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Abstract: Background: Diminished emotion recognition is a known symptom in Parkinson (PD)
patients and subthalamic nucleus deep brain stimulation (STN-DBS) has been shown to further
deteriorate the processing of especially negative emotions. While emotion recognition generally refers
to both, implicit and explicit processing, demonstrations of DBS-influences on implicit processing are
sparse. In the present study, we assessed the impact of STN-DBS on explicit and implicit processing
for emotional stimuli. Methods: Under STN-DBS ON and OFF, fourteen PD patients performed
an implicit as well as an explicit emotional processing task. To assess implicit emotional processing,
patients were tested with a lexical decision task (LTD) combined with an affective priming paradigm,
which provides emotional content through the facial eye region. To assess explicit emotional processing,
patients additionally explicitly rated the emotional status of eyes and words used in the implicit
task. Results: DBS affected explicit emotional processing more than implicit processing with a more
pronounced effect on error rates than on reaction speed. STN-DBS generally worsened implicit and
explicit processing for disgust stimulus material but improved explicit processing of fear stimuli.
Conclusions: This is the first study demonstrating influences of STN-DBS on explicit and implicit
emotion processing in PD patients. While STN stimulation impeded the processing of disgust stimuli,
it improved explicit discrimination of fear stimuli.

Keywords: Parkinson’s disease; deep brain stimulation; subthalamic nucleus; emotion processing;
affective priming

1. Introduction

Deviant emotion production and recognition have been shown in patients with Parkinson’s
disease (PD) when compared to healthy controls and especially impaired recognition of emotional
facial expressions has been demonstrated [1–4]. In particular, diminished recognition of negative facial
emotions has been consistently observed in PD patients [3–8]. Furthermore, also emotion recognition
of circumscribed facial information, e.g., emotional states portrayed only in the eye region is impaired
in PD patients [9]. While implicit emotional processing, i.e., the automatic unconscious emotional
processing, is largely preserved in PD, as shown by a persistent sensitivity to emotional stimuli [9,10],
explicit (conscious) recognition and discrimination of emotional facial cues seem to be generally
damaged [1–8].
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Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a helpful therapeutic approach
to improve motor disturbances in PD [11–13] but also to have influences on cognitive and executive
domains [14–18]. However, studies investigating the effects of STN-DBS on emotion perception in PD
demonstrated rather heterogeneous results, with reports of unchanged explicit emotion recognition of
facial expressions (and emotional prosody) under deep brain stimulation (DBS) [18–21] or worsening
of explicit discriminating emotional faces under stimulation [22–24]. Precisely, a tendency for DBS to
cause deficits in facial discrimination of especially negative emotions as disgust [25,26], anger [27],
sadness [28], and fear [26,28,29] was observed. An approach to explain this effect of STN-DBS was
given by Geday et al. [23]. The authors stated that stimulation of the STN inhibits the activity in the
lateral fusiform gyrus, an area which is generally activated by emotional facial expressions. This would
lead to significantly altered emotion perception of facial expressions while emotional assessment per
se would not be affected by DBS. Hence, explicit emotional processing would be largely diminished in
PD patients under DBS, but implicit emotional processing might not be affected by stimulation.

The studies mentioned above exclusively investigated the influence of STN-DBS on explicit
discrimination and rating abilities and left out automatic implicit processing of emotional states.
Only Castner et al. [30] measured the outcome of DBS on implicit emotional processing in terms of
semantic and affective priming in PD patients. Using verbal material, they found unimpaired automatic
(implicit) lexical-semantic and affective processing independent from DBS, while STN-DBS improved
controlled, attentional priming in PD patients. The authors suggested that STN-DBS modulates basal
ganglia-thalamocortical circuits involved in controlled attentional processes but proposed automatic
priming to be unaffected by stimulation. In a previous study [9], we investigated both, implicit and
explicit emotional processing of words and circumscribed facial regions in non-stimulated PD patients.
Here, results showed that PD patients were impaired in the explicit discrimination of both, emotional
words and of emotional facial information that was displayed solely in human eyes. Additionally,
largely preserved implicit emotional processing of this stimulus material was found with specific
altered processing for the emotions happiness and disgust.

In the present study, we thus assessed the impact of STN-DBS on implicit and explicit processing
of emotional words and facial eye cues. We tested patients with an affective priming paradigm and
an explicit emotion discrimination task under STN-DBS ON and OFF for the emotions fear, disgust,
happiness, and a neutral condition. Based on previous data [9], we expect more pronounced DBS
associated alterations selectively for the emotions happiness and disgust.

2. Methods

2.1. Participants

Fourteen PD patients with DBS of the STN (mean age: 61.9± 11.46 years, 4 female; 12 right-handed)
were recruited from the Departments of Neurology and Stereotactic Neurosurgery at the University of
Magdeburg, Germany. The diagnosis of PD was confirmed by a neurologist specialized in movement
disorders. Each patient had been treated with STN-DBS for at least 3 months (mean duration since
surgery: 20.86 months (range 3–77 months)). All patients, except for two, were taking supplementary
dopaminergic medications in conjunction with DBS (Table 1). All patients were tested under two
DBS conditions, while dopaminergic medication was ON (tested conditions: DBS-ON/Med-ON,
DBS-OFF/Med-ON). All patients had chosen DBS surgery because their medications were no longer
providing optimal control over their motor symptoms.

In all patients, electrodes were placed bilaterally in the STN. The surgical procedure has been
described previously [31]. Macroelectrodes (Medtronic Model 3389, Medtronic, Minneapolis, MN,
USA) with four platinum–iridium cylindrical surfaces (diameter 1.27 mm, length 1.5 mm, edge-to-edge
separation of 0.5 mm) were placed into the STN using MRI-guided stereotaxy and intraoperative
microelectrode recordings. The coordinates for macroelectrode placement was based on direct
visualization of the STN on T2-weighted magnetic resonance images. Final electrode placement
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was based on microelectrode recordings and confirmed intraoperatively with macrostimulation after
implantation of the DBS electrode. Selection of final bipolar contacts and stimulation settings were
based on an individual basis to optimize control over clinically manifested motor symptoms.

Patients were excluded from the study if they had a history of neurological (others than PD),
or psychiatric conditions such as untreated or unstable mood disorder, bipolar affective disorder,
schizophrenia or other condition known to compromise executive cognitive functioning, or an untreated
or unstable medical condition known to interfere with cognitive functioning (e.g., diabetes, pulmonary
disease). All patients had normal or corrected-to-normal vision. Prior to participating in the study,
all patients provided informed consent. The study was approved by the local University´s ethics
committee (number: 96/15, date: 20.08.2015) and was conducted in accordance with the Declaration
of Helsinki.

Table 1. Demographic and clinical characteristics of patients.

Patient
# Gender Age

Disease
Duration
(years)

Time Since
Surgery

(months)

LED
(mg)

UPDRS-
III ON

UPDRS-
III OFF

DBS
Contacts

(l/r)

DBS Voltage (V),
Frequency (Hz),
Pulse Width (µs)

left/right

1 female 74 16 3 225 16 38 1 − G+ / 10
− G+

2.5 V, 130 Hz,
60 µs / 2,0 V;

130 Hz, 60 µs

2 female 59 13 4 500 20 2 − 3 − G+ /
10 − 9+

2.8 V, 60 Hz,
210 µs / 1,5 V,
60 Hz, 210 µs

3 male 67 18 77 630 9 3 − G+ / 4 −
5 − 6+

4.8 V, 130 Hz,
60 µs / 3,4 V,

130 Hz, 60 µs

4 male 65 16 15 325 18 32 G+ 0 − /
8–9 − G+

2.7 V, 150 Hz,
60 µs / 3,1 V;

150 Hz, 60 µs

5 female 71 20 7 350 23 38 1–2 − G+ /
10 − G+

1.3 V, 130 Hz,
60 µs / 1,5 V,

130 Hz, 60 µs

6 male 61 10 16 850 12 32 2 − G+ / 10
− G+

3.6 V, 110 Hz,
90 µs / 3,4 V,

110 Hz, 90 µs

7 female 66 11 77 200 16 27 1 − G+ / 6 −
G+

2.0 V, 190 Hz,
60 µs / 2,5 V,

190 Hz, 60 µs

8 male 63 10 4 200 4 19 2 − G+ / 10
− G+

3.1 V, 130 Hz,
90 µs / 3,1 V,

130 Hz, 90 µs

9 male 36 6 14 0 13 38 2 − G+ / 10
− G+

2.5 V, 200 Hz,
90 µs / 2,7 V,

200 Hz, 90 µs

10 male 53 10 54 385 15 29 1 − 2+ / 9 −
11+

2.5 V, 180 Hz,
60 µs / 4,4 V,

180 Hz, 60 µs

11 male 74 13 8 800 22 1 − G+ /
5–6 − G+

4.5 V, 130 Hz,
60 µs / 5,0 V,

130 Hz, 60 µs

12 male 41 7 6 350 19 32 2 − G+ /
8–10 − G+

2.0 V, 130 Hz,
60 µs / 2,1 V,

130 Hz, 60 µs

13 male 66 8 3 600 11 26 0 − G+ / 8 −
G+

1.5 V, 130 Hz,
60 µs / 1,5 V,

130 Hz, 60 µs

14 male 70 6 4 0 17 24 1 − 2 + / 9 −
10 +

3.5 V, 130 Hz,
60 µs / 3,5 V,

130 Hz, 60 µs

LED = L-Dopa equivalent daily dose in mg. UPDRS-III = Unified Parkinson disease rating scale− III (motor evaluation).
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2.2. Experimental Procedure

PD patients completed two counterbalanced sessions of two tasks (implicit and explicit task),
once with DBS being ON and once with DBS switched OFF. The order of the ON/OFF testing was
pseudorandomized across patients (odd-even-even-odd), so that half of the patients started in the
ON condition. After switching the stimulator device ON or OFF, respectively, a break of 45 min was
included before they started the tasks. Within each DBS session, the order of the tasks was fixed with
the implicit task always preceding the explicit task. This ensured that motor symptoms had mainly
subsided after activating stimulation and that the increase in motor symptoms had stabilized after
stopping stimulation [32,33].

2.3. Material

In an implicit lexical decision task (LDT) participants had to evaluate the lexical status of a
presented letter string and to decide whether it is a correct word or a pseudo-word. This target word
was preceded by an emotionally valenced facial eye region (prime). During this LDT, 192 letter strings
(96 German words and 96 pseudo-words) were used. Neutral target words were taken from the “Berlin
Affective Word List Reloaded” (BAWL-R) [34] when they showed a valence rating of 0. Emotional
target words were extracted from the “Discrete Emotion Norms for Nouns: Berlin Affective Word List”
(DENN-BAWL) [35]. Only words were selected with an emotional intensity score equal or superior to
3 according to Briesemeister et al. [35]. The 96 target words consisted of four emotional categories:
24 happiness-related (e.g., “LIEBE”; (“LOVE”)), 24 disgust-related (e.g., “PARASIT”; (“PARASITE”)),
24 fear-related (e.g., “PANIK”; (“PANIC”)), and 24 neutral target words (e.g., “WOCHE”; (“WEEK”)).
Pseudo-words were generated from the BAWL-R word list. Here, for neutral words with a length of
four to eight letters, single vowels or consonants were interchanged to create new pronounceable but
meaningless letter strings (e.g., “POLITIK”—“PILITOK”).

Facial regions around the eyes were extracted from the stimulus set “60 Faces Test” developed
by Ekman and Friesen [36] and served as emotional primes. The emotional primes consist of the
six basic human emotional facial expressions (happiness, disgust, fear, surprise, sadness, anger and
neutral condition). In the present study, we selected four different persons (two female, two male)
with their relevant facial expressions (happiness, fear, disgust, neutral). The whole-face images were
then adjusted and cut so that only the eye regions were visible. The resulting 16 prime pictures were
presented in a size of 8.6 × 3 cm (3.4◦ visual angle). In the LDT, these eye region pictures (primes) and
target words (words or pseudo-words) were combined in a pseudo-randomized manner: half of the
prime-target pairs with real German words were constructed to be emotionally congruent, the other
half to be incongruent.

2.4. Task

The experiment was performed with Presentation (Neurobehavioral Systems, Inc., Albany,
CA, USA). Patients were seated in front of a computer and looked at a fixation cross in the middle of
the screen.

Implicit task: The implicit task consisted of 192 trials with a LDT; after half of the trials (96) a break
was included; the patients decided how long this break would last. Depending on the understanding
of instruction, the length of the break and the response speed of the patients, this task was about
20–25 min. Each trial started with a fixation cross for 500 ms followed by an emotional prime (eye
region of a face) displayed for 150 ms. Then the target stimulus (word or pseudo-word) was presented
until the patient gave a response. Patients had to decide whether this target word was a real German
word or a pseudo-word by pressing the corresponding mouse button. Afterward, the next trial started
(Figure 1).
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Figure 1. Affective priming paradigm including (A) the lexical decision task (LDT) of the implicit task
and (B) the explicit task with the evaluation of emotional stimuli. (A) Each trial in the LDT started
with a fixation cross that was presented for 500 ms. An emotional prime (the adjusted eye region
of Ekman-faces-photographs) followed and was displayed for 150 ms followed by a break of 50 ms.
Subsequently, the target stimulus was presented without a time limit. The participants were supposed
to decide as fast as possible whether this target was a real German word or a pseudo-word and to press
a corresponding button on a computer mouse. After the button press, the next trial started. (B) In the
second task, participants were requested to explicitly decide which emotional category the presented
stimulus material belonged to. Each trial started with a fixation cross that was presented for 500 ms.
After a further 50 ms break, the stimulus was presented. Participants were instructed to press one of
the four buttons on a keyboard which corresponded to the emotional category of the stimulus as fast as
possible. No time limit was given. First, the eye regions were presented, afterward the real German
words followed.

Explicit task: The subsequent explicit task consisted of 112 trials and contained the same stimulus
material (words and pictures) as in the implicit task (16 faces, 96 real German words). Depending on
the understanding of the instruction and the patients´ time to decide, this task lasted about 15 min.
The trial started with a fixation cross (500 ms) followed by the presentation of the target (eye or word).
First, the emotional eyes were presented, followed by the words. Patients had to explicitly decide
which of four emotional categories (fear, disgust, happiness, or neutral) the target stimuli belonged to
best. They were instructed to press a corresponding button on a keyboard as fast as possible; however,
no time limit was established for the decision. Afterward, the next trial started (Figure 1).
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2.5. Statistical Analysis

We assessed reaction times (RT) and response accuracies (RA) for all four emotions for button-press
answers of patients in the implicit and the explicit task. For the implicit emotional processing,
repeated-measures ANOVAs on RT and RA with the within-subjects factors valence of the target word
(fear/disgust/happiness/neutral), congruence between prime and target (congruent/incongruent) and
DBS (DBS ON/ OFF) were conducted.

For the explicit emotional processing, a repeated-measures ANOVA with the within-subjects
factors valence of the target word (fear/disgust/happiness/neutral), condition of the stimulus (words/faces)
and DBS (ON/OFF) was applied.

3. Results

3.1. Implicit Emotional Processing

RT: A repeated-measures ANOVA on RT showed a significant main effect of the factor valence
[F(3,39) = 7.61; p < 0.001] which was driven by longest RT for the emotional category disgust
[M = 1233.98 ± 356.49 ms] and shortest RT for happiness [M = 1066.76 ± 283.62 ms], (Figure 2).

Figure 2. Mean reaction time (RT) values (in ms) for performance in the implicit task for patients. Error
bars show standard errors (SE).

Following our hypothesis, subsequent ANOVAs with the factors congruence between prime and
target (congruent/incongruent) and DBS (DBS ON/ OFF) were conducted for disgust and happiness
separately. Analysis revealed no interactions for happiness, but a significant trend for an interaction
of the factors congruence x DBS for disgust [F(1,13) = 4.19; p = 0.06] (Figure 3a). Patients answered
incongruently primed disgust-connoted words significantly slower under DBS of the STN (ON vs. OFF:
T(13) = 2.3; p = 0.039), (Figure 3A). Detailed analysis which was conducted analogously to previous
investigations [9] showed that DBS particularly slowed down RT for happy-disgust pairings (ON vs.
OFF: T(13) = 2.06; p = 0.06) and neutral-disgust pairings (T(13) = 3.05; p = 0.009) (Figure 3B).
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Figure 3. (A) Mean RT values (in ms) for congruent and incongruent disgust-connoted stimuli in the
implicit task for Parkinson’s disease (PD) patients under deep brain stimulation (DBS) (light grey) and
when DBS is switched OFF (dark grey). (B) Mean RT values for disgust-connoted prime-target pairs in
the implicit task for patients under DBS (light grey) and when DBS is switched OFF (dark grey). Error
bars show SE. Significant differences are labeled with (*).

RA: A repeated-measures ANOVA on RA revealed a significant main effect of the factor valence
[F(3,39) = 6.44; p = 0.001] only, which was driven by significantly more errors for disgust. RA rate
for disgust was lowest compared to all other emotional categories [M = 79.46 ± 20.2%]. Subsequent
separate ANOVAs for disgust and happiness revealed neither significant main effects nor interactions.

3.2. Summary Implicit Task

Performance in the implicit task revealed a general valence effect driven by the longest RT and
more errors for disgust targets. DBS slowed the processing of incongruently positively or neutrally
primed disgust-connoted target words, specifically for positively or neutrally primes.

3.3. Explicit Emotional Processing

RT: A repeated-measures ANOVA on RT revealed a significant main effect of the factor valence
[F(3,39) = 6.24; p = 0.001] with significantly longer RT for disgust-related stimulus material and a
significant main effect of the factor condition [F(1,13) = 14.23; p = 0.002] showing that answers for words
were generally faster than for eyes (Figure 4).

Figure 4. Mean RT values (in ms) of words and eyes for performance in the explicit task for patients
under DBS (light grey) and when DBS is switched OFF (dark grey). Error bars show SE.

Following our a priori hypothesis, subsequent ANOVAs with the factors congruence between
prime and target (congruent/ incongruent) and DBS (DBS ON/ OFF) were conducted for disgust and
happiness separately. Analysis confirmed the main effect for condition (disgust [F(1,13) = 10.2; p = 0.007],
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happiness [F(1,13) = 7.25; p = 0.018]), and further revealed a significant condition x DBS interaction for
happy stimuli [F(1,13) = 5.97; p = 0.03]. Thus, while for all emotions words were answered faster than
eyes, DBS facilitated happy words evaluation and interfered with the processing of happy eyes.

RA: A repeated-measures ANOVA on RA revealed a significant main effect of the factor valence
[F(3,39) = 8.48; p < 0.001] due to decreased RA rates for the emotional category disgust and a
significant main effect of the factor condition [F(1,13) = 25.91; p < 0.001] showing that eyes generally
elicited more errors than words. Analysis also revealed a significant main effect of the factor DBS
[F(1,13) = 4.84; p = 0.04] demonstrating a general decrease in response accuracies under STN-DBS
[ON: M = 67.11 ± 17.29; OFF: M = 70.05 ± 15.22]. Furthermore, results showed a significant valence
x condition interaction [F(3,39) = 4.01; p = 0.014], indicating higher RA rates for words than for eyes
(Figure 5). Importantly, analysis also revealed a significant valence x DBS interaction [F(3,39) = 6.95;
p = 0.001]: independent from the stimulus condition, DBS of the STN differentially influenced RA rates
for selected emotions (Figure 6). STN-DBS ON compared to OFF significantly worsened RA rates for
disgust-connoted stimulus material (T(13) = 4.82; p < 0.001) and, in contrast, improved RA rates for
fear stimuli (T(13) = 2.44; p = 0.03).

Figure 5. Mean RA values (in %) of words and eyes for performance in the explicit task for patients
under DBS (light grey) and when DBS is switched OFF (dark grey). Error bars show SE. Significant
differences are labeled with (*).

Figure 6. Mean RA values (in %) for explicit evaluation of emotional stimuli for patients under DBS
(light grey) and when DBS is switched OFF (dark grey). Error bars show SE. Significant differences are
labeled with (*).
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3.4. Summary Explicit Task

Irrespective of DBS mode, patients showed prolonged RTs and highest error rates for the
discrimination of disgust stimulus material (main effect of valence). Furthermore, words were
generally answered faster than eyes, and eyes elicited more rating errors than words (main effect of
condition). Finally, DBS decreased RA rates for emotional ratings (main effect of DBS). Importantly,
DBS selectively diminished explicit processing of the emotion disgust but had an ameliorating effect
on discriminating fear stimuli (valence x DBS interaction).

4. Discussion

In this study, STN-DBS influenced implicit and explicit emotion processing of primed semantic
and facial stimuli in PD patients. Depending on the valence of the emotional stimuli and the
task condition, patients benefitted or suffered loss from STN stimulation. We observed a general
deterioration for disgust-connoted material under STN-DBS but also stimuli-dependent improvement
in the explicit processing of fear stimulus material. Thus, STN-DBS did not generally manipulate
emotion processing but did selectively interpose according to the valence of the stimuli. Moreover,
the observed performance differences under DBS ON when compared to OFF rather apply to RA,
although considerable effects of DBS on RT were visible. STN-DBS had no global influence on the
speed of responding for all emotions because patients did not generally answer faster or slower under
stimulation. Instead, DBS selectively slowed processing of disgust stimuli.

In addition, we found considerably poorer performance in the perception of disgust for both,
implicit and explicit emotion processing, and this effect even worsened under DBS. Generally, this
finding is in good agreement with recent studies reporting diminished disgust processing under
DBS using pictures of whole faces or other stimulus modalities [25,26,37]. We can broaden the state
of literature by investigating the influence of STN-DBS on emotion recognition out of eyes only.
Aiello et al. [25] found diminished disgust discrimination abilities under DBS for facial expressions
and emotional prosodic stimuli in PD patients but emphasized that impaired disgust recognition was
prominent also before DBS implant in patients. Impaired processing of disgust thus is related to the
neurodegenerative disease itself rather than just to the impact of STN-DBS. Stimulation is not capable
to reduce or even eliminate this disgust-related deficit, even when these disgust-associated stimuli
are primed with valence-congruent or -incongruent cues. In the present study, we found an inverse
priming effect for incongruently primed disgust target words when stimulation was OFF (implicit
task). This effect is displayed in terms of shorter RT for these incongruent trials. There are different
explanations for the processing advantage of incongruently primed stimuli, see Wagenbreth et al. [38]
for a detailed review. DBS neutralized this inverse priming effect by slowing RT for disgust target
words, which again emphasizes the deteriorating effect DBS has on disgust perception.

Disgust is an emotion that is evidently hard to process in PD patients, irrespective of DBS mode and
even independent of the stimulus extent. Several studies support the special role of disgust [4,10,39,40],
indicating it as a negative but nonetheless non-threatening emotion in social contexts. Moreover,
the emotion disgust is predominantly affected by the culture a society lives with and is dependent
on what people perceive as “disgusting”. A possible contributing and discriminatory factor to our
experimental set-up (in which we only use eyes as facial stimuli) might be that disgust —as well as
happiness—is mainly and better processed by seeing the mouth of a face, rather than the eyes [41,42].

This might also be a contributing factor to explain our a priori expected but missing significant
effects of DBS on happiness processing. We did not find an influence of stimulation on implicit
processing and only marginal interfering of STN stimulation on the explicit evaluation of happy words
and eyes. Generally, a valence effect for happy stimuli is known, with shorter RT and better RA for
positive associated (happiness-connoted) stimuli [35,43]. In accordance, Ibarretxe-Bilbao et al. [44]
found a ceiling effect for the recognition of happiness stimuli both for PD patients and for healthy
participants. Hence, the processing of happy stimuli is per se easier when compared to negative stimuli
(e.g., disgust) and patients might have generally profited from this effect, irrespective of DBS mode.
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Moreover, Polosan et al. [45] demonstrated that STN stimulation increased positive and decreased
negative ratings to low-intensity positive and negative stimuli, suggesting an influence of DBS of the
associative-limbic STN on negative cognitive biases and negative appraisals of emotional stimuli.

Functional neuroimaging studies investigating the neural basis of emotion recognition showed
the involvement of the amygdala in the processing of fear [39,46,47]. Patients with bilateral amygdala
damage, for example, show relatively inaccurate recognizing abilities of fear from faces [48], potentially
based on a lack of attention payed to the eye regions of faces. A functional network including the
amygdala and both, the orbitofrontal cortex (OFC) and anterior cingular cortex has been suggested to
underlie such processing of fearful expressions, with activation of the inferior prefrontal cortex [49,50].
Due to basal ganglia-thalamocortical circuitries, we assume STN-DBS to have an influence on the
modulation of the amygdala and suggest a relationship between amygdala functioning and altered fear
emotion processing observed in PD patients with STN-DBS. Accordingly, we observed a significant
trend for RA improvement of fear words and eyes in the explicit task under stimulation. This is in
contrast to previous studies reporting reduced fear recognition in stimulated PD patients [22,29,51]
and to other reports showing no effect of STN-DBS on fear processing [19,20].

In this context and as a possible explanation, modifications to the non-motor basal ganglia-
thalamocortical circuitry and the emotional functions of the OFC and amygdala through DBS and
L-Dopa medication have been proposed. The interaction between L-Dopa and STN-DBS plays a
crucial role for patients because in most cases dopaminergic medication intake is continued despite
DBS implant in patients. Actually, in the presented PD patient sample, only two out of fourteen
patients did not receive supplementary dopaminergic medication to STN-DBS (Table 1). L-Dopa
could overdose the mesolimbic projections towards the amygdala and OFC and thus lead to altered
amygdala activation in response to emotion perception, for instance of fear [25,37,52]. DBS would
compensate for this over-activation by decreasing OFC activity and thereby restoring the necessary
OFC-amygdala interaction [26]. L-Dopa would compensate for the decreasing DBS-effect through its
respective effects on the OFC and amygdala which may explain the fear recognition improvement
when both therapeutic measures are “ON”.

Our results reveal a greater impact of DBS on explicit rather than on implicit processing.
Investigations of DBS outcome on implicit emotion processing are rare. To our knowledge, only
Castner et al. [30] measured the influence of DBS on implicit emotional processing in terms of semantic
and affective priming in PD patients but used words as stimulus material, not faces. The authors
reported preserved automatic lexical-semantic and emotional processing in PD patients with STN-DBS,
but no direct influence of DBS on implicit processing was detected, which is mostly likewise to our results.
Due to preserved priming effects for short stimulus onset asynchronies in PD patients, irrespective of
STN-DBS conditions, Castner and colleagues concluded that the automatic activation of emotional
evaluations is unimpaired in PD, which would be due to the functioning of basal ganglia-thalamocortical
circuitry, linking structures important for facial emotion recognition. The disruption of these loops
through neurodegenerative processes is thought to contribute to the accompanying cognitive decline in
PD, including impaired emotional processing abilities [53]. Because implicit verbal processing in PD is
intact even under STN-DBS, it can be concluded that the basal ganglia-thalamocortical circuits are likely
not to be involved in the automatic activation of emotion evaluations. We can expand these findings
for nonverbal circumscribed facial stimulus material. Moreover, we assume that implicit emotional
processing is still intact in PD since it requires no cognitive demands as it is the case in conscious
explicit discrimination of emotions. Basal ganglia-thalamocortical activation would be necessary if
cognitive-driven decisions are requested. Since the effect of STN-DBS was more pronounced on explicit
rather than on implicit emotion processing in the present study, we can confirm this assumption.

Methodological differences (e.g., medication states, early vs. late PD stages of the patient samples,
different times since surgery) might have contributed to the observed differences between our and
recent studies. However, we would like to stress the selective influence STN-DBS can have on emotion
discrimination and the importance to differentiate between implicit and explicit emotion processing.
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Future studies investigating the impact of DBS on emotion discrimination out of single facial regions
might help to shed light on the efficacy of STN stimulation in emotion perception. The findings of this
present study contribute to the importance of investigating DBS outcome in patients in the context of
clinical care and post-surgical support. We demonstrated deteriorated recognition of disgust out of faces
and words after DBS surgery. This might have implications for communication and social living for
relatives, nurses or caregivers of patients. Precautionary arrangements and accords should be entered
to ensure optimal cooperation and well-being for patients and to avoid misconceptions when dealing
with disgust-connoted objects. Patients should be supplied with adequate information about the
possible side or non-motor adverse effects after STN-DBS, like possibly deteriorated processing abilities
of negative emotions, which, for example, might lead to an incautious handling of disgust-associated
and possibly dangerous materials.

The reported findings have to be regarded under the following possibly constraining aspects.
First, we tested patients under supplementary medication which might have influenced the results [54].
However, measures with and without DBS were applied under the same medications states, so results
for both conditions should be comparable. Second, pre-surgical testing of emotion recognition would
have been favorable to directly draw comparisons over time and surgery. Our study provides
information of a rather small sample size with fewer women than men. In future studies, a gender-
and age-matched patient sample would be recommended to further assess differences in emotion
performance after DBS.

5. Conclusions

In summary, this is the first study to investigate the influences of STN-DBS on implicit and explicit
emotion processing in patients with PD. DBS affected explicit emotional processing more than implicit
processing and had a more pronounced effect on RA than on RT. While STN stimulation generally
impeded the processing of disgust-connoted stimuli, we found an ameliorating effect on RA rate in the
explicit evaluation of fear stimuli.
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