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Abstract: Neurodegenerative diseases (NDs) are characterized by progressive neuronal dysfunction
and death of brain cells population. As the early manifestations of NDs are similar, their symptoms
are difficult to distinguish, making the timely detection and discrimination of each neurodegenerative
disorder a priority. Several investigations have revealed the importance of microRNAs and long
non-coding RNAs in neurodevelopment, brain function, maturation, and neuronal activity, as well
as its dysregulation involved in many types of neurological diseases. Therefore, the expression
pattern of these molecules in the different NDs have gained significant attention to improve the
diagnostic and treatment at earlier stages. In this sense, we gather the different microRNAs and
long non-coding RNAs that have been reported as dysregulated in each disorder. Since there are a
vast number of non-coding RNAs altered in NDs, some sort of synthesis, filtering and organization
method should be applied to extract the most relevant information. Hence, machine learning is
considered as an important tool for this purpose since it can classify expression profiles of non-coding
RNAs between healthy and sick people. Therefore, we deepen in this branch of computer science, its
different methods, and its meaningful application in the diagnosis of NDs from the dysregulated
non-coding RNAs. In addition, we demonstrate the relevance of machine learning in NDs from the
description of different investigations that showed an accuracy between 85% to 95% in the detection
of the disease with this tool. All of these denote that artificial intelligence could be an excellent
alternative to help the clinical diagnosis and facilitate the identification diseases in early stages based
on non-coding RNAs.

Keywords: miRNA; long non-coding RNA; biomarker; neurodegenerative disease; artificial intelli-
gence; machine learning

1. Introduction

The neurodegenerative diseases (NDs) are characterized by progressive and irre-
versible loss of neurons and other brain cells, resulting in a set of functional alterations in
the central nervous system (CNS) [1]. The most common risk factors for the development
of NDs are age, inflammation, obesity and genetic alterations [2,3]. The specificity of
NDs’ diagnosis is very low due to some similarities in their early symptoms, along with
greater clinical variability, making it inefficient and imprecise the implementation of future
treatment schemes [4]. It is a well-established fact that dysregulation of non-coding RNAs
(nc-RNAs) present only in patients with one type of ND are considered as biomarkers,
which could be an alternative to accurately diagnose NDs. Since microRNAs (miRNAs)
and long non-coding RNAs (lnc-RNAs) do not code proteins, their importance has been
implicated in several biological processes that play a pivotal role in the regulation of cell
differentiation, development, proliferation and apoptosis [5,6].
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Studies using blood samples and postmortem brain tissue from patients with Parkin-
son’s and Alzheimer’s disease demonstrated a differential expression of lnc-RNAs as
Sox2OT, BC200, BACE1-AS, and NAT-Rad18 or miRNAs such as miR-1, miR-22p, miR-26b-
3p and miR-28-3p [7–11]. It has been sought these alterations play a significant role in the
control of: ND-related genes expression, changes in the networks or signaling pathways
involved in cell physiological functions and the consequent phenotypic manifestation.
Since, biomarkers to detect this disorder in preclinical states have not yet been discovered,
miRNAs and lnc-RNAs have been considered as possible cellular and druggable targets
to predict and treat the neurodegenerative event prior to the manifestation of clinical
symptoms and functional impairment [12,13]. Additionally, another advantage of these
molecules is their stability and presence in biofluids such as blood, saliva, urine and cere-
brospinal fluid [14–16], making possible their ease obtaining and identification for an early
and more effective diagnosis [17–19]. Considering the fact that alterations in miRNAs
and lnc-RNAs have been associated to specific NDs, their identification and further study
is not an easy task due to technical and experimental limitations. In response to these
challenges, scientists have implemented advanced machine learning models for preparing
complex assays, performing high-content multi-parametric analysis, and interpreting large,
complicated datasets applied to mental health. As such, this recent approach might enable
more precise, earlier diagnosis of each NDs on the basis of medical history, and molecular
profiles of the patient’s endotype.

Machine learning (ML) is a tool of computer science and artificial intelligence (AI), de-
signed to simulate human intelligence learning from the data and ongoing experience [20].
This technology requires the integration of multiple data sets of biological information,
enabling the creation of a statistical model that helps predict some unknown parameter [21].
In the last years, ML has gained a key role in medicine, where it has been important to de-
tect several pathologies. For instance, in cancer or in drug therapy, ML can help to classify
tumors or predict personalized drug responses based on the gene expression profile [22–25].
In case of NDs, the use of ML focuses on finding specific changes in gene expression in
the specific disease that allows early diagnosis of the disorder [20]. Hence, a large data set
of dysregulated miRNAs and lnc-RNAs in patients with some type of ND can be used as
potential biomarkers and employed in machine learning algorithms. In that way, a model
can be created to detect each illness, thereby, it is possible to predict the pathology more
accurately and differentiate between each ND based on patient’s information.

In this review, we aimed to highlight several unregulated nc-RNAs that have been
reported for different types of NDs in various investigations. As there is a very large set of
nc-RNAs, this data can provide great information to early diagnosis with ML, making use
of algorithms and consequently model development. In this sense, a ND can be detected
from the expression profile of nc-RNAs in each patient. To corroborate and understand
about this approach, we aimed to describe ML, their types, some methods and their
advantages or disadvantages. Moreover, we emphasize this tool with the description
of some investigations about the diagnosis of NDs using a ML approach. These studies
show a high accuracy in the identification of the disease, which demonstrates that machine
learning is a good tool for clinical diagnosis. Finally, we discus sight the importance of AI
in health and how it can contribute to improve the diagnosis and treatment of NDs in the
near future.

2. MicroRNAs and Long Non-Coding RNAs
2.1. MicroRNAs

microRNAs are small molecules of RNA not coding for proteins, discovered in the
nematode Caenorhabditis elegans [26]. In these organisms, the downregulation of LIN-14
protein was involved in the binding of miRNA to the 3′ untranslated region (3′ UTR) of
the mRNA target [27]. This binding triggers a negative regulation in the expression of the
target gene [28]. Let-7 was the second miRNA found in C. elegans, which was involved in
processes of larval development [29,30]. In humans, let-7 family expression was detected
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in tissues like brain, heart, lung, among others and they have been involved in stem cell
biology, differentiation and metabolism [31,32]. Therefore, investigations have revealed
that miRNAs can regulate the gene expression at post-transcriptional for maintaining
cell function [33]. Therefore, investigations have revealed that miRNAs can regulate the
gene expression at post-transcriptional for maintaining cell function [33]. Nonetheless, the
dysregulation of miRNAs could generate several diseases like cancer, cardiovascular issues
and NDs [34,35]. Alterations in miRNAs expression are often given by genomic events in
miRNAs sequences, such as point mutations, amplifications, deletion, or transcriptional
changes [36]. In addition, enzymes that regulate miRNA biogenesis could also have
mutations or downregulations [37,38] (Figure 1).
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Figure 1. miRNA biogenesis and mechanism of action. The synthesis of these molecules is initiated in the nucleus through
the transcription of a DNA region by the enzyme RNA polymerase II/III. The enzyme allows the formation of the primary
microRNA (pri-miRNA). The pri-miRNA is a large double strand of RNA with a terminal loop and a single-stranded RNA
extension at the other extreme [33,39]. The enzyme Drosha generates an incision in the single-stranded RNA extension
of pri-miRNA. This process results in a precursor miRNA (pre-miRNA) of double-strand that has a size of 70 base pairs
approximately [40]. Afterward, the pre-miRNA is exported to the cytoplasm by a protein called exportin and the miRNA
continues with its maturation procedure. On the cytoplasm, the Dicer enzyme eliminates terminal loop present in the
double-stranded pre-miRNA. This produces a microRNA duplex with a size of 18–25 base pairs [41]. Subsequently, the
microRNA duplex interacts with the cytoplasmic protein AGO2 which degrades one of the two strands (passing strand)
and another strand will be functional strand (mature strand). The mature strand remains bound to the enzyme AGO2, and
they are incorporated into the RISC complex. In this complex is generated the union between target mRNA and the mature
microRNA [40,42]. The grade of complementarity between miRNA-mRNA determines whether the mRNA is degraded, or
the repression of translation is induced [43].
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2.2. Long Non-Coding RNAs

Long non-coding RNAs are molecules with size of 200 nucleotides approximately
that are not translated to proteins [44]. Lnc-RNAs are originated from intronic, intergenic
regions, enhancers, promoters and the opposite strand of protein-coding genes [44]. The
H19 and XIST were the first mammalian lnc-RNAs to be identified, yet these lnc-RNAs
were not of major interest at the time [45,46]. In 2001, although the complete sequencing of
the human genome was published, the investigators discovered that only 1.1% of genome
encode proteins and the rest of genome were non-coding RNAs. This highlighted that the
functions of these molecules are not entirely clear [47]. Subsequently, the role of lnc-RNAs
has been characterized in humans. Studies have shown that these molecules are another
way to promote gene regulation and, in that manner, they control several processes such
as cell development [48]. Like miRNAs, the dysregulation of lnc-RNAs leads to alteration
in genetic expression and consequently triggering some pathologies like cancer or CNS’s
disorders [49,50]. Although the mechanism of action of lnc-RNAs are not fully elucidated,
different hypotheses have been raised [51].

Lnc-RNAs Functions

Lnc-RNAs present sequences similar to DNA binding sites where transcription factors
(TF) are linked. In cancer, Hung et al. demonstrated that the lnc-RNA named PANDA
interacts with the TF NF-YA, generating a negative feedback regulation on the expression
of pro-apoptotic genes, including APAF1, BIK, FAS and LRDD [52], this happens because
NF-YA cannot interact with the DNA binding sites of its target gene and subsequently an
inhibition on gene expression is achieved [53] (Figure 2A). Additionally, lnc-RNAs can also
be decoys for miRNAs. Studies have shown that lnc-RNAs have a high homology in the
sequence with 3′UTR of mRNAs. Hence, the miRNAs can interact with lnc-RNAs instead
of mRNA. As a consequence, the miRNA does not exert its function and the expression
of mRNA cannot be repressed [54]. Bioinformatics analysis demonstrated that lnc-RNA
SNHG1 and mRNA NLRP3 shared the same region to interact with miR-7 in Parkinson’s
diseases, suggesting that SNHG1 competes with NLRP3 for binding with miR-7. Therefore,
interaction between miR-7 and SNHG1 leads to elevate NLRP3 expression, resulting in
NLRP3 inflammasome activation in Parkinson’s patients [55].

Lnc-RNAs can also act as guidance for proteins involved in epigenetic regulation [56–59],
by recruiting proteins such as methyltransferase histones or polycomb repressor complexes,
all involved in histone modification (Figure 2B). In a breast tumor model, the lnc-RNA
HOTAIR binds to the PRC2, a methylase that participates in gene silencing and cancer
progression [56,57]. Additionally, investigations have reported that lnc-RNAs also influence
the methylation of CpG islands of DNA by recruiting DNA methylation factors, leading to
gene expression. For instance, Di Ruscio et al. demonstrated in a lymphoblast model that
lnc-RNA ecCEBPA interacts with methyltransferase DNMT1, where this binding prevents
DNMT from methylating CEBPA’s CpG island, thus gene silencing does not occur [60].

Lnc-RNA have several domains that bind to different effector molecules (Figure 2C).
The formation of the lnc-RNA-protein complex allows linking to the DNA binding sites
of a particular gene leading to its activation or repression [53]. It is the case of lnc-ANRIL
which functions as a scaffold to induce the binding of the WDR5 and HDAC3 proteins
to form a complex. This association drives the regulation of NOX1 expression by histone
modification and upregulated ROS level, among others [61].

Lnc-RNAs are precursors of smaller RNA molecules such as miRNAs (Figure 2D). For
instance, it was shown that in embryonic kidney cells, the lnc-RNA H19 was the precursor
to miR-675 in humans, downregulating mRNAs expressed maternally in the developing
of the adjacent insulin like growth factor 2 (Igf2) gene [62], suggesting that H19 regulates
gene expression through the action of miRNAs.

There are different mechanisms that lnc-RNAs employ to interact with proteins and
genetic material. Thus, it can trigger an epigenetic modification and control the DNA
transcription. These mechanisms demonstrate the key role that lnc-RNAs plays in the
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regulation of different biological processes in the organism [63]. One of these examples is
the presence of lnc-RNAs in the brain. These molecules have been reported dysregulated
in different brain diseases, demonstrating that lnc-RNAs could have an important role in
this organ.
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Figure 2. Mechanisms of action of long non-coding RNAs within a cell. Illustration of the four forms to regulate gene
transcription by the lnc-RNAs. At the bottom of the figure are the conventions for each molecule that is involved in the
process. (A) lnc-RNAs interact to DNA binding sites on transcription factors (TF). Consequently, the transcription factor
binding site is inhibited and it cannot exert its function as an expression regulation. (B) lncRNAs direct the proteins which
are involved in histone modification to particular locus. It changes the gene expression. (C) The lnc-RNA functions as an
adapter by binding multiple effector proteins. The lnc-RNA-protein complex is directed to DNA binding sites of a specific
gene leading to the regulating of its expression. (D) lnc-RNAs can be precursors of smaller RNA molecules such as miRNAs
and they regulate the gene expression.

2.3. MicroRNAs and Long Non-Coding RNAs in Brain

As above mentioned, the loss and gain of non-coding RNAs functions have shown to
play an important role in the regulation of multiple pathways in both normal and disease
conditions [64–66]. Studies in brain tissues have identified that non-coding RNAs are
overexpressed in CNS, where 40% of all lnc-RNAs and 50% of all miRNAs have a specific
expression in the CNS and the brain, respectively [66]. Therefore, these molecules are an
attractive target to delve into their functional role in the CNS.

Various researches have demonstrated that expression of specifics lnc-RNAs are asso-
ciated with neurogenesis, brain development, differentiation, maturation, and neuronal
activity [67–69]. For instance, lnc-RNAs RMST, HOTAIR1, MALAT1, Pnky or Evf-2 have
been seen differentially expressed in neural cells and in processes of neurogenesis and
development [70–73]. However, the mechanism of lnc-RNAs’ action over neuronal devel-
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opment is still unclear, but it seems like the loss function of lnc-RNAs in human embryonic
stem cells may restrict neurogenesis [68]. On the other hand, in human neocortical samples
from donors obtained from infancy throughout adulthood, lnc-RNAs were identified with
a differential expression in an age-dependent manner. Although this study did not explore
the association of these molecules to brain regulatory functions, the authors mentioned
that the differential expression of these aging-dependent lnc-RNAs suggests that they may
be involved in brain development and maturation [74]. In addition, there are lnc-RNAs
like BC1 and MALAT1 expressed in the adult nervous system having an important role
in neuronal activity and regulation of synaptic turnover [75,76]. BC1 participates in the
control of neuronal excitability through the inhibition of synaptic protein postsynaptic
density 95 (PSD-95) and fragile X mental retardation protein (FMRP) that are dependent
on glutamate receptors (mGluR). Conversely, the absence of BC1 leads to activation of
synaptic protein synthesis depending on mGluR, which triggers neuronal hyperexcitability
and prolonged synchronized discharges [77]. In the case of MALAT1, investigations have
shown that this lnc-RNA acts as a regulator of synaptic genes, showing that overexpression
of MALAT1 leads to an increase in synaptic density, while its depletion generates the
opposite effect [78].

There is strong evidence that clearly demonstrates the association between miRNA
and neuronal processes. For instance, the expression of miRNAs such as miR-124, miR-125,
miR-128, miR-26 and miR-29 are highly expressed in adult brain tissue which suggest that
they play a differential role in each cell type [79]. Besides, it was shown that expression
of these miRNAs improved response to neural differentiation in the embryonic stem cells
model, suggesting they can be involved in crucial neuronal processes like development,
differentiation, and proliferation [79,80]. On the contrary, miR-26 and miR-29 are present
only in astrocytes, but their functions are not entirely clear [79]. Another miRNA present
in adult neural stem cells is miR-137, which is involved in maturation and proliferation
process, even though its expression is reduced in differentiation process [81]. On the other
hand, recent evidences have shown that different miRNAs such as miR-204, miR-501, miR-
223 have a pivotal role in brain process like synapse, inflammation and neuroprotection,
which could trigger significant NDs [82–86]. Finally, some investigations demonstrated
that there is a relationship between microRNAs and neuronal activity, whereby miRNAs
regulate the expression of several proteins that participate in synaptic transmission, but
also, neural activity can reduce the expression of microRNAs on this cells [87,88].

Each study in nc-RNAs provides information on the possible role implicated in
different process in the brain. For this reason, nc-RNAs dysregulation in this organ has been
associated with different brain diseases. For instance, the alteration in the expression of
miR-204, miR-501, miR-34c, miR-223, miR-144 and miR-146a in the brain can contribute to
accelerate cognitive decline and trigger the progression of aging and neurological disorders
including Alzheimer’s disease [89]. Additionally, overexpression of nc-RNAs lead to
epigenetic changes by methylation that can alter functional processes in brain and neuronal
death. Consequently, several investigations have been focused in the discovery of different
dysregulated nc-RNAs and their mechanisms of action in NDs development [90–94].

3. Importance of MicroRNAs and Long Non-Coding RNAs in Brain Pathologies

NDs are characterized by progressive and irreversible damage in the CNS mainly in
neurons cells, causing a loss of nerve structure and function [95]. The main ND triggers
is not clear yet, but some risk factors like age, inflammatory processes, obesity, viruses
infection, medical condition, and genetic alterations have been associated [96,97]. Since
nc-RNAs are involved in NDs, we aimed to discuss the role nc-RNAs play in NDs, in
addition to making a compilation on nc-RNAs that have been reported as dysregulated in
these disorders which are found in cerebrospinal fluid (CSF). In this regard, the presence in
peripheral body fluids, such as CSF and serum, of molecules that could act as biomarkers
for the diagnosis of NDs have become an active area of research [98,99]. Considering that,
the nc-RNAs are stable molecules in the peripheral circulation, and can be detected by qRT-
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PCR, microarray, and sequencing, they have become a new potential class of biomarkers
to be explored. In addition, understanding their involvement in disease development
could depict the underlying pathogenesis of NDs, allowing new treatment approaches
to be developed that act earlier in disease progression [100]. Likewise, several studies
have shown that different nc-RNAs could be gene targets to modify the course of the
disease [101,102], new therapeutic approaches that are focused on the modulation of
multiple molecular pathway targets are necessary, because the NDs are multigenic [101].

3.1. MicroRNAs and Long Non-Coding RNAs as Biomarkers in Alzheimer’s Disease

Alzheimer’s disease (AD) is an age-related neurological disorder present in people
over the age of 65 [103], associated with a gradual loss of neuronal synapse, synaptic
functions, mitochondrial functions, and others [104]. One of its causes is the formation of
aggregates of β-amyloid (Aβ) outside neurons and the deposits of abnormal Tau protein
within neurons [104,105]. However, they are two out of several brain alterations that can
originate the damage and destruction of neurons which causes affections in language,
behavior, memory, and cognition [106,107]. Although there are different important events
that are considered essential in the disease development, studies in nc-RNAs have started
to explore relevant information of the AD onset, since they can regulate the expression of
different proteins that can play an important role in the trigger of the disorder. It is the case
of miR-26b that has shown to have a negative correlation with levels of Tau protein and the
phosphorylated form Ptau in AD patients [108].

The investigators demonstrated that miR-34c regulates expression of several genes
like Bcl2 and SIRT1 involved in neuronal cell survival and neuroprotection pathways,
respectively [109]. Mouse models have shown a relationship between this microRNAs and
a cognitive decline, because the inhibition of miR-34c rescues memory impairment in AD
transgenic mice with an increase of SIRT1 expression [110]. Additionally, lnc-RNAs have
also been dysregulated in AD. The expression level of lnc-RNAs BACE1-AS is increased in
AD patients [111]. This molecule leads to increased expression of BACE1, a protein that
participate in the generation of amyloid-β which is implicated in the pathogenesis and
age-associated cognitive decline (AACD) [112]. Another lnc-RNA is EBF3-AS upregulated
in the brain of AD patients [113], promotes the neuronal death by the possible stimulation
of EBF3 expression, a protein which has been involved in apoptosis and cell cycle arrest in
some tumor models [114]. Table 1 displays nc-RNAs dysregulated in AD, and which are
present in different biofluids.

Table 1. Dysregulated nc-RNAs in human samples of Alzheimer’s disease.

Source Target
Genes Condition Dysregulated nc-RNAs Study

Whole-blood
1

miR-26b-3p, miR-28-3p, miR-30c-5p, miR-30d-5p, miR-148b-5p,
miR-151a-3p, miR-186-5p, miR-425-5p, miR-550a-5p, miR-1468,

miR-4781-3p, miR-5001-3p, and miR-6513-3p.
[115]

2
let-7a-5p, let-7e-5p, let-7f-5p, let-7g-5p, miR-15a-5p, miR-17-3p,
miR-29b-3p, miR-98–5p, miR-144-5p, miR-148a-3p, miR-502-3p,

miR-660-5p, miR-1294, and miR-3200-3p.
2 miR-29b, miR-107, miR-125b, miR-146a, miR-181c, and miR-342 [116]
1 BACE1-AS [117]

PBMCs 1 miR-34a, miR-34b, miR-34c and miR-181b [118]

Serum
2
1

miR-23a, miR-26b, miR-125b and miR-181c.
miR-9 [119]

2 miR- 98-5p, miR-191-5p, miR-342-3p, miR-483-3p, miR-885-5p, and
let-7d-5p [120]

Serum
exosomal

1
miR-15a-5p, miR18b-5b, miR-20a-5p, miR-30e-5p, miR-93-5p,

miR-101-3p, miR106a-5p, miR-106b-5p, miR-143-3p, miR335-5p,
miR-361-5p, miR-425-5p, miR-582-5p and miR-3065-5p

[121]

2 miR-15b-3p, miR-342-3p and miR-1306-5p
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Table 1. Cont.

Source Target
Genes Condition Dysregulated nc-RNAs Study

Plasma
BCL2, SIRT1 1 miR-34c [122]

2 let-7d-5p, let-7g-5p, miR-15b-5p, miR-142-3p, miR-191- 5p,
miR-301a-3p, and miR-545-3p [122]

Plasma
exosomal 3

miR-23b-3p, miR-24-3p, miR-29b-3p, miR-125b-5p, miR-138-5p,
miR-139-5p, miR-141-3p, miR-150-5p, miR-152-3p, miR-185-5p,
miR-338-3p, miR342-3p, miR-342-5p, miR-548at-5p, miR-659-5p,

miR-3065-5p, miR-3613-3p, miR-3916, miR-4772-3p and miR-5001-3p

[123]

Cerebrospinal
fluid (CSF)

3
miR-100, miR-103, miR-146a, miR-219, miR-296, miR-335, miR-375,

miR-449, miR-505, miR-708, miR-766, miR-1274a, miR-3622b-3p,
miR-4467 and miR-4674

[124]

2

miR-10a, miR-10b, miR-15b, miR-99a, miR-124, miR-125, miR-126,
miR-127, miR-142-5p, miR-143, miR-146b, miR-154, miR-181a,

miR-181c, miR-194, miR-195, miR-199a, miR-221, miR-328, miR-422b,
miR-451, miR-455 and miR-497

[125]

1 miR-9, miR-125b, miR-146a and miR-155 [126,127]

1

Let-7f, miR-30a-3p, miR-30a-5p, miR-30b, miR-30c, miR-30d, miR-32,
miR-105, miR-125a, miR-135a, miR-138, miR-141, miR-151, miR-186,
miR-191, miR-197, miR-204, miR-205, miR-216, miR-302b miR-345,

miR-362, miR-371, miR-374, miR-375, miR-380-3p, miR-429, miR-448,
miR-449, miR-494, miR-501, miR-517, miR-517b, miR-518b, miR-518f,

miR-520a and miR-526a

[125]

2 MALAT1 [128]

Brain

SPT 1 miR-9, miR-29a, miR-29b-1, miR-15, miR-137 and miR-181c [129]
SPTLC1 1 (miR-181c y miR-137) *

Secretases 1 miR-146 [130]
BACE1/
SPTLC2 2 miR-9, miR-29a, miR-29b-1 and miR-124 * [131,132]

TAU 1 miR-26b and miR-34a [133,134]
APP 4 miR-101, miR-106a, and miR-520c [135,136]
APP 2 miR-124 * [137]

BACE1 APP 3 miR-15a, miR-29b-1, miR-9, and miR-19b, let-7, miR-101, miR-15a,
and miR-106b [138]

IGF-1 4 miR-98 * [139]

1

XIST, LNC01094, NEAT1, VAC14-A81, lnc-SERF1B-1, RP11-274-H2-5,
AF001548-5, LINC00844, lnc-VS1G10-1, lnc-POTEG-4, EMX2OS,

lnc-INADL-2, lncXRN2-2, RP11-953820-1, lnc-ADAM30-1,
LINC00320 and lnc-TAF9-2

[140]

miR-15/107 1 NEAT1 (In temporal cortex and hippocampus), HOTAIR (In
hippocampus and cerebellum) [141]

BACE1

1

BACE1-AS [142]
SORL1 51A

GABA B 17A
BACE and
γ-secretase NDM29

eIF4A BC200
BDNF-AS
SOX2OT

Rad18 NAD-RAT 18

3
MIR7-3HG, AL109615.3, NEBL-AS1, ATP6V0E2-AS1,

PDXDC2P-NPIPB14P, LOC441204, A2M-AS1, TGFB2-OT1,
LINC00672 and LncSigAD9

[143]

1 n336934 [144]
2 n341006

1. Upregulated in AD patients; 2. Down regulated in AD patients; 3. Dysregulated expression in AD patients; 4. Overexpression in AD
model cells; * Determination in in vitro assays or using model animals.
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3.2. MicroRNAs and Long Non-Coding RNAs as Biomarkers in Parkinson’s Disease

Parkinson’s disease (PD) is the second more common ND after AD. PD is present in
approximately 1% of people over the age of 60, ranging from 4.1–4.6 million people affected
worldwide [145,146]. PD is characterized by bradykinesia, muscle stiffness, postural
instability and involuntary tremors [147]. These signs are related to the loss of dopaminergic
neurons in the substantia nigra, and the pathology spreads to other regions of the brain,
making this disease heterogeneous an variable in progress [147]. The current diagnosis
and management in patients that suffer the disease are hampered by methods with low
efficiency. For this reason, PD do not have cure, and its therapy is only focused on
treating the symptoms [147,148]. Some treatments include dopaminergic administration,
anti-inflammatory drugs (pioglitazone), administration of gangliosides, surgical therapy,
physical and occupational therapy, among others. Due to the fact that the prognosis and
treatments are not very effective and timely, new therapeutic interventions such as miRNA
and lnc-RNA have been investigated. These biomolecules have shown to increase the
therapeutic responses and monitor the progression of the disease at early stages.

The participation of lnc-RNAs in dopaminergic neuronal death in PD has been demon-
strated in vitro and in vivo approaches. The studies demonstrate that lnc-RNAs could
participate in dopamine neuron differentiation, maturation and function [149,150]. Wang
and coworkers demonstrated in an in vitro model that the miR-433 is crucial in the inhibi-
tion of fibroblast growth factor 20 (FGF20) [151], whose function is related to the expression
of α-synuclein protein, the protein that elicits the insoluble aggregates that compose the
main structure of Lewy bodies leading to the death dopaminergic neurons [152]. Another
investigation was revealed that miR-7 inhibits the expression of the α-synuclein protein,
making better protected against oxidative stress and Lewy body formation [153]. In a
similar way, lnc-RNA MALAT1 interacted with α-synuclein protein and enhanced its
stability only at the protein level but not at the mRNA level, being this was corroborated
by the inhibition of this lnc-RNA reducing the expression of α-synuclein [154]. In another
study, employing a model of AD in SH-SY5Y and SK-N-SH cells, it has shown that the
expression of HOTAIR1 is associated to increases in pro-apoptotic caspase 3 activity, In
contrast, HOTAIR1 knockdown leads to an inhibition of apoptosis, suggesting that this
lnc-RNA is involved in and the progression of PD by neuronal death [92]. Other nc-RNAs
dysregulated in this disorder are highlighted in Table 2.

Table 2. Dysregulated nc-RNAs in human samples of Parkinson’s disease.

Source Target Genes Condition Dysregulated nc-RNAs Study

Blood

2 miR-1, miR-22p and miR-29a [155]
1 miR-16-2-3p, miR-26a-2-3p and miR-30a

1 miR-18b, miR-20a miR-21, miR-30b, miR-103a, miR-150, miR-199b,
miR-378c, miR-1274b, miR-671, miR-1249. miR-4293 [156]

2 miR-1, miR-16, miR 22, miR 29a, miR-92b, miR-320a, miR-320b,
miR-320c, miR-769

1 LINC00302 and LINC00328 [157]
2 FAM215A, MCF2L-AS1, NOP14-AS1, PART1, XIST
1 AC131056.3-001, HOTAIRM1, lnc-MOK-6:1, and RF01976.1-201 [158]

1
TM4SF19-TCTEXID2, LOC101927369, LOCI102724104, LINC01871,

LOC105373420, LOC105371464, LINC00943, LOC105370060,
LOC101927012, LOC105372055

[159]

2
LOC102724765, LOC105369772, KRT73-AS1, LOC105379392,

JHDM1D-ASI, LOC105372185, LOC105377225, LOC105378701,
LOC105375056 and LOC105373204

PMBCs 2
miR-19b, miR-26a, miR-28-5p, miR-29b, miR-29c, miR-30b, miR-30c,

miR-126, miR-151-3p, miR-147, miR-151-5p, miR-199a-3p,
miR-199a-5p, miR-199b-3p, miR-301a, miR-335, miR-374a, miR-374b

[156]
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Table 2. Cont.

Source Target Genes Condition Dysregulated nc-RNAs Study

Plasma
1 miR-181c, miR-331-5p, miR-193a-5p, miR196b, miR-454,

miR-125a-3p and miR-137 [160]

2 miR-222, miR-505, miR 626 [156]

Serum

2 miR141, miR-214, miR-146b-5p and miR193a-3p [161]
1 miR-233, miR324-3p and miR-24 [162]
2 miR-339-5p, miR-30c and miR-148-b

1 miR-24, miR 30a-3p, miR-30e-3p, miR-195, miR-223, miR-324-3p,
miR-338-3p [156]

2 miR-15b, miR-16-2-3p, miR 19b, miR-29a, miR 29c, miR-30c, miR
148b, miR-181a, miR-185, miR-221, miR 1294

CSF
1

miR 10a-5p, miR19a-3p, miR-16-2, miR19b-3p, miR-26 miR-30b,
miR-103a, miR-127-3p, miR-132-5p, miR 136-3p, miR-153,

miR-331-5p, miR-370, miR 485-5p, let-7g-3p, miR-409-3p, miR-433,
miR 873-3p

[156]

2

miR 1, miR 19b-3p, miR 19c, miR 22, miR-28, miR 29, miR 119a
miR-128, miR 132-5p, miR-126, miR-127-3p, miR-151, miR-212-3p,
miR-301a, miR-370, miR 374, miR-409-3p, miR-485-5p, miR-873-3p,

miR-1224-5p, miR-4448

Brain

2 miR 19a, miR-19b, miR-29a and miR-29c [163]
SNCA 1 miR-7 and miR-153 [126]
E2F1 1 miR-184 [164]

LRKK2 1 miR-205 [165,166]
DP 1 let-7 [162]

FGF20 1 miR-433 [167,168]

1 miR-16-5p, miR 21, miR26b, miR-29a-3p, miR 106a, miR 127-5p,
miR 224, miR 301b, miR 373, miR 548d [143]

2
miR 10b-5p, miR 22, mir 29a, miR 29b, miR 29c, miR 127-3p, miR
135b, miR 181a, miR 181b, miR181c, miR 181d, miR 184, miR 198,

miR 205, miR 485-5p, let-7i-3p/5p, miR 1224
Sox2

1
SoX2OT

[169]PINK 1 naPINK1

PINK1
UCHL1 3

BC200
PINK1-AS
UCHL1-AS

SNCA

2

SNCA-AS1

[150]

LRRK2 AK127687
UCHL1 UCHL1-AS1
PINK1 PINK1-AS1

DJ1 AX747125
MAPT MAPT-AS1

1. Upregulated in Parkinson patients; 2. Down regulated in Parkinson patients; 3. Dysregulated expression in Parkinson patients.

3.3. MicroRNAs and Long Non-Coding RNAs as Biomarkers in Huntington’s Disease

Huntington’s disease (HD) is an autosomal dominant inherited. It means that there
is a mutation in one of the two copies of the huntingtin gene (Htt) which results in the
degeneration of neurons. The alteration is an expansion of the CAG triplet in HTT [170].
This gene encodes for the polyglutamine stretch in the huntingtin protein. It produces
progressive damage in neurons of the cortical and striatum zone leading to their death.
Due to the neuroprotective effects of the wild-type HTT protein is lost, the mutant protein
originates cellular toxicity and neurological dysfunctions [171]. This leads to an exacerbated
loss of neurons that has a high impact on intellectual abilities, uncontrolled movements
and psychiatric disorder [172,173].

In the same way as others NDs, the treatments to Huntington’s disease are only to
optimize quality of life, which includes physiotherapies, language therapies and pharma-
cology [174,175]. Hence, in the last year, the researchers focused on emerging therapies
aimed to control molecular pathways dysregulated from the HTT gene mutation. This led
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to the discovery of nc-RNAs involved in this pathology which affect the expression of the
different target genes associated with neuronal growth and survival [176]. For instance, one
of the most recognized transcription factors (TF) in the control of neuronal development is
the repressor element-1 silencing transcription factor (REST). In the normal neuronal cells,
REST is hijacked in the cytoplasm by binding to wild type HTT and deprives REST from
exerting its function. Therefore, in HD patients the HTT mutation cannot interact with this
TF and consequently, REST translocate to the nucleus in an excessive way and subsequent
decreases neuronal genes expression [176–178]. Investigators have demonstrated that the
expression of miRNAs depend on REST [179]. It is the case of expression of miR-124a and
miR-132 that have an important role in the differentiation and growth of the neuronal cells.
These molecules negatively regulate the levels of hundreds of non-neuronal transcripts
and enable the cell maturation and the maintenance of a neuronal phenotype [179].

However, in HD the miRNAs are repressed by nuclear REST and their downregulation
result in the deprivation of neuronal identity and the neurite outgrowth [179,180]. Other nc-
RNAs dysregulated in HD are the microRNA miR-9 and the lnc-RNA HAR1 whose levels
are significantly lower in patients with the disorder miR-9 binds with the 3′UTR of REST
mRNA, while HAR1 interacts with specific DNA regulatory motifs of REST gene. As result,
these events lead in the repression of TF expression [181,182]. In addition, these nc-RNAs
could be evaluated as a good candidate for the therapy, since the overexpression of these
molecules in HD patients would lead to a decrease in REST by altering its activity. Likewise,
the low expression of this protein would permit the maturation process, development, and
adequate functioning in neuronal cells.

As mentioned, nc-RNAs are excellent candidates for regulating neuronal phenotype in
HD patients which makes them valuable targets for diagnosis and treatment of the disorder.
In the Table 3, shows ncRNAs reported to be dysregulated in the pathology and can affect
important molecular pathways that trigger the disease. Hence, they could function as an
interesting biomarker in the future making possible a rapid diagnosis and starting the
suitable treatment that prolongs the lives of people with HD.

Table 3. Dysregulated miRNAs in human samples of Huntington’s disease.

Source Target Genes Condition Dysregulated miRNAs Study

Plasma 1
miR-22-5p, miR-30d-5p, miR-128, miR-130b-3p, miR-223-3p, miR-223-5p,

miR-222-3p, miR-338-3p, miR-361-5, miR-425-5p, miR-628-3p, miR-877-5p
and miR-942

[183]

Parietal cortical
tissue

REST
1 miR-29a and miR-135b [176]
2 miR-132

Brodmann’s
area 4 (BA4) REST

2 miR-9, miR-29b and miR-124a [181]
1 miR-132, miR-486 and miR-196a

Frontal cortex
and striatum 1

miR 15a, miR-15b, miR-16, miR-17, miR-19b, miR 20a, miR 27b, miR-30a,
miR-30b, miR-30c, miR-30e, miR-33a, miR-33b, miR-92a, miR-93, miR-99b,

miR-100, miR 101, miR 106b, miR-126, miR-145, miR-146a, miR-148b,
miR-151-5p miR-151-3p, miR-181a, miR-193b, miR-199b-3p, miR-204,

miR-219-2-3p, miR-219-5p, miR-338-3p, miR-363, miR-451, miR-486-5p,
miR-887, miR1250, miR-1974

[184]

2

miR-95, miR-103, miR-107, miR-124, miR-127-3p, miR-128, miR-139-3p,
miR-181d, miR-221, miR-222, miR-323-3p, miR-330-3p, miR-369-5p, miR-382,

miR-383, miR-409-5p, miR-423-5p, miR-432, miR-433 and miR-483-3p,
miR-485-3p, miR-485-5p, miR-495, miR-543, miR-598, miR-708, miR-1224-5p,

miR-1301, miR-1307

Brain

HTTA
PCR2 2

HTT-AS
MEG3

HAR1R
HAR1F

[169,185]

1 TUG1, LINC00341, RPS20P22 and NEAT1 [186,187]
2 MEG3, DGCR5 and LINC00342

BDNF
HTT 3 BDNF-AS

HTT-AS [188,189]

1. Upregulated in Huntington patients; 2. Down regulated in Huntington patients; 3. Dysregulated expression in Huntington patients.
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3.4. MicroRNAs and Long Non-Coding RNAs as Biomarkers in Amyotrophic Lateral Sclerosis’s Disease

Amyotrophic lateral sclerosis (ALS) is also a fatal neurological disorder which affects
the neuromuscular function. As a result of progressive death of motor neurons in the
primary motor cortex, brainstem and spinal cord, there is atrophy of the muscles that are
innervated by these neurons. This leads to the death of motor neurons which is manifested
as a progressive muscle paralysis of the limbs and muscles involved in speech and, in turn,
swallowing and respiration are compromised, putting life at serious risk within 3–5 years
of the onset of symptoms [190]. Riluzole was the first treatment approved by the U.S. Food
and Drug Administration (FDA) to treat amyotrophic lateral sclerosis (ALS). It means that
there is no cure for this disease, and its causes are relatively unknown. Diagnosis is based
on a battery of clinical tests up to a year after symptom onset, with no robust markers
of diagnosis [191]. Therefore, finding molecules that change the course of the disease is
essential for the diagnostic and effective therapies in these disorders [192].

Nowadays, the majority of neurologists depend only on clinical criteria for the diag-
nosis of the disease. However, some studies have demonstrated that the role of nc-RNAs
can be useful in both the diagnosis and treatment of ALS. Such is the case of miR-206
which is a skeletal muscle specific microRNA. The mir-206 is involved in myogenesis
process, formation of neuromuscular junctions, reinnervation of denervated fibers, among
other [193]. For instance, miR-206 expression delays the progression of ALS by promoting
the regeneration of neuromuscular synapses according with mouse model. In addition, it
was corroborated that the knockout of the microRNA in mice leads to a faster pathology
development and the survival decreased significantly [194,195]. The possible mechanism
of miR-206 is from suppression of HDAC4 mRNA, a regulatory factor that controls gene
expression in nerves and muscles by inhibition of the reinnervation through the repression
of fibroblast growth factor binding protein 1 (fgfbp1) [196–198].

Another upregulated miRNA in ALS is miR-338-3p which is involved in the stim-
ulation of neuronal differentiation through negatively regulation of some genes such as
MAP1A, NOVA1 and UBE2Q1 involving in the inhibition of neurite growth [199–202].
Among lnc-RNAs often deregulated in ALS is NEAT1_2, which is upregulated in spinal mo-
tor neurons at an early stage of the ALS. Although the mechanism that NEAT1_2 employs
in the disorder is still unknown, it is well-known that the lnc-RNA interacts with TDP-43
and FUS/TLS proteins which are required to form paraspeckle from a set of specialized
proteins and RNAs that make up this nuclear bodies in the early stage of ALS [203,204].
On the other hand, ATXN2-AS is a lnc-RNAs that is upregulated in the pathology and its
presence has been associated with the neurotoxicity and may lead to ALS progression [205].
In Table 4 is highlighted other microRNAs and lnc-RNAs that have been characterized
and reported as dysregulated in ALS and that could function in both the diagnosis and
treatment of the illness.

Table 4. Dysregulated nc-RNAs in human samples of Amyotrophic Lateral Sclerosis disease.

Source Target Genes Condition Dysregulated nc-RNAs Study

Serum
HDAC4 1 miR-206

miR 106b [190]

2 miR-4747.5p, miR-3665, miR 1915-3p, miR 4530 [206]

2 miR 132-5p, miR 132-3p, miR 143-5p, miR-143,3p, miR and
LET7B-5p [207]

2 miR-1234-3p and miR-1825 [208]
1 miR-143-3p, miR-206 [194]
2 miR-374b-5p
1 miR 142-3p [209]
2 miR 1249-3p
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Table 4. Cont.

Source Target Genes Condition Dysregulated nc-RNAs Study

Plasma

EPHA4
1 miR-4649-5 [210]
2 miR-4299
1 miR-4258 and miR-663b.

2 miR-26b-5p, miR-4299, let-7f-5p, miR-4419a, miR-3187-5p and
miR-4496

1 miR-424 and miR 206 [195]
1 miR-206, miR-338-3p, miR-9, miR-129-3p and miR-335-5p [211]

Whole Blood
1 miR-338-3p [212]

2 miR-451, miR-1275, miR-328, miR-638, miR-149, miR-665,
miR-583

2

let-7a-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-103a-3p,
miR-106b-3p, miR-128-3p, miR-130a-3p, miR-130b-3p,
miR-144-5p, miR-148a-3p, miR-148b-3p, miR-15a-5p,

miR-15b-5p, miR-151a-5p, miR-151b, miR-16-5p, miR-182-5p,
miR-183-5p, miR-186-5p, miR-22-3p, miR-221-3p, miR-223-3p,
miR-23a-3p, miR-26a-5p, miR-26b-5p, miR-27b-3p, miR-28-3p,
miR-30b-5p, miR-30c-5p, miR-342-3p, miR-425-5p, miR-451a,

miR-532-5p, miR-550a-3p, miR-584-5p, miR-93-5p

[213]

1 miR-34a, miR-100, miR-193b and miR 4485 [214]

2 miR-124, miR-183, miR-193b, miR-451, miR- 3690, miR-3935,
miR-4538, miR-4701

Cerebrospinal
Fluid (CSF)

1 miR-143-5p and miR-574-5p [207]
2 miR-132-3p, miR-132-5p and miR-143-3p
1 miR 181a-5p [215]

2 LET7A-5p, LET7B-5p, LET7F-5p, miR-15b-5p, miR-21-5p,
miR-195-5p, miR-148-3p

Skeletal
muscle PGC-1α 1 miRNAs-23a

miR-29b, miR 31, miR-206 and miR-455 [216]

Substanzia
nigra 1 miR-26b [134]

Spinal cord

NFL
1 miR-16-2, miR-508-5p, miR 558 [217]
1 miR-146

2 miR-524-5
miR 582-3p

2
miR-23a, miR-23b, miR 30a, miR-30b, miR-192, miR-193a-5p,
miR-215, miR 520e, 548a-5p, miR 556-5p, miR-606, miR-612,

miR-624, miR-647 and

1 miR-24-2, miR-142-3p, miR-142-5p, miR-146a, miR-146b,
miR-155 [218]

2 miR-148b-5p, miR- 577, miR 133b and miR-140-3p [219]
NEFL 2 miR-b1336 and miR-b2403 [220]

Brain
NAV3 1 miR 29a

miR 29b and miR-338-3p [199]

NEFL 1 miR-9. [198]

1. Upregulated in ALS patients; 2. Down regulated in ALS patients; 3. Dysregulated expression in ALS patients.

Collectively, this growing body of studies shows that ncRNAs contribute to neurode-
generation in many types of dementia. Nevertheless, the majority of these studies are
focused on a particular nc-RNA, and do not take into account that multiple species are
functionally altered in NDs. This raises the challenge of targeting the activity of multi-
ple ncRNAs. Although the emerging evidence have been centered in miRNAs, the most
recent reports point to additional species as bioactive in mental health, mainly in the
pre-symptomatic state. At the same time, the evaluation of the nc-RNAs is interesting
to apply as possible treatment targets. Screening for dysregulated nc-RNAs in patients
with different stages of the disease could be important in the diagnostic and evaluation
of the disorder progression. For this reason, it is of great importance to implement new
technologies in this branch that improve the detection of several dysregulated molecules in
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the pathology. In this sense, bioinformatic tools and AI have an important role in this field,
since these technologies can help to compile and analyze a set of biological data, such as
genes, proteins, or nc-RNAs in a specific condition from a computer [221]. Another strength
of this tool is that it can study the interaction between the different molecules present inside
the cell as a cell network and not as individual events, making it possible to get larger and
more accurate information. Therefore, the new investigations with bioinformatic approach
are aimed to predict the pathologies or detect new therapeutic targets that may be useful
for treatment of the disease.

4. Bioinformatic Tools for the Study of Non-Coding RNAs

As discussed above, there are a vast number of miRNAs and lnc-RNAs dysregulated
in NDs. Hence, in this section we illustrated different bioinformatics tools that are currently
available for nc-RNAs’ data mining. Online servers provide information on the involve-
ment of lnc-RNAs and miRNAs in various human diseases and their possible target genes
and regulatory pathways. In this review, we have prioritized databases that provide infor-
mation on nc-RNAs and their relationship with ND. This is made possible by information
harvesting and bioinformatic predictions using the databases. On this basis, bioinformatic
tools could be useful to elucidate the possible mechanism of action that nc-RNAs may have
in the disorder. Therefore, the servers allow us to recognize the relevance that miRNAs
and lnc-RNAs have in the development of the pathology. The Table 5 shows each available
database for nc-RNAs and the corresponding reference articles, where further detailed
information on the server, algorithms, and statistics of each database used for its workout
can be found.

Table 5. Databases of non-coding RNAs and their involvement to diseases. Different online platforms are described
in which are possible to search microRNAs or long non-coding RNAs of interest and their participation with different
diseases like NDs. The data reported in these servers have been mostly experimentally corroborated or are reported by
bioinformatic predictions.

Database Platform Functions Website Reference

LncRNA and
disease database

• Database makes association between lnc-RNAs and
different diseases supported obtained experimentally or
by predictions.

• LncRNADisease also cures lnc-RNA interactions at other
levels, including proteins, RNA, miRNA and DNA,
which leads to suggesting possible mechanisms of
action.

http://www.cuilab.cn/
lncrnadisease (Accessed on 18
February 2021).
http://www.rnanut.net/
lncrnadisease/ (Accessed on
22 June 2021)

[222,223]

LncTard

• LncTarD offers information on the actions of lnc-RNAs
and miRNAs in human diseases.

• The platform shows the gene that is being regulated by
non-coding RNAs. The regulation mechanism and the
influence that these molecules have on cell function.

http://biocc.hrbmu.edu.cn/
LncTarD/jsp/Browser.jsp
(Accessed on 18 February 2021).

[224]

LncBook

• The server presents information about human lncRNAs
along with multi-omics data integration and their
association with various diseases.

• The functional mechanism of lncRNAs is associated for
each pathology, as well as their role in the disease,
among other characteristics.

http://bigd.big.ac.cn/
lncbook/index
(Accessed on 19 February 2021).

[225]

The Human
microRNA
Disease Database
(HMDD v3.0)

• Database presents the links between microRNA-disease
supported experimentally.

• HMDD v3.0 presents information about the functional
enrichment of each miRNA with its target gene and
online visualization of their interaction network.

http://www.cuilab.cn/hmdd
(Accessed on 18 February 2021). [226]

http://www.cuilab.cn/lncrnadisease
http://www.cuilab.cn/lncrnadisease
http://www.rnanut.net/lncrnadisease/
http://www.rnanut.net/lncrnadisease/
http://biocc.hrbmu.edu.cn/LncTarD/jsp/Browser.jsp
http://biocc.hrbmu.edu.cn/LncTarD/jsp/Browser.jsp
http://bigd.big.ac.cn/lncbook/index
http://bigd.big.ac.cn/lncbook/index
http://www.cuilab.cn/hmdd
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Table 5. Cont.

Database Platform Functions Website Reference

miRNA SNP
Disease database
(MSDD)

• MSDD integrates experimentally reported data from
miRNAs with single nucleotide polymorphisms (SNPs)
and their involvement in a disease.

• Each miRSNP-disease association shows information
about miRNAs, SNPs, the miRNA target gene(s) and
disease names, further a brief functional description.

http://bio-bigdata.hrbmu.
edu.cn/msdd/browse.jsp
(Accessed on 19 February 2021).

[227]

miRwayDB

• miRwayDB shows the relations of experimentally
validated microRNA pathways in several diseases.

• The platform contains information about the disease
condition, the associated miRNAs, the types of
experimental samples, the regulation pattern
(up/down).

http://diana.imis.athena-
innovation.gr/DianaTools/
index.php?r=mirpath/index
(Accessed on 19 February 2021).

[228]

5. Machine Learning Applied to Diagnosis of Neurodegenerative Diseases
5.1. What Is Machine Learning?

The term machine learning (ML) is used to refer to AI. It consists of the development
and application of computational techniques that allow a machine to mimic human intelli-
gence [229]. However, AI acts by creating a set of rules that indicate the computer what it
should do. It means that the computer only executes the rules of action for which it was
configured. Consequently, it was created as subset of computer science and a technique
of AI named ML that aims to develop systems that allow the computer to learn in an
action-oriented manner [229,230]. To fulfill this, billions or trillions of data points (big data)
must be put into the machine [231]. Subsequently, depending on the ML algorithm, the
computer interprets and identifies patterns based on the set of data previously entered.
Therefore, the final purpose of this tool is to generate classifications or predictions based
on the information managed [232,233]. Additionally, the ML advantage is that it allows
computer algorithms to mechanize data and learn through experience, without being
programmed. In other words, the model improves in-dependent manner, making the
system more robust over time [233,234]. Currently, ML employs two types of learning:
supervised learning and unsupervised learning.

Supervised learning consists of showing pre-classified data to the machine, making it
capable of classifying unknown information based on previews data. It means that known
input variables are entered into the computer, alongside with their attribute descriptions
(data and label) which are later related to output variables. All of these data are employed
to teach the machine. After training, the new data can be entered without a label to be
sorted and labeled by the machine, on the basis of the patterns that have been recorded
during the training [234,235] (Figure 3). In the case of medicine, supervised learning is
mainly used in the automated interpretation of some diagnoses by identifying certain
labeled data that were previously created and associated with disease.

Unsupervised learning is based on the classification of data set based on similar pat-
terns among them [235]. To cluster data, algorithms are needed to identify similar features
in the information, according to the requirement of the study [235]. The integration of
unsupervised learning in medicine has been used to correlate the patient with a diag-
nosis [236]. For instance, a data set could be obtained from a specific examination in a
wide group of patients with some pathology. Information can be collected from biopsies,
diagnostic images, or gene expression microarrays, among others. And then, through the
implementation of unsupervised machine learning algorithms, patterns in the data can
be determined. This will lead to classification of the patients into a diagnostic group that
depends on their pattern (Figure 3). Thus, unsupervised learning could guide the therapies
to be used based on the classification [237,238]. It should be noted that, unlike supervised
learning, there is no expected outcome, but rather a search for patterns in the data [21].

http://bio-bigdata.hrbmu.edu.cn/msdd/browse.jsp
http://bio-bigdata.hrbmu.edu.cn/msdd/browse.jsp
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=mirpath/index
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=mirpath/index
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=mirpath/index
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5.2. Some Methods Used in Machine Learning

One of the most important parts when employing ML is the model selection. The
model defines the type of relationships between the input and the output, and data can be
classified depending on the strategy of learning. Regardless of whether it is supervised or
unsupervised learning, each one of them has particular characteristics, making it neces-
sary to take several aspects into consideration [235,239]. The model development can be
summarized in the following four steps:

(a) Data collection and processing: Data transformation, normalization and optimization.
(b) Model selection: Selection of suitable algorithms and choice of a success indicator.
(c) Model training: Precision, accuracy, sensitive and specificity.
(d) Model validation: Parameter setting and reproducibility.

5.2.1. Supervised Learning

• Regression

In this type of supervised learning, the purpose is to estimate the output value from
a set of input values, thereby this model is used for estimating values such as weigh,
price and length, among others. A supervisor is required for the training to provide
the desired output and to be able to predict the value of the model based on the above
inputs with their respective desired outputs. The simplest method of this type is linear
regression, which assumes a linear relationship between an independent input variable (X)
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and dependent output variable (Y). The main scope is to determinate a value (dependent
variables) according to the prediction of the independent variables. This is employed to
prognostic cause and effect between the variables (X, Y). Therefore, this algorithm is very
useful in medicine in prediction or prognostic of some diseases [240,241].

• Classification

It consists of creating some classes from a set of data information (training set) accord-
ing to established patterns. The goal is that the model can automatically classify a new sam-
ple into one of these groups bearing in mind the established patterns from the training set.
This type of method may be used to classify a tumor as benign/malignant/healthy [241].
Some algorithms of this type are Decision Trees, Random Forests, Support Vector Machine,
K-Nearest-Neighbor (KNN), among other. In this regard, a trained model can make a
prediction based on the training set, where the model outputs the probability that: (i) a
class member has a certain attribute, (ii) an arbitrary data point belongs to that class
and (iii) an arbitrary data point has a specific characteristic. One example of this type
is Bayesian algorithms, which are based on the Bayes’ theorem. It is the simplest and
most powerful probabilistic classifier to use on a large data set. Bayesian algorithms use
probability to predict a class or category in the function of the input variables. The model
assumes that all the variables introduced into the model are independent. This means
that the presence of a certain feature in a data set is not related to the presence of some
other feature [235,242,243]. Finally, Artificial Neural Networks (ANN) is another type of
classifier, whose is derived from the similarity with the signaling behavior of the neurons
in the biological neural network. Neural networks are useful in the evaluation of complex
interactions between a group of diverse measurable variables that ultimately lead to the
prediction of an outcome [244,245]. ANN are made up of layers of neurons:

(a) An input layer corresponds to independent variables. The model is trained by in-
putting information through this layer.

(b) One or more intermediate layers or hidden layers communicated with each other
through activation functions. The information is processed within this layer.

(c) An output layer corresponds to dependent variables. The predictions are given
through this layer.

5.2.2. Unsupervised Learning

• Clustering

In the unsupervised learning approach, there is no desired output known, making
this type of algorithms tries to find clusters or groups in the unlabeled data based on their
similarity. Thus, the elements of the same group present similar characteristics to each
other and different to the other groups. For instance, k-means algorithm groups the input
data into the number of clusters (k), in which the desired number of the independent
input variables should be obtained, and it is determined at the beginning of the model
development. Subsequently, data points are randomly fixed depending on K. In other
words, if K = 2 is desired, the randomly selected points will also be 2. These points will
be called centroids and they define the clusters with respect to the proximity between
the data and the centroid. Data close to a certain centroid, suggest that these data have
similar characteristics and thus the group of that centroid will be formed. These analyses
are repeated several times, fixing different centroids until they begin to have similar results
consecutively [246].

Another is dimensionality reduction, which is a statistical procedure that attempts to
reduce the number of the initial data (original variables). This method is applied to a big
data set with a greater number of possibly correlated quantitative variables, suggesting that
there is redundant information. Therefore, the reduction is made in order to improve data
processing, yet covering as much information as possible. This type of algorithm reduces
the original variables to a lower number of transformed variables. Besides, these data are
characterized by being independent or uncorrelated to each other, as well as data organized
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according to their information [247–249]. The sub-types of these method are Principal
Component Analysis (PCA), Linear Discriminant Analysis (LDA), Factorial Analysis (FA),
Multidimensional Scale (MDS), Generalized Discriminant Analysis (GDA), among other.

• Association

Although it is also known as association rules mining, it is a type of ML focusing
on finding relationships and dependencies among variables in large data sets, which is
consider essential for extracting knowledge from data [250]. In short, each method has
benefits and difficulties that are important to keep in mind. Table 6 shows some advantages
and disadvantages of methods of ML described above that may be practical at the time of
choosing and developing the model that best fits the problem presented.

Table 6. Methods of Machine learning. Brief description of different algorithms mostly employed in both supervised and
unsupervised learning in scientific investigations.

Method Features Advantage Disadvantage

Supervised Learning

Linear
regression

• There should be a relationship
between the dependent and
independent variable.

• The model can be adjusted to the
data when the input variables are
highly correlated.

• The model is going to be more
accurate if the variables have a
normal distribution.

• It is easy and fast to model.
• It has less possibility to

over-adjustment.
• It is useful when there is

numerical data with many
features.

• The data size is not a problem.

• It is not useful for complex models.
• In this method, there cannot be

non-linear relationships without
transforming the input data.

• It can suffer with atypical values.
• The method assumes that the

data are always linear.

Method of
classification

• It is necessary to evaluate the
participation of each node.

• There must be a terminal node and a
class should be assigned to
determine the classification.

• Non-significant predictor variables
are grouped together to form
combined categories and that way
they are meaningful.

• The training is simple
• These methods are powerful

and accurate.
• The methods control lost values.
• It is possible to model complex

relationship non-linear.

• The training can be slow if the
data size is big.

• The parameters of model are
sometimes difficult to interpret.

• They can suffer over-adjust.

Bayesian
Algorithms

• The method is based on the
supposition that the unknowns of
interest follow probabilistic
distributions.

• Bayesian algorithms allows
determinate of the probability of
occurrence of a hypothesis of
quantitative way.

• The data of training can affect the
probability of the hypotheses.

• In the method can include a priori
knowledge like the probability of
each hypothesis.

• This is easy and fast to
implement.

• It does not require much
memory.

• It is easy to interpret.
• It can be model complex

systems.
• It is accurate when the data size

is small.

• It suffers from irrelevant
characteristics.

• Bayesian algorithms fails to
estimate rare characteristics.

• It is necessary to have a priori
knowledge.

• The method has a high
computational cost.

Artificial neural
networks (ANN)

• Number of layers is related with
changes in network structure and
then modify the results.

• Number of neurons per layer can
modify the efficiency of learning.

• Degree of connectivity between
neurons. A high number of
interactions can make the training
slower.

• Type of connection between
neurons.

According to these conditions the training
and the function of neuronal networks
will vary.

• ANN creates its own
representation of the
information.

• It has tolerance to fail and a
non-significant change in the
input data.

• ANNs can operate in real time.
They can develop their tasks in
different computers in parallel.

• It is difficult to teach an ANN
complex task.

• The teaching is slow and needs a
long time.

• The method requires a big data
for the training.

• ANNs do not allow interpret
what they have been learned. It
means that requires the
intervention of the programmer.
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Table 6. Cont.

Method Features Advantage Disadvantage

Unsupervised learning

K-means
clustering

• The quality of the clustering method
depends on similarity measure.

• Clustering assumes that each
instance belongs to exactly one
cluster.

• The data are reassigned to clusters
based on their distance from the
centroids.

• It is easy to understand and
adapt.

• This works well with large or
small data sets.

• The method is efficient,
powerful and performs well.

• The user must define the number
of clusters (K) in advance.

• The method is sensitive to the
noise.

• The result may vary based on the
clusters chosen at the beginning.

Dimensionality
reduction

• This method is useful when the
transformation of variables is not
possible.

• The model eliminates variables that
do not offer a new information in
data set.

• The model creates a new variable
from old variables.

• The method allows eliminate
irrelevant and redundant
variables which improves
computer performance what
reduce the time, the storage
space and the costs.

• Dimensionality reduction allows
diminish the complexity which
facilitates to understand the
model and its results.

• The elimination of
multicollinearity improves the
performance of the machine
learning model.

• In this method is easier to
visualize data when reduced to
very low dimensions such as 2D
or 3D.

• Possible loss of information by
variables eliminated that have a
connection with someone
important variable.

• Subtypes like PCA tends to find
linear correlations between
variables, which is sometimes
unfavorable.

• PCA fails in cases where
covariance and mean are not
enough to define datasets.

A common issue with all the ncRNA characterization models is finding the right
balance of specificity and sensitivity in order to yield better accuracy, due to all these
algorithms suffer from type I error false positive. It is suggested that a better combination
of sequence-intrinsic and non-species-specific features, deep learning models, and training
on larger datasets might address the challenges of accuracy for the classification of ncRNA
species. Besides, it is important to highlight that is difficult to determine which of the
methods is better than the other or which one has the best answer, since it depends on the
problem to be studied. However, each one has some conditions and features that can be
useful at the time of selecting the correct method considering the problem and the purpose,
and thus fitting the parameters and the variables to the type of model chosen.

5.3. Machine Learning in Brain
Machine Learning as a Diagnostic Tool of Neurodegenerative Diseases from MicroRNAs
and Long Non-Coding RNAs

Currently, there are several studies showing a high or low expression of miRNAs and
lnc-RNAs using biofluids in patients with some type of ND, in comparison with healthy
people [251]. As described in the second section, the presence of nc-RNAs in biofluids is
a great interest in the study of pathology, due to the ease of obtaining such samples. By
this way, the differential expression of nc-RNAs in biofluids between patients with ND and
healthy people can be used for the development and training of ML models in order to
diagnose these disorders quickly and accurately. For instance, Ludwing et al. conducted
a study selected the top miRNAs that were associated with AD in literature. A final set
of 21 miRNAs was selected. Among them, 18 miRNAs were significantly correlated with
neurodegeneration using by qPCR in samples of blood among AD patients compared to
three groups: mild cognitive impairment, other neurological diseases, and healthy controls.
As a result, the miRNAs were used as the input data to train different ML algorithms,
where the boosted tree was the model with best result for the AD classification and the
other three groups. This model reached an area under the curve (AUC) value of 87.6% in
differentiating AD patients from controls and 10 miRNAs were validated, in particular
miR-26a/26b-5p a well-studied brain-specific miRNA in synaptic function [14].
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Another research collected blood samples from 48 AD patients, and 22 healthy controls
and next-generation sequencing was used to evaluate the differential expression of such
samples, showing that 140 miRNAs had a significant change in expression levels. Among
these, 12 miRNAs involved in CNS development were selected, and used as inputs for a
ML model construction. The model was able to classify between AD patients and controls,
obtaining an accuracy of 93.3%. In addition, this ML model was also applied to treat AD
patients and other types of NDs (PD, multiple sclerosis, mild cognitive impairment), being
AD the worst classified with 73% and 82.8% for controls and other NDs. The majority
of 12-miRNA signature have not been identified or investigated so far in relationship to
AD [252].

Regarding the evaluation of lnc-RNA expression profiles, a study assesses this by
using data from public available Gene Expression Omnibus (GEO). From which 57 AD
samples and 57 healthy people (controls) were selected, the authors found 47 lnc-RNAs
differentially expressed. Yet, a panel of 9 lnc-RNAs strongly involved in brain development
were ultimately applied to the train a ML model in the 114 samples. A supervised method
was used to construct the lncRNA-based classifier for the classification of AD and healthy
control samples. The test achieved a classification of 49 patients out of 57 with AD and
51 out of 57 healthy control samples. The model had a predictive power accuracy of 87.7%.
Furthermore, to assess the robustness, the model was evaluated with more independent
samples, where it was able to classify 79 of 87 AD patient samples, and 62 of 74 healthy
control samples, which means a predictive accuracy of 87.6%. The LncSigAD9 was able
to differentiate between AD and healthy controls with high diagnostic sensitivity and
specificity both in the discovery cohort (86.3 and 89.5%) and the additional independent AD
cohort (90.8 and 83.8%) [143]. These scientific gains highlight the importance of lncRNAs
in brain aging and AD, which can serve as promising biomarkers for the diagnosis and
treatment of AD at earlier stages. In the Table 7, describes other studies that have shown
the use of lnc-RNAs and miRNAs as biomarkers. We illustrate the different methods of ML
to detect the types of NDs based on the expression profile of nc-RNAs and the accuracy of
the experimental, and among others.

Table 7. Machine Learning to detect neurodegenerative diseases from non-coding RNAs. The table describes the main
results in the diagnosis of NDs from studies reported in the literature and the accuracy in the algorithms of Machine
Learning that were employed to classify patients with NDs and healthy controls.

Year ML Method nc-RNAs
Included

Dysregulated
nc-RNAs

Biofluid
Sample

Technique
Used Patients Higher

Accuracy Study

2019
Supervised learning:
Decision trees
(Boosted tree model)

21 miRNAs 18 dysregulated
miRNAs Blood qPCR

Patients with AD in
comparison with three
groups: mild cognitive
impairment, other
neurological diseases, and
healthy controls

83.5% [14]

2018
Supervised learning:
Biomarker Optimization
Software System (BOSS)

15 miRNAs 5 dysregulated
miRNAs

Cerebrospinal
Fluid

Next-
generation
sequencing

40 patients with early-stage
PD vs. 40 healthy controls 82% [250]

2015

Supervised learning:
• Support Vector

Machines (SVM)
• Decision trees model
(J48, adaboostM1)

20 miRNAs 7 dysregulated
miRNAs Plasma sample Deep

sequencing
35 patients with AD vs.
35 healthy people 83–89% [123]

2013
Supervised learning:
Support Vector Machines
(SVM)

140 miRNAs 12 dysregulated
miRNAs Blood sample

Next-
generation
sequencing

48 patients with AD vs.
22 healthy controls 93.3% [252]

2018
Supervised learning:
Support Vector Machines
(SVM)

47 Lnc-RNAs 9 dysregulated
Lnc-RNAs

Data available
in GEO. Microarray

57 patients with AD vs.
57 healthy people (controls)
from the platform

87.7% [143]

These studies represent the important role that ML has recently emerged in the
detection of the different types of NDs. Although most ML studies have used protein-
coding genes to detect the diseases, nc-RNAs could also be suitable candidate as predictive
biomarkers for AD detection, since they are stable molecules in different biofluids and
could be detected at early stages for NDs. In addition, the process to obtain the molecules
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is minimally invasive. Therefore, these investigations show a breakthrough about the
approach in the diagnosis of different types of NDs, even more, when current mechanisms
of detection have a low accuracy.

Although the use of ML to aid diagnosis, prognosis and therapeutic development is
still in its infancy, this technology might in the future enable more precise, earlier diagnosis
of NDs on the basis of medical history and through the identification of more specific
diagnostic of nc-RNAs biomarkers. Further studies should assess the ability of the ML-
based predictive models applied to ND data, which will require selecting the right datasets
for training and validation and knowing how to deal with missing data. This will provide
a more accurate diagnosis that could be followed by a personalized treatment regimen
according to the nature of each NDs.

6. Conclusions

In this review we overview several nc-RNAs involved in neurological processes and
NDs. Some researchers have even shown that dysregulation of these molecules may be
measured from biofluids, which makes nc-RNA a promising biomarker candidate for
detecting NDs. In this regard, ML plays an outstanding role, since it can easily solve
the main concern in this respect, dealing with the vast amount of nc-RNAs that need to
be analyzed. Upon closer inspection of the current analysis of nc-RNAs with ML, this
approach shows fair accuracy by classifying healthy and disease samples, meaning that
differentiation patter is very clear in those scenarios. Yet, the specificity drops when the
models try to discriminate among different NDs, which is also common to the current
diagnostic methods that are based on clinical symptoms. Therefore, future work should be
focused on improving the chances of the ML models to identify the unique patter of each
disease. The latter may be performed, either by collecting more data samples to train the
model, by building models that can find smaller patterns from the training data or rather
a combination of both. For this purpose, caution should be taken in timing of treatment,
selection of the patients, and the lack of multifactor approach, since large inter-individual
variability is seen among patients and control which it could lead bias in the outcomes. In
addition, it is suggested to understand that the functional interaction between different
classes of nc-RNAs provide an additional layer of complexity, in which multiple ncRNA-
signaling pathways are involved. Still, we may experience a significant increase in the use
of nc-RNAs, and it will help towards achieving more personalized treatments and effective
precision medicine in the foreseeable future.
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