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1  | INTRODUC TION

There are 15 FDA-approved therapies for the treatment of prostate 
cancer (PC). Although androgen blocking therapies have greatly 
improved the 5-year survival rate of prostate cancer patients, the 
majority of patients eventually develop a castration resistant form 
of metastatic prostate cancer (mCRPC). Ten of the FDA-approved 
PC drugs are known to provide some therapeutic benefit against 
mCRPC, although the overall prognosis for mCRPC remains unfa-
vorable. Poly (ADP)-ribose polymerase-1 (PARP-1) is critical for 
maintaining chromatin in an accessible state for transcription of 
pro-tumorogenic genes downstream of the PC androgen receptor 

(AR) signaling cascade.1,2 Presently, the majority of PARP-1 inhib-
iting cancer therapies are competitive antagonists of NAD+, which 
is the substrate for PARP-1. Rucaparib, which has a 3D chemical 
fingerprint similar to the clinical PARP-1 inhibitors Olaparib and 
Velaparib,3 is the only PARP-1 inhibitor that is clinically approved for 
treatment of mCRPC. The limited number of treatment options for 
mCRPC and the limited diversity of PARP-1 inhibitors for the treat-
ment of mCRPC present obstacles for treating patients who are not 
responsive to existing therapies.

To address the need for identifying new PARP-1 inhibitors, we 
previously performed a high-throughput cell-free reporter assay of 
50  000  +  small molecules. To reduce the likelihood of identifying 
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Abstract
The prognosis for metastatic castration-resistant prostate cancer is unfavorable, and 
although Poly(ADP)-ribose polymerase-1 (PARP-1) inhibitors have shown efficacy in 
the treatment of androgen-receptor dependent malignancies, the limited number of 
options present obstacles for patients that are not responsive to these treatments. 
Here we utilize an integrated screening strategy that combines cellular screening as-
says, informatics, in silico computational approaches, and dose-response testing for 
reducing a compound library of confirmed PARP-1 inhibitors. Six hundred and sixty-
four validated PARP-1 inhibitors were reduced to 9 small molecules with favorable 
physicochemical/ADME properties, unique chemical fingerprints, high dissimilarity 
to existing drugs, few off-target effects, and dose-responsivity in the 1  µmol/L - 
20 µmol/L range. The top 9 unique molecules identified by our integrated screening 
strategy will be selected for further preclinical development including cytotoxicity 
testing, effects on mitosis, structure-activity relationship, physicochemical/ADME 
studies, and in vivo testing.
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redundant NAD  +  mimetics or non-specific inhibitors of PARP-1, 
the cell-free assay was designed to identify small molecules that 
inhibited the histone H4 binding domain of PARP-1.3 Six hundred 
and sixty-five compounds were identified as structurally distinct in-
hibitors of PARP-1, all of which had IC50 values below or similar to 
the currently known PARP-1 inhibitors. Using 3D chemical finger-
print clustering of the positive hits, a single compound with the least 
structural similarity to any known PARP-1 inhibitor was selected. 
This compound, 5F02, has been tested in vitro and in vivo, and is 
currently undergoing further preclinical development.3,4 Here, we 
utilize a screening strategy that integrates cellular screening, infor-
matics, computational approaches, and dose-response testing to re-
duce the remaining 664 small molecules to the top 9 candidates for 
further development. Selections are made on the basis of favorable 
predicted physicochemical/ADME properties, unique chemical fin-
gerprints, dissimilarity to existing drugs in development, and fewest 
off-target effects.

2  | E XPERIMENTAL METHODS

2.1 | Cell culture and migration assay

Ninety-six-well plates with silicone stoppers were purchased from 
Playtpus Technologies (CMA5.101). PC3 cell lines were purchased 
from ATCC and cultured in 96-well plates in 10% RPMI (Gibco 
A1049101) supplemented with non-essential amino acids (Gibco 11-
140-050) and penicillin/streptomycin (Gibco 10378-016). Cell lines 
were confirmed as mycoplasma negative using Lonza Mycoalert 
mycoplasma detection kit (LT07-118). Each well was seeded with 
1 × 105 cells (passage number < 8) and cultured for 48 hours. Silicone 
stoppers were removed, and entire wells were imaged immediately 
on Biotek Cytation3 imaging system (t = 0). Medium was removed 
from each well by vacuum and all wells were replenished with se-
rum-free RPMI supplemented with 6.5 µmol/L test inhibitors, 0.13% 
DMSO, 10  µmol/L Olaparib (Adooq A10111-10), or 50  µmol/L 
Rucaparib (Adooq A10045-5). Twenty-four hours after stopper re-
moval samples were imaged again. Each plate was run in triplicate 
using a scheme of one unique sample per well, and 3 plates per run. 
Data were analyzed using ImageJ MRI Wound Healing Tool plugin. 
All area measurement data were normalized to t = 0 control values. 
The cutoff criteria for positive hits was µs−σs ≥ µv + 3σv, where µ is 
mean, s is sample, σ is standard deviation, and v is vehicle. Statistics 
were performed with GraphPad Prism software on samples meeting 
the cutoff criteria using one-way ANOVA, with FDR = 0.05. Multiple 
comparisons were corrected for using the two-stage linear step-up 
procedure of Benjamini, Krieger and Yekutieli.

2.2 | Chemical purity

Experimental inhibitors tested were obtained from the ChemDiv 
Representative Diversity Set, comprising 50 000 molecules. Samples 

were validated by ChemDiv 1H-NMR and HPLC/LCMS. All com-
pounds met a minimum requirement of ≥95% purity, and elemental 
analysis revealed carbon, hydrogen, and nitrogen values were within 
0.4% of expected values.

2.3 | Cell viability assay

Cells were seeded and cultured in 96-well plates for 48  hours, as 
described above. Wells were treated for 24 hours in quadruplicate 
with no stimulus (NT), 0.13% DMSO (veh), 20uM Olaparib (Adooq 
A10111-10), 50uM Rucaparib (Adooq A10045-5), or 70% ethanol. 
Media were removed from each sample and replaced with PBS con-
taining 0.5 ug propidium iodide (Thermo P1304MP) and 1uL Oligreen 
(Thermo O7582). Samples were imaged on Biotek Cytation3 using 
GFP and RFP filter sets. Oligreen fluorescence was used to quan-
tify all cells, and propidium iodide fluorescence was used to quantify 
dead cells. Cells were counted using Trainable Weka Segmentation 
plugin for ImageJ/FIJI (Arganda-Careeras 2017). %Live cells were 
computed as 100*(All cells – Dead cells).

2.4 | Chemical taxonomy

Small molecule taxonomy was determined using Classyfire applica-
tion.5 Molecules were queried using SMILES IDs, and direct parent 
data were reported for each sample.

2.5 | SWISS-ADME screening

Samples were input into SWISS-ADME system using SMILES IDs and 
all data output were saved in .csv format. Samples meeting the fol-
lowing criteria were considered positive hits for favorable physico-
chemical properties: 20 < TPSA <130; −0.7 < (xLogP3/wLogP)/2 < 5; 
0 < [-Log(SILICOS-IT)]-1.2  <  6; 150  < MW <500; 0.25  <  Fraction 
Csp3  <  1; 0  <  rotatable bonds  <  9. Samples having the follow-
ing PAINS alerts were removed: ene_six_het_A, hzone_phenol_B, 
anil_di_alk_A, quinone_A, azo_A, imine_one_A, mannich_A, anil_di_
alk_B, anil_di_alk_C, ene_rhod_A, hzone_phenol_A, ene_five_het_A, 
anil_di_alk_E. All samples flagged as Brenk alerts were removed, ex-
cept for those flagged as quaternary nitrogens. Samples with low 
predicted intestinal absorption, synthetic accessibility > 3.5, or > 2 
CyP enzymes inhibited were also excluded.

2.6 | 2D and 3D chemical fingerprinting

For 2D fingerprinting, samples were input into the ChemMine da-
tabase using SMILES format. Single linkage distance matrix hierar-
chical clustering was performed, selecting Z-scores for the display 
value. Data were exported into .csv format. 3D chemical finger-
printing was performed using Canvas 1.6 software. Molecules were 
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clustered into a 10 × 10 matrix based on self-organizing maps cal-
culated as the sum of fingerprint distances for all 665 positive hits 
from the cell-free assay, as described previously.3 All raw data were 
imported into GraphPad Prism software for heatmap visualization.

2.7 | Drug similarity

To determine if any of our top hits were in clinical use, compounds 
were input into the DrugBank 5.0 database by SMILES ID. To de-
termine the phase of research for each compound and all similar 
compounds, the ChemMine EI search algorithm was used to inter-
rogate the ChEMBL database for molecules with a similarity cutoff 
of ≥ 0.85. The table view was used to determine the max phase of 
each molecule.

2.8 | Multiple Targets

Molecules were entered into the ChEMBL database by SMILES ID 
and the heatmap view was used to visualize targets of molecules 
for which data were available. Data were exported to .csv format, 
pChEMBL activity values were made binary, and data were imported 
into Graphpad Prism for heatmap visualization.

3  | RESULTS

3.1 | Inhibitors of cellular migration

Six hundred and sixty-four compounds having cell-free inhibitory 
activity on PARP-1 were tested in vitro using a high-throughput 
cellular migration assay developed by Platypus Technologies.6 This 
assay served to evaluate whether any compound could reduce meta-
static potential of prostate cancer cells (Figure 1A). Each inhibitor 
was tested on PC3 cell lines at 6.5 µmol/L concentration and open 
area was evaluated immediately after the removal of silicone stop-
pers, and again 24 hours later. Area measurements were calculated 
using the MRI Wound Healing Tool plugin for ImageJ (Figure 1B). The 
rationale for using PC3 cell lines was that they are of neuroendo-
crine origin and are resistant to androgen blocking therapies, which 
is the typical context in which PARP-1 inhibitors are used.7-9 Using 
0.13% DMSO as vehicle, 10 uM Olaparib as a weak inhibitor, and 
50 µmol/L Rucaparib as a strong inhibitor, the z-factor of the assay 
was computed as > 0.6, an ideal value for high-throughput screen-
ing.10 Neither Olaparib nor Rucaparib affected cell viability at the 
time points tested (Figure 1C). For each plate screened, molecules 
were considered positive hits if the mean of the test sample minus 
its standard deviation was greater than or equal to the mean of the 
vehicle minus three standard deviations of the vehicle. Statistical 
testing was performed on hits meeting the above criteria, and hits 
with q value < 0.05 were selected for further screening (Figure 1D). 
This screening method reduced our library of 664 hits to 66 small 

molecules exhibiting cell migration inhibiting activity. The distribu-
tion surface of positive hits was plotted,11 and demonstrated that 
there was no systematic error in hit distribution (Figure S1).

3.2 | Favorable physicochemical and 
ADME properties

The chemical diversity of the top 66 hits was determined by sub-
mitting all compounds into a chemical taxonomic application, which 
clusters chemicals on the basis of a classification system called 
ChemOnt.5 The 66 compounds clustered into 34 direct parent 
groups, of which hydroquinolones benzothiazoles, quinolone deriva-
tives, and phenyl-1,2,4-triazoles were overrepresented (Figure 2A). 
To determine whether any of the top 66 small molecules had favora-
ble physicochemical, ADME, or medicinal properties for in vivo use 
and preclinical development, we utilized SWISS-ADME, a chemin-
formatics database for predicting small molecule properties.12 With 

F I G U R E  1   PARP-1 inhibitors with phenotypic effects in cellular 
assays. (A) Principle of migration assay in which cells are imaged 
immediately after stopper removal (step 2) and again after 24 h 
of culture in serum-free medium (step 4). (B) Example of images 
of areas of interest immediately after stopper removal (t = 0), 
and after 24 h of culture for samples treated with 0.13% DMSO 
(Veh), 6.5 µmol/L experimental inhibitors (in this case 5_B06), or 
50 µmol/L Rucaparib; yellow outline denotes outer boundary of 
computed open area using ImageJ MRI Wound Healing Tool plugin. 
(C) Propidium iodide and Oligreen viability assay performed on 
cells receiving no treatment (NT), 0.13% DMSO (Veh), 20 µmol/L 
Olaparib, 50 µmol/L Rucaparib, or 70% ethanol. (D) Example of 
positive hits identified from experimental plate 1 of 8 using µs−σs 
≥ µv + 3σv criteria; blue shaded area highlights region considered 
positive hits; Statistics performed using one-way ANOVA, 
FDR = 0.05; multiple comparisons were corrected for using the 
two-stage linear step-up procedure of Benjamini, Krieger and 
Yekutieli
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respect to lipophilicity and water solubility, the database provides 
values using several different algorithms. To determine which algo-
rithm was most appropriate for our use, we queried compounds in 
which we had previously performed wet physicochemical studies4 
and compared the predicted results to the actual values. Lipophilicity 
(cLogP) was most closely approximated by averaging the output of 
two computational algorithms, xLogP3 and wLogP (Figure 2B).13,14 
For water solubility, the default parameter used by SWISS-ADME 
is the ESOL method.15 The SILICOS-IT method provided the closest 
approximation to our empirical values.12 A minor adjustment to the 
SILICOS-IT output further improved the prediction accuracy (See 
methods for details) (Figure 2C). These adjustments were applied 
and integrated into SWISS-ADME cutoffs for size, polarity, satura-
tion, and flexibility. Pan assay interference compounds (PAINS)16 
were excluded based on those known to be most promiscuous,17 
and putatively toxic compounds were excluded based on existing 
SWISS-ADME criteria.18 Overall, this approach reduced the list of 
66 hits to 19 non-PAINS and non-toxic compounds with favorable 
physicochemical properties, belonging to 12 direct parent groups 
(Figure 2D). The top 19 compounds were queried for predicted 
gastrointestinal absorption, blood–brain barrier permeability, cy-
tochrome P oxidase inhibition, synthetic accessibility, and whether 
they were substrates for P-glycoprotein efflux pumps. By requiring 

that all compounds have gastrointestinal absorption, and no more 
than 2 of 5 cytochrome P oxidases inhibited, the list of 19 posi-
tive hits was reduced to 3 benzothiazoles and 1 phenyloxadiazole 
(Figure 2E).

3.3 | Unique chemical fingerprints

Although taxonomic classification demonstrated high diversity of the 
top 66 hits, it did not provide any comparisons with existing PARP-1 
inhibitors. To address this shortcoming, we performed single linkage 
distance matrix hierarchical clustering using ChemMine19 and que-
ried our top hits against 27 known PARP-1 inhibitors (Figure 3A). 
Values were filtered to include only those compounds that had >0.8 
dissimilarity from any known PARP-1 inhibitors, which reduced the 
list to 6 compounds (Figure 3B, Figure S2A). We also performed a 
3D fingerprint comparison using Canvas 1.6 software which binned 
similar molecules based on self-organizing maps calculated as the 
sum of fingerprint distances for the 66 positive hits from the migra-
tion assay (Figure S3). By superimposing the 3D fingerprints of the 
27 known PARP-1 inhibitors, a region of least similarity was identi-
fied, wherein each molecule had less than 0.05 Tanimoto similarity 
to any known PARP-1 inhibitor (Figure 3C). Eleven compounds, two 

F I G U R E  2    Top hits using SWISS-
ADME application for prediction of 
physicochemical, PK, ADME, and 
medicinal properties. (A) Chemical 
diversity of top 66 compounds identified 
by cellular migration assay, prior to in 
silico screening by SWISS-ADME. (B) 
Comparison of cLogP values obtained 
empirically for compounds 5F02, FC-7220, 
MC270016, MC270017, MC270019, 
MC270021 (4), and SWISS-ADME 
predicted values using xLogP3, wLogP, or 
the average of both predicted values. (C) 
Comparison of solubility values (-Log(S)) 
obtained empirically for the compounds 
described in (B), compared to solubility 
values predicted by the SWISS-ADME 
SILICOS-IT method, and adjustment 
of those values (SILICOS-IT_Adj). (D) 
Chemical diversity of top 19 non-PAINS, 
non-toxic compounds, meeting adjusted 
SWISS-ADME cutoff for favorable 
physicochemical properties. (E) Chemical 
structures of top 4 molecules predicted to 
have optimal physicochemical properties, 
high gastrointestinal absorption, and 
inhibitory potential against 2 or fewer CyP 
enzymes; CyP is cytochrome P oxidase; 
Pgp is P-glycoprotein efflux pump; BBB is 
blood–brain barrier
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of which overlapped with hits from the 2D clustering method were 
identified in the region of least similarity (Figure 3D, Figure  S2B). 
3D fingerprint binning of the top hits from the 2D clustering, and 
SWISS-ADME screening methods demonstrated that all small mol-
ecules selected by these methods had less than 0.12 Tanimoto simi-
larity to any known PARP-1 inhibitor (Figure 3E-F).

3.4 | Development landscape

In total, the combined approach of using 3 in silico methods for 
identifying lead compounds identified 18 molecules belonging 
to 13 parent groups as candidates. Three of the molecules were 
hits in two screening methods, and all three screening methods 
identified benzothiazoles as positive hits (Figure 4A,B, Figure S4). 
Although the methods employed identified potentially useful mol-
ecules for preclinical development, none of those approaches ad-
dressed whether any of the molecules were already in clinical use, 
in early development, or whether they resembled known clinical 
compounds. To address the first question we queried DrugBank 
5.0, an online database containing molecular information about 

drugs, mechanisms, interactions, and targets in the US, Canada, 
and EU.20 DrugBank did not identify any of our 18 small mole-
cules as currently in clinical use. The structural similarity search 
function in the ChemMine application was used to determine the 
status of our compounds with respect to existing development, 
and whether similar compounds were currently in development. 
Using a Tanimoto similarity cutoff of ≥0.85, 57 small molecules 
similar to our top 18 hits were identified. All of the 57 similar mol-
ecules were designated as phase 0, meaning that none of them 
were in preclinical or clinical development (Table  S1). Lastly, we 
queried the ChEMBL database to determine if any of the top 18 
hits had known molecular targets other than PARP-1. Data were 
available for 8 of the 18 hits. One of the hits (1D05), which was 
identified as a candidate using the SWISS-ADME and 2D cluster-
ing methods (Figure S4), had reported activity against 29 different 
targets (Figure 4C). Four other molecules had reported reactivity 
with thioredoxin glutathione reductase (2B02), Plasmodium falci-
parum (1F07, 6A02, 2B06), or Plasmodium yoelii (6A02) (Figure 4C). 
Given the high number of known non-PARP1 targets, 1D05 was 
removed from our list. Lastly, we used the cellular migration assay 
to perform 5-point titrations on the top 17 molecules. This assay 

F I G U R E  3   2D/3D chemical fingerprinting and similarity comparisons to known PARP-1 inhibitors. (A) 2D Single linkage distance matrix 
hierarchical clustering of top 66 hits compared to 27 known PARP-1 inhibitors (1 = highly dissimilar, 0 = identical). (B) Selected compounds 
having dissimilarity score of ≥0.80 from any of the 27 known PARP-1 inhibitors. (C) Superimposed 3D similarity map comparing all 664 hits 
from cell free assay to all known PARP-1 inhibitors; region outlined in white represents area with ≤0.05 Tanimoto similarity to any known 
PARP-1 inhibitor. (D) Similarity binning of 66 PARP-1 inhibitors that were positive hits in cellular migration assay; region outlined in white 
highlights subset of 11 molecules that have ≤0.05 Tanimoto similarity to any known PARP-1 inhibitor; (E) 3D binning of molecules identified 
as positive hits by SWISS-ADME (2E) or 2D hierarchical clustering (B). (F) Molecules described in (E) (white rectangles), compared to 
superimposed 3D similarity map of all known PARP-1 inhibitors
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reduced our top 17 molecules to 9 molecules exhibiting a dose-
response relationship (Figure S5).

4  | DISCUSSION

The migration assay is an effective screening tool, as it reduced the 
number of positive hits from 664 to 66. The computed z-factor was 
>0.6, which indicates that this approach had high sensitivity and 
specificity for high-throughput screening assays.10 A possible limita-
tion of our screening approach was that we utilized the neuroen-
docrine carcinoma-derived PC3 cell line only and did not include 
adenocarcinoma prostate cancer cell lines such as LNCaP or DU-
145. Our rationale for using PC3 was that neuroendocrine carcino-
mas have worse prognoses than adenocarcinomas, and that they are 

insensitive to androgen ablation, making them appropriate for the 
clinical context of PARP-1 inhibitor use.8,9 Given the high resource 
cost of performing multiple high-throughput screens on several cell 
lines, the use of PC3 was the most logical choice. Investigators want-
ing to use our screening strategy would need to carefully consider 
which cell lines to use for their models of interest.

The SWISS-ADME database reduced our top 66 hits to 4 mole-
cules that were expected to have favorable physicochemical, ADME, 
PK, and medicinal properties. Although benzothiazoles were over-
represented in the original list of 66 compounds, it was unexpected 
that they would represent 3 out of our 4 final hits after SWISS-ADME 
prediction algorithms (Figure 2E). All three of the benzothiazoles 
identified by SWISS-ADME fell within the same 3D fingerprint bin 
(Figure 3D, cell j7). An important note on our SWISS-ADME selec-
tion criteria is that we excluded Brenk toxicity alerts concerning 

F I G U R E  4   Top hits and off-target effects. (A) Venn diagram showing number of top hits, and overlapping hits from each selection 
method; Lead-like molecules (red) were identified by SWISS-ADME (Figure 2A-E); 2D unique molecules (purple) were identified by 2D Single 
linkage distance matrix hierarchical clustering (Figure 3A,B); 3D unique molecules (green) were identified by 3D self-organizing maps (Figure 
3C-E); (B) Non-exclusive representation of direct parent groups of small molecules identified by each selection method. (C) Known non-
PARP-1 targets for 8 of the 18 compounds shown in (A)
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the presence of any quaternary nitrogen. The reason for doing so is 
that our previously identified lead compound, 5F02, is also flagged 
by a quaternary nitrogen toxicity alert, yet is shown to be safe in 
vivo.3 We also needed to adjust the predicted lipophilicity and sol-
ubility values to more closely approximate values that we obtained 
empirically (Figure 2B,C).4 These observations underscore that data 
produced by in silico screening algorithms must be interpreted with 
caution, and in the context of the specific application.

2D single linkage distance matrix hierarchical clustering was use-
ful for determining similarities between our top 66 hits and the 27 
known PARP-1 inhibitors that we queried. By selecting a dissimilarity 
cutoff of >0.8, which approximately correlates to a Tanimoto similar-
ity of <0.2, we quickly reduced the number of candidate molecules 
from 66 to 6. One of the reasons that we also performed 3D fin-
gerprint binning is because we wanted to determine to what extent 
dimensionality affected the prediction of similarity. We posited that 
if dimensionality was not a critical factor, we would find substan-
tial overlap in similarity predictions. Our data demonstrate that al-
though both methods did have some overlap in molecules predicted 
to be structurally unique (Figure 4A), the level of similarity was con-
sistently predicted to be higher using the 2D method. For example, 
2D comparison of 1D05 to PJ34 gives a dissimilarity score of 0.82 
(similarity of approximately 0.18) (Figure 3A), whereas 3D compar-
ison gives a similarity score of 0.055 (Figure  S3, PJ34, cell j7). By 
including top hits from both approaches, risk is averted against any 
single method that may have bias.

The combined approach of SWISS-ADME, 2D single linkage 
distance matrix hierarchical clustering, and 3D fingerprint binning 
produced 21 hits, 3 of which were overlapping, narrowing the list 
from 66 to 18 candidates (Figure 4A,B, Figure S4). Although these 
candidates represented structurally unique and diverse compounds 
for testing, we wanted to ensure that we would not be wasting valu-
able resources synthesizing and testing compounds already in use, 
in development, or sufficiently similar to drugs in development in 
which potential intellectual property issues could arise. DrugBank 
was a useful tool for addressing the question of drugs currently in 
use, as it queries clinically approved drugs from multiple interna-
tional agencies comprising the regulatory landscape of the United 
States, Canada, and the European Union. As expected, none of our 
top hits were in clinical use, as it would be unusual for approved 
compounds to be included as experimental compounds in commer-
cial small molecule libraries. ChemMine and ChEMBL addressed the 
less certain question of whether any investigators were already pur-
suing our compounds of interest in formalized trials. The similarity 
search function identified 57 molecules that were similar to our top 
18 candidates (Table S1). In all cases, our molecules were unique, not 
currently being pursued by other entities, nor similar to molecules 
in development. As a final measure of feasibility, the top 18 mol-
ecules were queried in the ChEMBL target database to determine 
whether any were known to have off-target effects. Ideally, new 
or next generation drugs would have fewer side effects than those 
identified before the age of informatics. Our results demonstrated 
that only one of our top 18 hits (1D05) had potentially concerning 

cross-reactivity with other molecular targets (Figure 4C), reducing 
our final list of top hits to 17. We chose to consider target activity 
as binary because the quality of information on activity concentra-
tions was inconsistent. A limitation of this approach is that dosage 
effects are not taken into account. Thus, this form of decision mak-
ing would always overestimate the number of potential off-targets. 
For the purpose of drug discovery, erring on the side of caution may 
be the most appropriate course of action. The top 17 molecules were 
reduced to those that exhibited dose response relationship in the 
migration assay, which reduced the final list of molecules to 9.

In conclusion, we have utilized an integrated strategy which com-
bines cell-free, cellular, and in silico assays for reducing a library of 
664 small molecules to 9 unique PARP-1 inhibitors for further devel-
opment in the treatment of prostate cancer. Future investigations 
will focus on cytotoxicity testing, effects on mitosis, structure–ac-
tivity relationship, wet physicochemical studies, and in vivo testing.
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