped with hits from the 2D clustering method were 
identified in the region of least similarity (Figure 3D, Figure S2B). 
3D fingerprint binning of the top hits from the 2D clustering, and 
SWISS-ADME	screening	methods	demonstrated	that	all	small	mol-
ecules selected by these methods had less than 0.12 Tanimoto simi-
larity to any known PARP-1 inhibitor (Figure 3E-F).

3.4 | Development landscape

In total, the combined approach of using 3 in silico methods for 
identifying lead compounds identified 18 molecules belonging 
to 13 parent groups as candidates. Three of the molecules were 
hits in two screening methods, and all three screening methods 
identified	benzothiazoles	as	positive	hits	(Figure	4A,B,	Figure	S4).	
Although the methods employed identified potentially useful mol-
ecules for preclinical development, none of those approaches ad-
dressed whether any of the molecules were already in clinical use, 
in early development, or whether they resembled known clinical 
compounds.	To	address	 the	 first	question	we	queried	DrugBank	
5.0, an online database containing molecular information about 

drugs, mechanisms, interactions, and targets in the US, Canada, 
and EU.20 DrugBank did not identify any of our 18 small mole-
cules as currently in clinical use. The structural similarity search 
function	in	the	ChemMine	application	was	used	to	determine	the	
status of our compounds with respect to existing development, 
and whether similar compounds were currently in development. 
Using	 a	 Tanimoto	 similarity	 cutoff	 of	 ≥0.85,	 57	 small	 molecules	
similar to our top 18 hits were identified. All of the 57 similar mol-
ecules were designated as phase 0, meaning that none of them 
were in preclinical or clinical development (Table S1). Lastly, we 
queried	the	ChEMBL	database	to	determine	 if	any	of	 the	top	18	
hits had known molecular targets other than PARP-1. Data were 
available for 8 of the 18 hits. One of the hits (1D05), which was 
identified	as	a	candidate	using	the	SWISS-ADME	and	2D	cluster-
ing methods (Figure S4), had reported activity against 29 different 
targets (Figure 4C). Four other molecules had reported reactivity 
with thioredoxin glutathione reductase (2B02), Plasmodium falci-
parum (1F07, 6A02, 2B06), or Plasmodium yoelii (6A02) (Figure 4C). 
Given the high number of known non-PARP1 targets, 1D05 was 
removed from our list. Lastly, we used the cellular migration assay 
to perform 5-point titrations on the top 17 molecules. This assay 

F I G U R E  3   2D/3D chemical fingerprinting and similarity comparisons to known PARP-1 inhibitors. (A) 2D Single linkage distance matrix 
hierarchical clustering of top 66 hits compared to 27 known PARP-1 inhibitors (1 = highly dissimilar, 0 = identical). (B) Selected compounds 
having	dissimilarity	score	of	≥0.80	from	any	of	the	27	known	PARP-1	inhibitors.	(C)	Superimposed	3D	similarity	map	comparing	all	664	hits	
from	cell	free	assay	to	all	known	PARP-1	inhibitors;	region	outlined	in	white	represents	area	with	≤0.05	Tanimoto	similarity	to	any	known	
PARP-1 inhibitor. (D) Similarity binning of 66 PARP-1 inhibitors that were positive hits in cellular migration assay; region outlined in white 
highlights	subset	of	11	molecules	that	have	≤0.05	Tanimoto	similarity	to	any	known	PARP-1	inhibitor;	(E)	3D	binning	of	molecules	identified	
as	positive	hits	by	SWISS-ADME	(2E)	or	2D	hierarchical	clustering	(B).	(F)	Molecules	described	in	(E)	(white	rectangles),	compared	to	
superimposed 3D similarity map of all known PARP-1 inhibitors
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reduced our top 17 molecules to 9 molecules exhibiting a dose-
response relationship (Figure S5).

4  | DISCUSSION

The migration assay is an effective screening tool, as it reduced the 
number	of	positive	hits	from	664	to	66.	The	computed	z-factor	was	
>0.6, which indicates that this approach had high sensitivity and 
specificity for high-throughput screening assays.10 A possible limita-
tion	of	 our	 screening	 approach	was	 that	we	utilized	 the	neuroen-
docrine carcinoma-derived PC3 cell line only and did not include 
adenocarcinoma prostate cancer cell lines such as LNCaP or DU-
145. Our rationale for using PC3 was that neuroendocrine carcino-
mas have worse prognoses than adenocarcinomas, and that they are 

insensitive to androgen ablation, making them appropriate for the 
clinical context of PARP-1 inhibitor use.8,9 Given the high resource 
cost of performing multiple high-throughput screens on several cell 
lines, the use of PC3 was the most logical choice. Investigators want-
ing to use our screening strategy would need to carefully consider 
which cell lines to use for their models of interest.

The	SWISS-ADME	database	reduced	our	top	66	hits	to	4	mole-
cules	that	were	expected	to	have	favorable	physicochemical,	ADME,	
PK,	and	medicinal	properties.	Although	benzothiazoles	were	over-
represented in the original list of 66 compounds, it was unexpected 
that	they	would	represent	3	out	of	our	4	final	hits	after	SWISS-ADME	
prediction	 algorithms	 (Figure	 2E).	 All	 three	 of	 the	 benzothiazoles	
identified	by	SWISS-ADME	fell	within	the	same	3D	fingerprint	bin	
(Figure	3D,	cell	 j7).	An	important	note	on	our	SWISS-ADME	selec-
tion criteria is that we excluded Brenk toxicity alerts concerning 

F I G U R E  4   Top hits and off-target effects. (A) Venn diagram showing number of top hits, and overlapping hits from each selection 
method;	Lead-like	molecules	(red)	were	identified	by	SWISS-ADME	(Figure	2A-E);	2D	unique	molecules	(purple)	were	identified	by	2D	Single	
linkage	distance	matrix	hierarchical	clustering	(Figure	3A,B);	3D	unique	molecules	(green)	were	identified	by	3D	self-organizing	maps	(Figure	
3C-E); (B) Non-exclusive representation of direct parent groups of small molecules identified by each selection method. (C) Known non-
PARP-1 targets for 8 of the 18 compounds shown in (A)
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the	presence	of	any	quaternary	nitrogen.	The	reason	for	doing	so	is	
that our previously identified lead compound, 5F02, is also flagged 
by	a	quaternary	nitrogen	 toxicity	 alert,	 yet	 is	 shown	 to	be	 safe	 in	
vivo.3 We also needed to adjust the predicted lipophilicity and sol-
ubility values to more closely approximate values that we obtained 
empirically (Figure 2B,C).4 These observations underscore that data 
produced by in silico screening algorithms must be interpreted with 
caution, and in the context of the specific application.

2D single linkage distance matrix hierarchical clustering was use-
ful for determining similarities between our top 66 hits and the 27 
known	PARP-1	inhibitors	that	we	queried.	By	selecting	a	dissimilarity	
cutoff of >0.8, which approximately correlates to a Tanimoto similar-
ity	of	<0.2,	we	quickly	reduced	the	number	of	candidate	molecules	
from 66 to 6. One of the reasons that we also performed 3D fin-
gerprint binning is because we wanted to determine to what extent 
dimensionality affected the prediction of similarity. We posited that 
if dimensionality was not a critical factor, we would find substan-
tial overlap in similarity predictions. Our data demonstrate that al-
though both methods did have some overlap in molecules predicted 
to	be	structurally	unique	(Figure	4A),	the	level	of	similarity	was	con-
sistently predicted to be higher using the 2D method. For example, 
2D comparison of 1D05 to PJ34 gives a dissimilarity score of 0.82 
(similarity of approximately 0.18) (Figure 3A), whereas 3D compar-
ison gives a similarity score of 0.055 (Figure S3, PJ34, cell j7). By 
including top hits from both approaches, risk is averted against any 
single method that may have bias.

The	 combined	 approach	 of	 SWISS-ADME,	 2D	 single	 linkage	
distance matrix hierarchical clustering, and 3D fingerprint binning 
produced 21 hits, 3 of which were overlapping, narrowing the list 
from 66 to 18 candidates (Figure 4A,B, Figure S4). Although these 
candidates	represented	structurally	unique	and	diverse	compounds	
for testing, we wanted to ensure that we would not be wasting valu-
able	resources	synthesizing	and	testing	compounds	already	in	use,	
in development, or sufficiently similar to drugs in development in 
which potential intellectual property issues could arise. DrugBank 
was	a	useful	tool	for	addressing	the	question	of	drugs	currently	 in	
use,	 as	 it	 queries	 clinically	 approved	 drugs	 from	multiple	 interna-
tional agencies comprising the regulatory landscape of the United 
States, Canada, and the European Union. As expected, none of our 
top hits were in clinical use, as it would be unusual for approved 
compounds to be included as experimental compounds in commer-
cial	small	molecule	libraries.	ChemMine	and	ChEMBL	addressed	the	
less	certain	question	of	whether	any	investigators	were	already	pur-
suing	our	compounds	of	 interest	 in	formalized	trials.	The	similarity	
search function identified 57 molecules that were similar to our top 
18	candidates	(Table	S1).	In	all	cases,	our	molecules	were	unique,	not	
currently being pursued by other entities, nor similar to molecules 
in development. As a final measure of feasibility, the top 18 mol-
ecules	were	queried	 in	 the	ChEMBL	target	database	 to	determine	
whether any were known to have off-target effects. Ideally, new 
or next generation drugs would have fewer side effects than those 
identified before the age of informatics. Our results demonstrated 
that only one of our top 18 hits (1D05) had potentially concerning 

cross-reactivity with other molecular targets (Figure 4C), reducing 
our final list of top hits to 17. We chose to consider target activity 
as	binary	because	the	quality	of	information	on	activity	concentra-
tions was inconsistent. A limitation of this approach is that dosage 
effects are not taken into account. Thus, this form of decision mak-
ing would always overestimate the number of potential off-targets. 
For the purpose of drug discovery, erring on the side of caution may 
be the most appropriate course of action. The top 17 molecules were 
reduced to those that exhibited dose response relationship in the 
migration assay, which reduced the final list of molecules to 9.

In	conclusion,	we	have	utilized	an	integrated	strategy	which	com-
bines cell-free, cellular, and in silico assays for reducing a library of 
664	small	molecules	to	9	unique	PARP-1	inhibitors	for	further	devel-
opment in the treatment of prostate cancer. Future investigations 
will focus on cytotoxicity testing, effects on mitosis, structure–ac-
tivity relationship, wet physicochemical studies, and in vivo testing.
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