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Summary
Background: Escherichia coli induces the heat shock response to a temperature up-shift which is
connected to the synthesis of a characteristic set of proteins, including ATP dependent chaperones
and proteases. Therefore the balance of the nucleotide pool is important for the adaptation and
continuous function of the cell. Whereas it has been observed in eukaryotic cells, that the ATP level
immediately decreased after the temperature shift, no data are available for E. coli about the
adenosine nucleotide levels during the narrow time range of minutes after a temperature up-shift.

Results: The current study shows that a temperature up-shift is followed by a very fast significant
transient increase of the cellular ATP concentration within the first minutes. This increase is
connected to a longer lasting elevation of the cellular respiration and glucose uptake. Also the
mRNA level of typical heat shock genes increases within only one minute after the heat-shock.

Conclusion: The presented data prove the very fast response of E. coli to a heat-shock and that
the initial response includes the increase of the ATP pool which is important to fulfil the need of
the cell for new syntheses, as well as for the function of chaperones and proteases.

Background
Bacteria, as all kind of organisms, respond to a sudden
increase of the temperature by a heat shock response
which induces a specific set of proteins. This stress system
belongs to the best-studied cellular responses. As the pro-
tein composition of a cell determines substantially the cel-
lular functions, the heat shock response is mainly
understood in terms of protein synthesis and
composition.

The heat shock response of E. coli is mediated by the alter-
native sigma factor σ32 (rpoH gene product) and leads to
induction of more than 20 heat shock proteins [1,2]. In
difference to other stress responses of E. coli which in a
regulatory cascade first lead to synthesis of the respective
sigma factors which then, consecutively, direct the tran-
scription of their genes, the transcriptional induction of
the heat shock proteins can start very fast after a heat
shock. This first fast synthesis of heat shock proteins is
transient, followed by an adaptation period with a lower
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rate of heat shock protein synthesis and later reaches a
new steady-state level [1,3]. This is because a cell also
under non-stress conditions contains a set of a low
number of σ32 molecules (about 10–30 molecules; [4,5]).
Those molecules although possessing a high binding
affinity for the RNA polymerase [6], however, are rarely
transcriptionally active, because of sequestering by bind-
ing to DnaK, which together with its cochaperones DnaJ
and GrpE associates with σ32 [7,8] and mediates its degra-
dation by the FtsH protease [9]. The release of σ32 from the
DnaK chaperone is regulated by the amount of missfolded
proteins which may accumulate either when existing pro-
teins lose their structure, or when new-synthesised pro-
teins do not fold properly, which is the characteristic
intracellular signal of a heat shock [10] but also may occur
under strong overexpression of recombinant proteins
[11]. Once released from DnaK, σ32 binds to RNA
polymerase, is stabilised and initiates the synthesis of the
heat shock proteins. This mechanism due to the high
affinity of σ32 for binding to RNA polymerase results in
the synthesis of heat shock proteins to a concentration of
about 5 % of the total cellular protein [1].

The physiological response of E. coli towards a heat shock
is more complex than just the synthesis of heat shock pro-
teins, including transient growth stop, changes in the cell
membranes due to changes in the ratio of lipids and inte-
gral membrane proteins [12], and probably also transient
DNA relaxation [13]. In higher eukaryotes, one of the
most immediate effects of a heat shock is an extensive dis-
ruption of the cytoskeleton [14,15]. From the metabolic
side already early studies have shown that the mainte-
nance energy requirement increases with increasing
growth temperature [16-19] and the yield coefficient YX/S
was observed to decrease, possibly in connection to the
higher protein turnover [20]. A number of authors also
reported increased respiration rates in relation to the spe-
cific growth rate at higher temperatures, e.g. for A. aero-
genes (Klebsiella pneumoniae) [21]. (referred by [22])

The group of more than 30 heat shock proteins involves
mainly proteases and chaperones, being involved in the
degradation of improper folded proteins. The function of
these proteins is connected to the hydrolysis of ATP, such
as proteolysis by Lon, FtsH and Clp in E. coli [23-25], and
the action of the chaperone complexes GroEL/ES and
DnaK/J/GrpE [26,27]. Although a number of in vitro stud-
ies have been performed revealing this ATP dependence
(e.g. [28]), only limited information is available about the
response of the in vivo ATP level after a temperature shift.
Different authors (e.g. [29-31]) found in higher eukaryo-
tes a fast decrease of the ATP level to less than 50 % after
a temperature up-shift parallel to induction of heat shock
proteins.

In E. coli the ATP concentration has been mainly followed
in steady state conditions. For instance it was reported to
increase several fold in correlation with the specific
growth rate [32,33]. In response to stress ATP or the total
adenylate concentration have been followed after cold
shock, where both decrease [34], after UV radiation,
where the ATP level transiently increased twofold [35],
with a following decrease in recA+ cells, which the authors
relate to the action of substrate level phosphorylation.
Also the levels of ATP and other nucleotides have been fol-
lowed after induction of recombinant proteins by IPTG
[36].

Studies with an appropriate short-time resolution of the
ATP response in heat-shocked E. coli cells have not been
published, although those data might be valuable to bet-
ter understand the in vivo function of heat shock induced
chaperones and proteases.

Results
In response to a heat shock E. coli strongly induces the
production of a number of proteins with protecting and
degrading functions, which are ATP dependent. However,
most of the data on protease and chaperone function were
obtained by in vitro studies, and there are still nearly no
data available indicating, that there is a sufficient level of
ATP available after a heat shock. Rather confusing results
from eukaryotes suggest, that the ATP level and the energy
charge after heat shock quickly decrease, which could be
seen as contradictory to the optimum conditions for the
function of these proteins. Therefore it was the aim of this
study to measure the response of the pool of adenosine
nucleotides following a temperature up-shift in E. coli.

Aside from the measurement of the adenylate phosphor-
ylation status we wanted to discuss the results in relation
to the cellular metabolism and respiratory activity. There-
fore the experiments were performed in a bioreactor,
which allowed the measurement of oxygen consumption
and carbon dioxide formation, as well as a fast sampling
of nucleotides and medium samples.

All cultivations were performed with the E. coli K-12 strain
W3110, which was a major strain in the evaluation of the
E. coli stress responses. As indicated in the materials and
methods section the cultivations were carried out on min-
eral salt medium with glucose as carbon source to avoid
complex reactions in view of amino acid availability. The
medium used was originally designed for high cell density
fermentations, and therefore insures, that all salts are
maintained at appropriate concentrations up to the end of
the experiment.

The experiments were performed with a temperature shift
from 30°C to 42°C. In this range the viability of the cell
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is not significantly affected, although the heat shock
response is strongly induced. The basic growth behaviour
and parameters are shown in Fig. 1 and Table 1, respec-
tively. Cultivations started with a batch phase at 30°C for
about 11 hours, corresponding to 6 generations, to ensure
a steady state of cellular parameters. The specific growth
rate µ was determined to be 0.35 h-1. By following the glu-
cose and acetate concentrations (see Fig. 1) the specific
rate for glucose uptake (qS) was determined to be 5.1
mmol g-1 h-1 and the specific acetate production rate (qA)
was 2.5 mmol g-1 h-1. The temperature up-shift to 42°C
was performed at a cell density of OD500 = 3 (correspond-
ing to a dry cell weight of 0.675 g L-1) within 3 min. After
the temperature shift the cultivation was continued for
one hour. Rapidly after the temperature shift the cells start
to increase the specific growth rate to 0.70 h-1 and corre-
spondingly the rates for glucose uptake and acetate pro-
duction (see Table 1).

During growth at 30°C the ATP concentration was
detected to be about 1.5 µmol per OD500. Concentrations
of the other lower phosphorylated adenosine nucleotides
were very low during this phase and the resulting ade-
nylate energy charge (EC) was above 0.95. Nucleotide
samples were collected in five minute intervals. The ATP
concentration increased to 2.75 µmol per OD500 immedi-
ately after the temperature shift to 42°C and also the ADP
concentration was found to transiently increase signifi-
cantly (see Fig. 2). After the transient increase the cellular
concentrations of both nucleotides decreased and finally
we detected a slight increase of AMP towards the end of
the cultivation. Interestingly, the elevation of the ATP
level was connected to a total increase of all adenosine
phosphates, resulting in a slightly lowered EC to 0.8 (see
Fig. 3). However, similar to ATP, also the sum of adenos-
ine phosphates increased only transiently, approaching to
the pre-shift level about 20 min after the temperature up-
shift. The slight increase of AMP to the end of the cultiva-
tion influenced the energy charge, which decreased to
0.65. The transient increase of ATP after the temperature
up-shift is connected to a high respiratory activity (Fig.
1C) and occurs in the phase, where also the flux of glucose
is rapidly increasing.

In alternate series of experiments the temperature was
shifted either from 37°C to 48°C, or from 35°C to 55°C
which leads to growth inhibition and cell death. In both
cases the temperature up-shift caused a strong transient
increase of respiration and, at least in the first case we also
found the rapid increase of ATP, however, the following
reduction of the ATP level was much faster (data not
shown).

Further it was investigated how the time kinetics of the
adenosine nucleotides are related to the expression

Table 1: Cultivation parameters of parameters from batch 
cultivations of E. coli W3110 at 30°C and after a temperature 
shift to 42°C. The data are average values from two independent 
fermentations.

Parameter before temperature shift after temperature shift

µ [h-1] 0.38 0.71
qS [mmol g-1 h-1] 5.1 17.4
YX/S [g mol -1] 75.6 41.4
qA [mmol g-1 h-1] 2.5 8.0
YA/S [mol mol-1] 0.30 0.51
YCO2/S [mol mol-1] 1.86 0.80
YO/S [mol mol-1] 1.76 0.85

Batch cultivation of E. coli W3110 with a temperature up-shift performed at time 0 by switching the temperature set-point from 30 to 42°CFigure 1
Batch cultivation of E. coli W3110 with a temperature up-
shift performed at time 0 by switching the temperature set-
point from 30 to 42°C. (A) OD500 (❍ ), temperature (—); (B) 
glucose (�), acetate (�); (C) qO2 (❍ ), qCO2 (Ќ), RQ (�), (D) 
pH (�), relative units of ammonia added (+). The grey area 
indicates the time period of about 5 min during which the 
temperature increased.
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profiles of typical heat shock genes. These experiments
were performed in shake flasks with on-line monitoring
of dissolved oxygen and temperature. A fast temperature
up-shift was reached by diluting the culture with pre-
heated medium which explains the decrease of OD580 in
Fig. 4. Interestingly, the induction of the three investigated
heat shock controlled genes was different. The expression
of dnaK and ibp were both induced very rapidly and
reached their maximum mRNA levels within only 1 min
after the heat shock, but lon reached the maximum RNA
level after 5 min. A quantitative evaluation of the mRNA
amounts showed the highest concentration for ibp, but
lower expression of dnaK and the lowest for lon. The level
of dnaK mRNA was continuously significantly higher
expressed than before the shift, but the mRNAs of ibp and
lon were very low or not any more detectable after only 10
min. Interestingly, this shut-off of the expression of these

genes is at about the same time when the pre-shift level of
nucleotides was re-established.

Discussion
Our studies indicate, that E. coli responds to a temperature
up-shift by rapidly increasing respiration and glucose
uptake. The increase of glucose uptake is possibly mainly
directed to glycolysis and, consequently, to energy pro-
duction. Concomitantly we detected a significant drop in
the pH and an increase of the acetate level. The higher
production of acetate per glucose (YA/S) might point to an
increase of glycolytic activity, and suggests that the flow to
the tricarboxylic acid cycle was not increased
correspondingly.

We detected a significant increase of the concentration of
the sum of adenosine nucleotides (AXP) directly during
the temperature up-shift which possibly is caused by RNA
degradation as is concluded from the total RNA concen-
trations per cell which decreased to less than 50 % if the
samples before and after the temperature up-shift are
compared (data not shown). This increase of the AXP con-
centration was connected to a decrease in the energy
charge, as the increase of ADP was higher than the
increase of ATP. It remains to be investigated whether this
relative transient increase of ADP has physiological
effects. For example it might be hypothesized that the

Response of the adenosine nucleotide pool to a temperature up-shift from 30 to 42°C in E. coli W3110Figure 2
Response of the adenosine nucleotide pool to a temperature 
up-shift from 30 to 42°C in E. coli W3110. (A) ATP and culti-
vation temperature, (B) ADP, (C) AMP. The data were 
obtained during the batch cultivation shown in Figure 1.

Dynamics of the Energy Charge and sum of adenosine phos-phates (AXP) during a cultivation of E. coli W3110 with tem-perature up-shift from 30 to 42°CFigure 3
Dynamics of the Energy Charge and sum of adenosine phos-
phates (AXP) during a cultivation of E. coli W3110 with tem-
perature up-shift from 30 to 42°C. Data were calculated 
from primary concentrations of the adenosine nucleotides 
shown in Figure 2.
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high concentration of ADP transiently inactivates various
chaperones (see e.g.[37,38]) which bind ADP with higher
affinity compared to ATP.

After the heat shock the cells strongly increase respiration
and CO2 production which should be related to ain
increased glycolytic flux, as correspondingly acetate for-
mation is increased. A similar behaviour of increased gly-
colytic flux we have observed from other cultivations
where a stress was caused by strong induction of a recom-
binant protein and also provoked a transient increase of
the ATP level and higher respiration. However, differently
from the investigated temperature up-shift, after induc-
tion of the recombinant protein the cells lost their viabil-
ity [39]. Also a lethal heat shock caused by a temperature
up-shift from 37°C to 52°C [40] or from 37°C to 48°C

(own results, not shown) resulted in a transient increase
of ATP, but this was much slower and the increase was
only about 30 % with a maximum at about 30 min after
the temperature shift.

Our data suggest that similarly as known for the heat
shock response, that the response of the nucleotides is
transient and the energy charge is restored 15 to 20 min
after the heat shock. After this transient induction of the
heat shock response cell growth recovers and it may be
hypothesised that the cellular synthetic activities and
metabolite pools reach a new steady state.

Conclusion
This study shows that the heat shock response in E. coli in
connection to the adenosine phosphates is different from
the response of eukaryotes. Whereas different authors
described in eukaryotes an immediate decrease of the ATP
level following a temperature up-shift (e.g. [29-31]), in E.
coli we found a transient increase, before the ATP level is
lowered. It may be hypothesised, but has to be verified by
further experiments that this transient increase of the ATP
concentration is important for the action of chaperones
and proteases and consequently for the function of the
cellular system towards a heat shock response.

Methods
Strains
All experiments were performed with the Escherichia coli
K-12 strain W3110 [F-, IN(rrnD rrnE)1, λ-] which was
kindly obtained by the E. coli Stock Center (New Haven,
USA).

Cultivation medium and cultivation conditions
Phosphate buffered mineral salt medium according to
Teich et al. [41] with 10 g L-1 glucose and thiamine hydro-
chloride (0.1 g L-1) was used in all cultivations. The pH of
the medium was set to 7.0 before sterilisation by addition
of NaOH. For fermentation experiments two precultiva-
tions were carried out at the appropriate temperature of
the main cultivation. The first culture was performed in 10
mL of nutrient broth (NBII: 1 % tryptone, 0.6 % yeast
extract), whereas the second preculture contained 200 ml
of the fermentation medium in a 1000 mL baffled Erlen-
meyer flask. Each preculture was used at the exponential
growth phase as inoculum for the next cultivation.

The fermentations were performed in a 6 L Biostat ED bio-
reactor (B. Braun Biotech International, Germany) with a
starting volume of 4 L of mineral salt medium pH 7.0).
The pH was controlled to drop not below 7.0 by addition
of 25 % ammonia. Air flow (0.002 to 2 vvm) and stirrer
speed (200 to 800 rpm) were increased stepwise to keep
the dissolved oxygen tension above 20 %. After the initial
batch phase to an optical cell density (OD500) of 3 the

Response of mRNAs in a stirred-flask cultivation of E. coli W3110 with a temperature shock from 30°C to 42°CFigure 4
Response of mRNAs in a stirred-flask cultivation of E. coli 
W3110 with a temperature shock from 30°C to 42°C. For 
experimental details see Materials and Methods.
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temperature up-shift was performed with a temperature
increase from 30 to 42°C within 6 min.

Batch cultivations with on-line monitoring of tempera-
ture and oxygen were performed in 1000 mL baffled
Erlenmeyer flasks with three side necks for the sensors and
a needle for sampling into a syringe. The cultures were
performed in 200 mL M9 mineral salt medium with 10 g
L-1 glucose, 2 mL L-1 of trace element solution and 0.1 g L-

1 thiamine hydrochloride on a magnetic stirrer bar at 1000
rpm in a tempered water bath. The heat shock was
performed by addition of 66 mL fresh M9 medium which
was preincubated at 100°C and following replacement of
the flask into another water bath (42°C). Temperature
and oxygen were monitored by sensors (Pt1000, polaro-
graphic oxygen electrode from Meredos GmbH), con-
nected to the wireless Senbit system (teleBITcom GmbH)
with on-line data collection.

Analytical methods
Cellular growth
Growth of the cultures was followed by measuring the
optical density at 500 nm (OD500, for cultivation in the
bioreactor) or 540 nm (OD540, for shake flasks), and by
determination of the cell dry weight (CDW). Therefore 1.5
mL cell suspensions were centrifuged in pre-weighed 2 mL
eppendorf tubes and washed once with 0.9 % (w/v) NaCl
solution. After removal of the supernatant the samples
were dried to constancy at 60°C for at least 24 h. Colony
forming units were analysed by plating at least three dilu-
tions and each of these at triple of the culture broth on
nutrient bullion plates, which were incubated for one to
three days at 37°C.

Glucose and acetate
Samples from the cultivation were collected by direct fil-
tration from the reactor through a 0.2 µm disk filter. After-
wards the samples were stored at -20°C for further
analysis. The analysis of glucose was performed with the
hexokinase/glucose-6-phosphate-dehydrogenase method
(Kit no. 139106, Roche Diagnostics GmbH, Germany)
scaled down to 96-well plates with four parallels for each
sample as described by Larsson and Törnkvist [42]. Ace-
tate was analysed with the Kit no. 148261 (Roche Diag-
nostics GmbH, Germany) correspondingly.

Outgas analysis
The outgas oxygen and carbon dioxide concentrations
were measured with an URAS10E (Hartmann & Braun
GmbH, Frankfurt, Germany). The specific rates (qO2,
qCO2) were calculated continuously over the fermentation
by including fitted biomass values.

Analysis of adenosine nucleotides
The adenosine nucleotides were analyzed with an RP-
HPLC method as described earlier in detail Meyer et al.
[43].

Analysis of mRNAs
10 mL samples of cell broth were immediately chilled
with 1350 µL cold ethanol/phenol (95:5, v/v, pre-cooled
at -20°C). After centrifugation at 10 000 rpm (4°C, 5
min) the supernatant was carefully removed, the pellet
was resuspended in 1 mL of RNA Later (Ambion) and the
samples were stored in 250 µL fractions at -70°C until
analysis.

Total RNA extraction was performed with a total RNA iso-
lation kit (A&A Biotechnology, Gdynia, Poland) accord-
ing to the instructions of the manufacturer. Total RNA was
quantified with the RiboGreen Quantification kit (Molec-
ular probes). Quantitative analysis of dnaK, ibp and lon
mRNAs was performed with a sandwich system earlier
described in detail by Rautio et al. [44]. Therefore probes
shown in Table 2 were designed using the CloneManager5
program with following submission of the sequences a
NCBI BLAST search http://www.ncbi.nlm.nih.gov/BLAST/
to exclude alignments with other E. coli genes.

HPLC-purified unlabelled and biotin-labelled oligonucle-
otide capture probes were purchased from Metabion
GmbH (Martinsried, Germany). Dig-tail labelling of the
detection probes was performed according to manufac-
turer's instructions using the Roche Dig-tailing kit (2nd

generation, Roche Diagnostics GmbH, Mannheim,
Germany).

In vitro RNA standards were designed for the quantitative
analysis of each gene. Therefore primers as indicated in
Table 3 were used for in vitro transcription (purchased

Table 2: Probes used in Sandwich hybridization Capture probes 
were biotin labelled and detection probes contained a Dig tail.

Name Sequence (5'-3') Position

dnaK
Helper probe 1 GTCGGGATAGTGGTGTTTTT 1259c
Capture probe AGAACACCTGGCTGTGCTTG 1279c
Helper probe 2 CTGGTTGTCTTCAGCGGTAG 1299c
Detection probe TTGTCGCCTGCTTCTTCAAC 1667c
Ibp
Capture probe ACCAGCCACAGCGATAGCAA 165c (ibpA)
Detection probe TTCCAGTTCGCTCTCAGCAA 186c (ibpA)
Helper probe ACCACCAGCAGATTATCCTG 215c (ibpA)
Lon
Capture probe ACTCCAGATACTCCGCCTTC 355c
Detection probe GCCTGAATGGACTCCTGCAT 1919c
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from Sigma-Genosys, Cambridge, UK). Left primers
(Primers 1) contained the 25 nucleotide T7 promoter
sequence at the 5' side. Target genes were amplified by
PCR from total DNA extracts of E. coli. The PCR products
were purified using QIAquick PCR purification Kit and
then used as templates for in vitro transcription using the
MAXIscript T7 transcription kit from Ambion (Austin
Texas, U.S.A.). The in vitro standards were quantified by
the RiboGreen RNA Quantification Kit (Molecular
probes) and a standard calibration curve with the respec-
tive standard was performed at the same plate where the
samples were analysed.

Streptavidin MagneSphere Paramagnetic Particles (1 mg
mL-1 magnetic particles in PBS, 1 mg mL-1 BSA and 0.02 %
NaAzide) from Promega (Madison, USA) were used as
magnetic beads for immobilisation of the target. Sand-
wich hybridisation was performed in 96-well plates at
50°C for 30 min with constant shaking (700 rpm).
Therefore hybridisation solution with a final concentra-
tion of 5 × SSC, 20% formamide, 2% Denhardt reagent,
3% dextran sulphate and 0.2% SDS was added to a final
volume of 100 µL to each sample. Each well of the plate
contained 1 pmol of DIG-tail labelled detection probe, 5
pmol of biotin-labelled capture probe and appropriate
dilutions of in vitro transcripts for the standard curve or of
the RNA extracts from cultivation samples.

Immobilisation of RNA molecules was done by adding 20
µl streptavidin coated magnetic beads to each well after
hybridisation. DIG labelled probes were bound to Anti-
DIG-alkaline phosphatase (added 1:2000 in TBS-buffer)
and the enzymatic reaction was carried out with AttoPhos
(Promega) as substrate. Fluorescence was measured with
the Wallac 2 fluorescence reader (Perkin Elmer Life Sci-
ences) at 25°C using the Attophos1-program.
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