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Abstract The development of functional synapses in the nervous system is important for animal

physiology and behaviors, and its disturbance has been linked with many neurodevelopmental

disorders. The synaptic transmission efficacy can be modulated by the environment to

accommodate external changes, which is crucial for animal reproduction and survival. However, the

underlying plasticity of synaptic transmission remains poorly understood. Here we show that in

Caenorhabditis elegans, the male environment increases the hermaphrodite cholinergic

transmission at the neuromuscular junction (NMJ), which alters hermaphrodites’ locomotion

velocity and mating efficiency. We identify that the male-specific pheromones mediate this synaptic

transmission modulation effect in a developmental stage-dependent manner. Dissection of the

sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and

further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to

the male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels

and clustering of postsynaptic acetylcholine receptors at cholinergic synapses of NMJ, which

potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for

synaptic modulation and behavioral flexibility by sexual dimorphic pheromones.

Introduction
Faithful synaptic transmission is essential for animal physiology and behaviors. The disturbance of

synaptic transmission has been linked with several neurodevelopmental disorders, including autism
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spectrum disorders (ASD). In the past decades, researchers have identified numerous genes encod-

ing synaptic proteins that are linked with neurodevelopmental disorders, and their mutations cause

the dysregulated synaptic transmission in human diseases (Homozygosity Mapping Consortium for

Autism et al., 2016; Autism Sequencing Consortium et al., 2019; Geisheker et al., 2017;

Iossifov et al., 2012; Lee et al., 2019; Morrow et al., 2008; Neale et al., 2012; C Yuen et al.,

2017), including SHANK3, NRXN, and NLGN for autism (Chen et al., 2020; Lee et al., 2015;

Levinson and El-Husseini, 2005; Orefice et al., 2019; Südhof, 2008), MECP2 for Rett’s syndrome

(Chao et al., 2007; Orefice et al., 2019), FMR1 for Fragile X syndrome (Olmos-Serrano et al.,

2010), and UBE3 for Angelman syndrome (Judson et al., 2016; Wallace et al., 2012).

The process of synaptogenesis occurs in the early postnatal developmental period and can be

modulated by the environment. The effects of synaptic modulation could persist until adulthood and

cause a lifelong impact. Various environmental contexts can modulate synaptic transmission and

behaviors through experience-dependent plasticity, which provides a critical and conserved mecha-

nism to generate animal behavior diversity and adaption. Among the environmental contexts, social

interaction, such as the density of the conspecifics sharing the same habitat, represents one of the

most important environmental conditions that modulate animal physiology and behaviors to meet

the ever-changing environment and internal needs (Chen and Hong, 2018). For example, social iso-

lation of rats during the critical period of adolescence enhances long-term potentiation of NMDA

receptor-mediated glutamatergic transmission in the ventral tegmental area (Whitaker et al., 2013).

Besides that, maternal separation has been found to have a profound lifelong influence on animal

models at a mature stage of life. It causes habenula hyperexcitability, AMPA receptors delivery, and

synaptic plasticity defects in the developing barrel cortex (Miyazaki et al., 2012; Tchenio et al.,

2017). However, the underlying mechanism on how social interaction modulates synaptic transmis-

sion remains elusive.

There are many ways in which social interaction can influence neural development. Pheromone

effects between conspecifics are strong drivers that modulate behaviors and alter physiology, allow-

ing appropriate responses to particular social environments (Liberles, 2014). These effects are often

sexually dimorphic. Mouse pups elicit parental care behaviors in virgin females, for instance, but pro-

mote infanticidal behaviors in virgin males through pheromonal compounds (submandibular gland

protein C and hemoglobins) and physical traits (Isogai et al., 2018). In Caenorhabditis elegans (C.

elegans), a family of glycolipids called ascarosides function as the pheromones to mediate social

interactions. Males and hermaphrodites secrete several ascarosides in different amounts that elicit

sexual dimorphic responses (Butcher et al., 2007; Edison, 2009; Greene et al., 2016;

Srinivasan et al., 2008; Srinivasan et al., 2012). For example, the male-enriched ascr#10 induces

attraction behavior in hermaphrodites, but causes aversion behavior in males (Izrayelit et al., 2012).

However, it remains unclear whether and how specific pheromone-mediated effects are involved in

neurodevelopmental processes, including synaptogenesis and synaptic transmission.

Here, we show that the male environment increases the cholinergic synaptic transmission at the

neuromuscular junction (NMJ) in C. elegans hermaphrodites, decreasing hermaphrodite’s locomo-

tion activity and promoting mating efficiency. The male-specific pheromones (ascarosides) mediate

these effects in a sexually dimorphic manner. Such ascaroside-mediated modulation of the choliner-

gic synaptic transmission is developmental stage dependent. We further used various neuron-type-

specific ablation experiments to confirm that these male-specific pheromone signals are received

and processed by the AWB chemosensory neuron pair in hermaphrodites. Upon reception, AWB

neurons transduce the information to the NMJ using cGMP signaling. Furthermore, we used multiple

reporter fusion constructs to show that the male-specific pheromones cause increased calcium chan-

nel accumulation and acetylcholine receptor (AchR) clustering at cholinergic synapses. Collectively,

our work elucidates how individuals sense and adapt to the social environment, providing insights

into how pheromones regulate the development and function of the nervous system.
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Results

The male environment modulates synaptic transmission at the
hermaphrodite NMJ
C. elegans has two sexes: XX hermaphrodites and XO males. The somatically female hermaphrodites

can produce hermaphrodite progeny by self-fertilization (although rare males are generated through

spontaneous X chromosome loss), whereas in the presence of males, they are also able to mate with

males to give rise to equal ratios of hermaphrodites and males (Figure 1A). Hermaphrodites gener-

ated by self-fertilization or by crossing share the same genetic background but develop in distinct

environments (i.e., in the presence or absence of males). Therefore, it provides an excellent system

to study how social interaction modulates the establishment and maintenance of synaptic transmis-

sion during development. We selected the C. elegans NMJ as a model to examine the male environ-

ment’s effects on synaptic transmission. The C. elegans NMJ includes body-wall muscles that receive

synaptic inputs from both excitatory cholinergic and inhibitory GABAergic motor neurons

(Richmond and Jorgensen, 1999). The coordination of excitatory and inhibitory innervations guar-

antees C. elegans sinusoidal movement. In the presence of acetylcholinesterase inhibitors such as

aldicarb, the breakdown of acetylcholine is prevented, and acetylcholine accumulates over time at

synapses. As a result, worms become paralyzed due to hyper-excitation (Mahoney et al., 2006). The

timing of the paralysis is influenced by the inhibitory innervations from GABAergic neurons that

counteract acetylcholine’s excitatory effect and delay paralysis. The percentage of paralyzed worms

over time can be used as a measurement of excitatory versus inhibitory synaptic transmission ratio

(E/I ratio) at the NMJ. As a result, the alteration of sensitivity to aldicarb reflects the changes in NMJ

synaptic transmission (Vashlishan et al., 2008).

To determine whether the NMJ synaptic transmission differs between hermaphrodites generated

through self-fertilization versus crossing, we applied aldicarb to young adult hermaphrodites and

examined the percentage of paralyzed animals. We found that around 39.8% of hermaphrodites

from self-fertilization were paralyzed after 70 min’ exposure to aldicarb. In contrast, almost all of the

hermaphrodites from crossing were paralyzed (Figure 1B), indicating that hermaphrodites obtained

by crossing are more sensitive to aldicarb. Thus, the NMJ E/I ratio is increased in crossed hermaph-

rodites than those obtained by self-fertilization.

There are three possible explanations for the observed differences in NMJ synaptic transmission

in crossed hermaphrodites: first, it could be a parental inheritance effect, such as RNA transgenera-

tional transmission (Alcazar et al., 2008; Rechavi et al., 2011); second, it could be caused by direct

contact with males (Shi and Murphy, 2014); third, male metabolites secreted into the environment

could modulate hermaphrodite development. To rule out the potential effects of parental inheri-

tance and male contact, we directly exposed hermaphrodites from self-fertilization to medium condi-

tioned by either the male or the hermaphrodite environment since egg stage. The conditioned

medium was prepared by collecting cultures of him-5 mutants containing around 40% males (male-

conditioned medium) or wild-type hermaphrodites alone (hermaphrodite-conditioned medium).

Both conditioned media contain metabolites secreted by 30,000 young adult worms during 3 hr cul-

tivation (Figure 1C). After growing hermaphrodites in the conditioned medium, we found that the

hermaphrodites cultured in the male-conditioned medium became paralyzed earlier than those in

the hermaphrodite-conditioned medium (80.31% vs. 61.11% paralyzed after 70 min’ exposure to

aldicarb) (Figure 1D). This result suggests that the effect of the male environment on hermaphrodite

NMJ is mediated by male-secreted metabolites. In the following experiments, we directly used the

male-conditioned medium and hermaphrodite-conditioned medium unless otherwise specified.

We then analyzed muscle excitability as another independent measure of synaptic transmission

changes at the NMJ. Previous work has shown that the body-wall muscle at the C. elegans NMJ

receives both excitatory and inhibitory inputs from cholinergic and GABAergic neurons, respectively

(Richmond and Jorgensen, 1999). When the excitatory and inhibitory synaptic transmission ratio

increases at the NMJ, the excitability of muscle cells should increase. To verify the increased excit-

ability of the body-wall muscle, we expressed the genetically encoded calcium indicator GCaMP3 in

muscle cells (under the myo-3 promoter) and the channelrhodopsin variant Chrimson in VB and DB

motor neurons (under the acr-5 promoter) (Figure 1E; Tian et al., 2009). Fluorescence changes

reflect calcium influx and excitability in the GCaMP3-expressing cells. We found that the baseline

GCaMP3 fluorescence is higher in hermaphrodites grown in the male-conditioned medium
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Figure 1. The male excretome increases cholinergic synaptic transmission at hermaphrodite NMJ. (A) Schematic illustration of C. elegans reproduction.

Hermaphrodites with two X chromosomes generate all hermaphrodite progeny via self-fertilization. While hermaphrodites are crossed with males that

have a single X chromosome, an equal ratio of hermaphrodite and male offspring are generated. (B) Time course analysis of 1.4 mM aldicarb-induced

paralysis in hermaphrodites generated from hermaphrodite self-fertilization (black, Self-fertilization) and hermaphrodite-male crossing (orange,

Crossed). (C) Schematic illustration of conditioned medium preparation. 30,000 young-adult wild-type (WT) and him-5 mutant worms were collected

and incubated in 1 ml ddH2O for 3 hr. Metabolites secreted by hermaphrodites and males were collected and used to make hermaphrodite-

conditioned (Herm-cond) and male-conditioned (Male-cond) medium. (D) Time course analysis of Aldicarb-induced paralysis in hermaphrodites

cultured in hermaphrodite-conditioned medium (black, Herm-cond) and male-conditioned medium (orange, Male-cond). (E) Schematic illustration

showing calcium current recording at the C. elegans NMJ. Chrimson driven by the acr-5 promoter was expressed specifically in cholinergic motor

neurons, and GCaMP3 under the myo-3 promoter was expressed in the body-wall muscle. (F–G) Chrimson-evoked calcium transients in body-wall

muscle were analyzed using GCaMP3 as a calcium indicator. For adult hermaphrodites cultured in hermaphrodite-conditioned medium (black, Herm-

cond) or male-conditioned medium (orange, Male-cond), the averaged responses (F) and the averaged and individual relative increase in GCaMP3

fluorescence intensity DF/F (G) are shown. The gray shadings in F indicate the SEM of GCaMP3 responses. The dashed line indicates when the

illumination with nominal wavelength at 640 nm for Chrimson activation was applied. (H–J) Endogenous acetylcholine transmission was assessed by

recording mEPSCs from body muscles of wild-type adult hermaphrodites cultured in hermaphrodite-conditioned or male-conditioned medium.

Representative mEPSC traces (H), the mean mEPSC rates (I), and the mean mEPSC amplitudes (J) are shown. (K–M) Endogenous GABA transmission

was assessed by recording mIPSCs from body muscles of wild-type adult hermaphrodites cultured in hermaphrodite-conditioned or male-conditioned

medium. Representative mIPSC traces (K), the mean mIPSC rate (L), and the mean mIPSC amplitude (M) are shown. The data for individual animal

Figure 1 continued on next page
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compared with those grown in the hermaphrodite-conditioned medium, suggesting relatively higher

resting muscle excitability (Figure 1—figure supplement 1). Moreover, we excited the VB and DB

cholinergic motor neurons via optogenetic activation of Chrimson with red light (wavelength at 640

nm) (Klapoetke et al., 2014) and observed significantly increased GCaMP3 fluorescence intensity

potentiation (assessed as DF/F) in hermaphrodites grown in the male-conditioned medium

(Figure 1F–G). These results indicate that the male excretome environment causes increased excit-

atory and inhibitory synaptic transmission ratio and muscle excitability at the NMJ of

hermaphrodites.

The acetylcholine transmission rate at the NMJ is potentiated by the
male excretome environment
The increased E/I ratio could be caused by either increased cholinergic transmission or decreased

GABAergic transmission. To distinguish between these two possibilities, we analyzed spontaneous

miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents

(mIPSCs) at the NMJ. We found that the mEPSC frequency was significantly increased in hermaphro-

dites from male-conditioned medium compared to those from hermaphrodite-conditioned medium

(Figure 1H,I), but the mEPSC amplitude was not changed (Figure 1H,J). When we examined inhibi-

tory postsynaptic currents, we detected no significant differences in mIPSC frequency and amplitude

between hermaphrodites from male- or hermaphrodite-conditioned medium (Figure 1K–M). The

electrophysiology data suggest that potentiation of acetylcholine transmission rate mainly contrib-

utes to the observed increase in the E/I ratio at the NMJ of hermaphrodites in the male excretome

environment.

The male excretome environment increases the hermaphrodite NMJ
synaptic transmission during the juvenile stage
To delineate whether there are any critical developmental windows for the observed synaptic trans-

mission modulation by the male environment, we transferred hermaphrodites to male-conditioned

medium at a series of different developmental stages (egg, L1 [24 hr after egg], L2–L3 [36 hr after

egg], and mid-L4 [48 hr after egg]). We then measured synaptic transmission in young adults with

the aldicarb assay (Figure 2A). The hermaphrodites transferred to the male-conditioned medium at

the egg, L1, and L2–L3 stage presented significantly increased sensitivity to aldicarb when they grow

into young adult (Figure 2B, Figure 2—figure supplement 1A–C, 92.5% vs. 55.1% at 70 min for

egg stage, 46.9% vs. 24.9% for the L1 stage, and 71.3% vs. 14.0% for L2–L3 stage). In contrast, we

observed no differences in sensitivity to aldicarb between hermaphrodites transferred to male-condi-

tioned medium at the mid-L4 stage and those from hermaphrodite-conditioned medium (Figure 2B,

Figure 2—figure supplement 1D, 15.9% vs. 14.0% at 70 min). Those data suggest that exposure to

the male excretome environment in L3–L4 stage is critical for modulation of the NMJ synaptic trans-

mission in hermaphrodites.

To study whether the sustained male environment is required to maintain the cholinergic synaptic

transmission potentiation at NMJ, we removed hermaphrodites from male-conditioned medium out

of the male environment at L4 (48 hr after egg) and young adult (60 hr after egg). 24 and 12 hr later,

we performed the aldicarb assay (Figure 2A,C, Figure 2—figure supplement 1E). We found that

hermaphrodites leaving the male excretome environment at the young adult stage still showed an

increased sensitivity to aldicarb compared with those in the hermaphrodite-conditioned medium

(66.3% vs. 42.0% at 70 min). The effect was comparable to that in hermaphrodites sustained in the

male environment (78.0% vs. 42.0%) (Figure 2C), suggesting that the maintenance of the elevated

Figure 1 continued

analyzed are indicated. In (B), (D), (F–G), (I–J), (L–M), *p<0.05, ***p<0.001, ns not significant, two-way ANOVA comparing all of the time points for (B)

and (D), unpaired Student’s t-test for (F–G), (I–J), and (L–M).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1.

Figure supplement 1. The physiological muscle excitability is potentiated in hermaphrodites from the male-conditioned medium.

Figure supplement 1—source data 1.
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Figure 2. The male excretome modulates the hermaphrodite NMJ synaptic transmission in a developmental-stage-dependent manner. (A) Schematic

illustration of the life cycles of C. elegans and the time when the hermaphrodite-conditioned medium (dashed black lines) or male-conditioned medium

(solid orange lines) was applied. (B) The percentage of animals paralyzed on 1.4 mM aldicarb at 70 min were plotted for hermaphrodites cultured in

male-conditioned medium (orange) starting from the egg stage, L1 stage, L2–L3 stage, and mid-L4 stage. Hermaphrodites cultured in hermaphrodite-

conditioned medium (black) served as controls. (C) The percentage of animals paralyzed on 1.4 mM aldicarb at 70 min were plotted for hermaphrodites

cultured in male-conditioned medium from the egg stage to the mid-L4 stage (L4 out) and young adult stage (Adult out); hermaphrodites cultured in

hermaphrodite-conditioned medium (black) or male-conditioned medium (orange) served as controls. (D–F) Time course analysis of aldicarb-induced

paralysis in hermaphrodites cultured in hermaphrodite-conditioned medium (black) and male-conditioned medium (orange) in CB4856 (D), AB3 (E), and

TR389 (F) strains. (G) The percentage of animals paralyzed on 1.4 mM aldicarb at 80 min were plotted for N2 hermaphrodites cultured in N2

hermaphrodite (N2 herm-cond)-, N2 male (N2 Male-cond)-, TR389 hermaphrodite (TR389 Herm-cond)- or TR389 male (TR389 Male-cond)-conditioned

medium. (H) Locomotion behavior analysis of single adult hermaphrodite cultured in N2 hermaphrodite (Herm-cond)-, TR389 male (TR389 Male-cond)-,

and N2 male (Male-cond)-conditioned medium. The averaged and individual crawling locomotion velocities were plotted. (I) Measurement of

hermaphrodite mating efficiency cultured in N2 hermaphrodite-, TR389 male-, and N2 male-conditioned medium. In B-I, *p<0.05, ***p<0.001, ns not

significant, two-way ANOVA with post hoc Sidak multiple comparisons for (B–C) and (G), two-way ANOVA comparing all of the time points for (D–F),

one-way ANOVA with post hoc Dunnett multiple comparisons for ( H and I).

Figure 2 continued on next page

Qian et al. eLife 2021;10:e67170. DOI: https://doi.org/10.7554/eLife.67170 6 of 29

Research article Neuroscience

https://doi.org/10.7554/eLife.67170


cholinergic synaptic transmission rate at the hermaphrodites NMJ does not require a sustained male

excretome environment in adults. In contrast, we observed that the hermaphrodite leaving the male-

conditioned medium at the mid-L4 stage presented similar aldicarb sensitivity to those from the her-

maphrodite-conditioned medium (37.7% vs. 42.0% at 70 min) (Figure 2C, Figure 2—figure supple-

ment 1E). Taken together, these data support the notion that the male environment exposure at a

critical period (the L3–L4 stage) is required for the modulation of hermaphrodites NMJ cholinergic

synaptic transmission.

The aforementioned experiments were carried out using the Bristol N2 strain. To determine

whether the male excretome environment’s effect is conserved in other C. elegans strains, we stud-

ied several natural variations, including the Australian strain AB3, the Hawaiian strain CB4856, and

the Madison strain TR389. We observed that the male-conditioned medium accelerated animal

paralysis in the CB4856 (Figure 2D, 59.7% vs. 20.7% after 60 min of aldicarb) and the AB3 strains

(Figure 2E, 52.8% vs. 28.6% after 80 min of aldicarb), but not in the TR389 strain (Figure 2F,

68.46% vs. 60.99% after 130 min of aldicarb). Thus, although the effect of the male environment

does exist in other natural C. elegans strains, exceptions do exist, as in the TR389 strain.

Two possibilities could account for this lack of a modulator effect: TR389 males may not be able

to secrete the modulator ascarosides; alternatively, TR389 hermaphrodites cannot sense and

respond to the modulator ascarosides. To distinguish between these two possibilities, we grew Bris-

tol N2 hermaphrodites in the TR389 male-conditioned medium and compared their synaptic trans-

mission by aldicarb sensitivity with those maintained in N2 and TR389 hermaphrodite-conditioned

medium. The three groups presented similar sensitivity to aldicarb (Figure 2G). In contrast, TR389

hermaphrodites grown in the N2 male-conditioned medium showed significantly increased sensitivity

to aldicarb compared to those in the N2 hermaphrodite-conditioned medium (Figure 2—figure sup-

plement 2). Thus, TR389 males appear unable to secrete the modulator ascarosides.

The male excretome environment alters hermaphrodite locomotion and
promotes mating efficiency
As mentioned above, the coordination of excitatory and inhibitory innervations at NMJ guarantees

C. elegans sinusoidal movement. To study whether the altered cholinergic synaptic transmission

impacts body-bend amplitude and coordination of animal movement, we compared the locomotion

of hermaphrodites from male- or hermaphrodite-conditioned medium. We observed that males had

higher body curvature and locomotor velocity than hermaphrodites (Figure 2—figure supplement

3A–B), consistent with previous studies (Mowrey et al., 2014). We did not observe body-bend cur-

vature differences in hermaphrodites from male- and hermaphrodite-conditioned medium (Fig-

ure 2—figure supplement 3C–D). However, the locomotor velocities of hermaphrodites from male-

conditioned medium are significantly lower than those from hermaphrodite-conditioned medium

(Figure 2H). In contrast, the TR389 male-conditioned medium did not show similar effects

(Figure 2H). This supports the notion that the altered NMJ synaptic transmission by the male excre-

tome affects hermaphrodite locomotion. It is possible that the disturbance of excitatory and inhibi-

tory synaptic transmission balance at NMJ compromise locomotion activity.

Communications between conspecifics modulate behaviors and alter physiology to allow appro-

priate responses to particular social environments. To study the physiological significance of male

Figure 2 continued

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1.

Figure supplement 1. The male environment modulates the hermaphrodite NMJ synaptic transmission in a developmental-stage-dependent manner.

Figure supplement 1—source data 1.

Figure supplement 2. TR389 hermaphrodites can be modulated by the modulator ascarosides.

Figure supplement 2—source data 1.

Figure supplement 3. The male excretome does not change hermaphrodite body-bend curvature.

Figure supplement 3—source data 1.

Figure supplement 4. The male excretome does not modulate hermaphrodite brood size.

Figure supplement 4—source data 1.
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excretome modulation, we tested its effect on hermaphrodite’s egg-laying behaviors and mating

abilities. We calculated the brood size of hermaphrodites from hermaphrodite- and male-condi-

tioned medium, and observed no significant differences between the two groups (Figure 2—figure

supplement 4). Then we measured the mating efficiency with males in hermaphrodites from male-

and hermaphrodite-conditioned medium. Two young adult stage hermaphrodites from male- or her-

maphrodite-conditioned medium were cultured with two young-adult males for 24 hr. Successful

mating was scored when more than three male progenies were generated in the mating plate. The

results showed that hermaphrodites from TR389 male-conditioned medium had higher mating effi-

ciency compared to those from hermaphrodite-conditioned medium (Figure 2I), which is consistent

with previous research that the male environment reduces hermaphrodite exploration and increases

mating behaviors (Aprison and Ruvinsky, 2019a; Aprison and Ruvinsky, 2019b). Interestingly, we

found that N2 male-conditioned medium showed a significant further increase of hermaphrodite

mating efficiency than the TR389 male-conditioned medium (Figure 2I). We speculate that the N2

males secrete additional metabolites to modulate locomotion and mating efficiency in

hermaphrodites.

Male-specific ascarosides mediate the modulatory effect of the male
excretome environment on the hermaphrodite NMJ synaptic
transmission
To identify the additional metabolites secreted by the N2 males, we focused on searching the male

pheromones. In C. elegans, ascarosides are known to function as pheromones to mediate social

interactions and modulate development (Butcher et al., 2007; Butcher et al., 2009; Ludewig et al.,

2019; Ludewig and Schroeder, 2013; Srinivasan et al., 2008; Wu et al., 2019). We hypothesized

that the observed effects of the male environment on hermaphrodite cholinergic synaptic transmis-

sion at the NMJ may be mediated by male-specific ascarosides. Ascarosides are derivatives of 3,6-

dideoxysugar ascarylose, and their biosynthesis requires several dehydrogenases, including DAF-22,

which b-oxidizes and shortens long-chain fatty acids to generate bioactive medium- and short-chain

ascarosides (Figure 3A; Butcher et al., 2009; von Reuss et al., 2012; Zhou et al., 2018). Therefore,

most of the active short- and medium-chain ascarosides are absent from the metabolomes of daf-22

mutants (Butcher et al., 2009; von Reuss et al., 2012; Zhou et al., 2018).

To test whether the effect of the male environment on hermaphrodite NMJ synaptic transmission

is mediated by ascarosides, we grew hermaphrodites in daf-22 conditioned medium and compared

their aldicarb sensitivity to hermaphrodites grown in the wild-type conditioned medium. We found

that the hermaphrodites grown in the daf-22 male-conditioned medium exhibited similar aldicarb

sensitivity with those grown in daf-22 hermaphrodite-conditioned medium (Figure 3B, 43.7% vs.

43.7% at 70 min). The inability of the daf-22 male environment to modulate hermaphrodite NMJ syn-

aptic transmission suggests that male-specific ascarosides do contribute to the observed modulatory

effects on synaptic transmission.

The pheromone effects are often sexually dimorphic. To study whether the male-specific ascaro-

sides also modulate male NMJ synaptic transmission, we compared the aldicarb sensitivity of males

grown in the hermaphrodite- and male-conditioned media. We did not observe aldicarb sensitivity

differences in males from hermaphrodite- and male-conditioned medium (Figure 3—figure supple-

ment 1A). Since males can secrete those modulatory pheromones themselves, we took advantage

of daf-22 mutant males that have the defects in pheromone production. We also found that daf-22

males from the male-conditioned medium did not show any significant differences in aldicarb sensi-

tivity compared to those from the hermaphrodite-conditioned medium (Figure 3C). In contrast, the

daf-22 hermaphrodites showed higher aldicarb sensitivity from the male-conditioned medium com-

pared to those from the hermaphrodite-conditioned medium (Figure 3—figure supplement 1B),

suggesting daf-22 mutation did not alter the modulatory effect of male-conditioned medium on her-

maphrodites. These results indicate that male-specific ascarosides cannot modulate synaptic trans-

mission in males, suggesting a sexually dimorphic effect of those male-specific ascarosides.

The C. elegans ascarosides comprise a complex mixture of ascaroside derivates that vary accord-

ing to their side chains; there are saturated, a,b-unsaturated (e.g., a,b double-bond), and b-hydroxyl-

ated (e.g., b-hydroxylated side chain) derivatives. Hermaphrodites and males are known to

accumulate distinct types and quantities of these various ascarosides (Butcher et al., 2009;

von Reuss et al., 2012). To identify the ‘modulator ascarosides’ that function in the observed
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Figure 3. Ascarosides in the male environment modulate hermaphrodite NMJ synaptic transmission. (A) Proposed model of peroxisomal b-oxidation

enzymes ACOX-1, MAOC-1, DHS-28, and DAF-22 in ascaroside side-chain biosynthesis. (B) The percentage of animals paralyzed on 1.4 mM aldicarb at

70 min were plotted for N2 hermaphrodites cultured in hermaphrodite (N2 Herm-cond)-, male (N2 Male-cond)-, daf-22 mutants herm (daf-22 Herm-

cond)-, or daf-22 mutant male (daf-22 Male-cond)-conditioned medium. (C) The percentage of animals paralyzed on 0.5 mM aldicarb at 100 min were

plotted for daf-22 mutant males cultured in hermaphrodite (N2 Herm-cond)-, male (N2 Male-cond)-, daf-22 mutants herm (daf-22 Herm-cond)-, or daf-

22 mutant male (daf-22 Male-cond)-conditioned medium. (D) Schematic illustration of excretome preparation for UPLC-MS. Around 30,000 freshly

starved worms were cultured in S medium supplemented with concentrated OP50 for 7 days. The excretomes were collected by centrifugation,

filtration, and lyophilized extraction, followed by UPLC-MS analysis. (E) b-hydroxylated ascaroside profiles in excretomes obtained from N2

hermaphrodites (N2 herm excretome), N2 mixed-gender animals of him-5 mutants (N2 male excretome), and TR389 mixed-gender animals (TR389 male

excretome). (F) The percentage of animals paralyzed on 1.4 mM aldicarb at 90 min were plotted for b-oxidation mutants (acox-1.1, maoc-1, and dhs-28).

(G) The percentage of animals paralyzed on 1.4 mM aldicarb at 70 min were plotted for N2 and dhs-28 mutant hermaphrodites cultured in

hermaphrodite-conditioned medium (Herm-cond), male-conditioned medium (Male-cond). In (B–C), (E–G), *p<0.05, **p<0.01, ***p<0.001, ns not

significant, two-way ANOVA with post hoc Sidak multiple comparisons for (B–C) and (F–G). one-way ANOVA with post hoc Dunnett multiple

comparisons for (E).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1.

Figure supplement 1. The male environment cannot modulate NMJ synaptic transmission in males.

Figure supplement 1—source data 1.

Figure supplement 2. UPLC-MS analysis of excretome from animal cultures.

Figure supplement 2—source data 1.
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modulation of the hermaphrodite NMJ synaptic transmission, we first analyzed the TR389 strain,

which recalls appearing unable to secrete the modulator ascarosides.

To further determine the identity of the modulator ascarosides, we used ultra-performance liquid

chromatography–mass spectrometry (UPLC-MS) analyses to compare the excretomes among N2

hermaphrodite cultures (containing N2 hermaphrodites only), N2 male cultures, daf-22 male cultures,

and TR389 male cultures (all of the male cultures contains around 35% males) (Figure 3D). We col-

lected and analyzed culture media samples with UPLC-MS and found that ascr#10 was enriched in

both the N2 male and TR389 male cultures relative to the N2 hermaphrodite cultures (Figure 3—fig-

ure supplement 2A), consistent with previous reports (Izrayelit et al., 2012). We also observed that

the daf-22 male cultures lacked most of the short- and medium-chain ascarosides, and accumulated

the long-chain ascarosides (Figure 3—figure supplement 2B), confirming the role of DAF-22 in

dehydrogenating and shortening ascaroside side chains.

Next, reasoning that the modulator ascarosides should be enriched in N2 male-conditioned cul-

ture, we compared the UPLC-MS profiles of N2 male cultures with the N2 hermaphrodites and the

TR389 male cultures. The medium-chain b-hydroxylated ascarosides were substantially increased in

the N2 male cultures compared to the N2 hermaphrodite cultures and TR389 male cultures. Specifi-

cally, the significantly enriched b-hydroxylated ascarosides in N2 males included C13, C14, and C15

ascarosides (Figure 3E). Notably, we detected no significant changes between the N2 and TR389

male cultures for saturated ascarosides (Figure 3—figure supplement 2C). These results implicate

that the medium-chain b-hydroxylated ascarosides may act as the male modulator ascarosides.

Pursuing this with a genetic approach, we acquired a mutant of the known ascaroside synthesis

enzyme DHS-28; previous analysis of the dhs-28 mutant hermaphrodite metabolome has shown that

these animals accumulate b-hydroxylated medium-chain ascarosides (Butcher et al., 2009;

von Reuss et al., 2012). We conducted aldicarb assays to compare the E/I ratios of dhs-28 cultures

with those of N2 hermaphrodites grown in the hermaphrodite-conditioned medium. As expected,

dhs-28 mutant hermaphrodites were more sensitive to aldicarb compared with N2 hermaphrodites

(Figure 3F). We also tested hermaphrodites of other known ascaroside synthesis mutants, including

maoc-1 and acox-1.1 – which are known to accumulate saturated and a,b-unsaturated side-chain

ascarosides – but found that maoc-1 mutants present slightly increase of aldicarb sensitivity than the

wild type, and acox-1.1 mutants were indifferent from the wild type for their sensitivity to aldicarb

(Figure 3F). Furthermore, we examined the male ascaroside effects on dhs-28 mutants, which could

accumulate b-hydroxylated medium-chain ascarosides themselves. The result showed that dhs-28

hermaphrodites cannot be modulated by male ascarosides by presenting comparable aldicarb sensi-

tivity when in hermaphrodite- and male-conditioned medium (Figure 3G). These experiments with

ascaroside biosynthesis mutants establish that environmental enrichment of b-hydroxylated medium-

chain ascarosides increases the hermaphrodite NMJ E/I ratio, thereby supporting that these specific

ascarosides may function as NMJ cholinergic synaptic transmission modulators.

AWB sensory neurons are involved in sensing the modulator
ascarosides and transmit signals to the NMJ through cGMP signaling
Pheromone signals in the environment are detected and integrated by chemosensory neural circuits

(Ludewig and Schroeder, 2013; Srinivasan et al., 2008). In C. elegans, there are 11 pairs of chemo-

sensory neurons that can respond to pheromone signals (ASE, AWC, AWA, AWB, ASH, ASI, ADF,

ASG, ASJ, ASK, and ADL). To identify the specific chemosensory neurons sensing the modulator

ascarosides, we used a miniSOG (mini Singlet Oxygen Generator)-induced genetic ablation strategy.

miniSOG is an engineered fluorescent protein that can generate singlet oxygen upon blue light illu-

mination. Targeting miniSOG to mitochondria can lead to singlet oxygen accumulation in mitochon-

dria, which induces rapid and efficient cell death (Qi et al., 2012). To examine the genetic ablation

efficiency, we coexpressed mCherry and miniSOG in the chemosensory neurons under the control of

the flp-21 promoter and quantified the miniSOG ablation efficiency based on the percentage of live

neurons labeled by mCherry before and after induction of cell death. To optimize the ablation proto-

col, we tested continuous blue light stimulation at a power of 57 mW/cm2 over different periods

(Figure 4—figure supplement 1A). We found that 15 min’ stimulation resulted in complete loss of

mCherry signals in around 47.8% of neurons and a dramatic reduction of mCherry signals in 26.1%

of neurons, whereas stimulation for 30 min or 50 min led to complete loss of mCherry signals in

almost 80% of neurons and faint residual expression of mCherry signals in 20% of neurons
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(Figure 4—figure supplement 1B,C). Considering both the ablation efficiency and the stimulation

time, we chose 30 min of continuous blue light stimulation for our standard ablation procedure.

We screened all the 11 pairs of chemosensory neurons based on miniSOG-induced genetic abla-

tion of hermaphrodites at the late L1 stage (Figure 4A). We grew hermaphrodites in male-condi-

tioned or hermaphrodite-conditioned medium following ablation of each specific chemosensory

neuron type, and measured their sensitivity to aldicarb. Ablation of the AWB (str-1 promoter driving

miniSOG) neuron pair in hermaphrodites blocked the increased sensitivity to aldicarb following

exposure to the male-conditioned medium (Figure 4B,C, 45.6% vs. 43.4% at 80 min). In contrast,

the increased aldicarb sensitivity in the male-conditioned medium remained when any other chemo-

sensory neurons were ablated (Figure 4A, Figure 4—figure supplement 2A–G). To further confirm

the requirement of AWB in sensing the modulator ascarosides, we compared the locomotion of

AWB-ablated hermaphrodites from male- and hermaphrodite-conditioned medium. Our data

showed that ablation of AWB neurons decreased the locomotion velocity in hermaphrodites from

the hermaphrodite-conditioned medium. In addition, ablation of AWB neurons blocked the

decreased velocity by the modulator ascarosides (Figure 4D). These results support that AWB neu-

rons in hermaphrodites are necessary for the effects of male-specific modulator ascarosides on NMJ

synaptic transmission.

We also tested whether activation of AWB neurons is sufficient to modulate NMJ synaptic trans-

mission. We specifically expressed the channelrhodopsin variant CHIEF in AWB neurons and adminis-

tered blue light illumination in the presence of all-trans retinal (ATR) to activate AWB neurons

throughout the L4 stage. We observed decreased aldicarb sensitivity in animals fed with ATR (ATR+

light- vs. ATR� light�). Nevertheless, hermaphrodites with activated AWB neurons during the L4

stage showed higher sensitivity to aldicarb than controls without blue light activation (ATR+ light+

vs. ATR+ light�) (Figure 4E). This effect is absent in the groups lacking ATR (ATR� light+ vs. ATR�

light�) (Figure 4E). In contrast, activation of ASJ/ASI neurons or other amphid wing neurons like

AWA and AWC cannot increase aldicarb sensitivity, and the hermaphrodites with AWA neurons acti-

vation even present slightly decreased aldicarb sensitivity (Figure 4—figure supplement 3). These

findings confirm that activation of the AWB chemosensory neuron pair in hermaphrodites is sufficient

to modulate the NMJ synaptic transmission.

In order to test whether AWB neurons directly sense those modulator ascarosides, we monitored

intracellular Ca2+ dynamics upon male excretomes stimulation by expressing the calcium indicator

GCaMP6f in AWB neurons. We found that the AWB neurons elicited a rapid and robust calcium tran-

sient responding to the male excretomes. However, no responses were detected by stimulation with

the hermaphrodite excretomes (Figure 4F–H). Collectively, the data support that AWB neurons

directly respond to the male-specific modulator ascarosides.

We next explored which signaling molecules in AWB neurons mediate their responsivity to the

modulator ascarosides. In C. elegans, most chemical odors are perceived upon their binding to spe-

cific G-protein coupled receptors (GPCRs) located in chemosensory neurons; these receptors subse-

quently activate downstream signaling cascades (Bargmann, 2006; Li and Liberles, 2015;

Liberles, 2014). The G protein ODR-3 and the cGMP-gated channels TAX-2 have been implicated in

chemosensory signal transduction in AWB neurons. We first examined the NMJ E/I ratio in tax-2 and

odr-3 mutant hermaphrodites. We observed no differences in sensitivity to aldicarb for tax-2 mutant

hermaphrodites upon exposure to the male-conditioned or hermaphrodite-conditioned media

(Figure 4I). In the odr-3 mutants, we even observed a decreased aldicarb sensitivity in hermaphro-

dites from male-conditioned medium (Figure 4J), suggesting that the ability to mediate the down-

stream signaling effects of modulator ascarosides and increase NMJ E/I ratio is disrupted in these

mutants (Figure 4I,J). Further supporting this, complementing TAX-2 expression in AWB neurons

rescued the increased aldicarb sensitivity phenotype of hermaphrodites grown in the male-condi-

tioned medium (Figure 4I). Expression of TAX-2 in ASI and ASJ neurons had no such rescue effect

(Figure 4I). The increased sensitivity to aldicarb was also rescued by ODR-3 complementation in

AWB neurons (Figure 4J). Together, these results establish that the cGMP signaling pathway in

AWB chemosensory neurons transmits male-specific modulator ascaroside signals to the NMJ.
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Figure 4. AWB neurons sense the modulator ascarosides. (A) The table lists all of the chemosensory neurons examined in the screen, the neuron-

specific promoters used to drive miniSOG expression, and the impact of neuron ablation on sensing of modulator ascarosides. (B) Representative

images showing that mCherry-labeled AWB neurons were specifically ablated by blue light-induced miniSOG activation. Scale bar, 40 mm. (C) The

percentage of animals paralyzed on 1.4 mM aldicarb at 80 min were plotted for hermaphrodites expressing miniSOG in AWB neurons (str-1 promoter)

with and without blue-light-induced ablation. Black: cultured in hermaphrodite-conditioned medium; Orange: cultured in male-conditioned medium.

(D) Locomotion behavior analysis of single adult worm from AWB-ablated hermaphrodites in hermaphrodite- and male-conditioned medium. The

averaged crawling locomotion velocities were plotted. (E) The percentage of animals paralyzed on 1.4 mM aldicarb at 90 min were plotted for

hermaphrodites with AWB neurons optogenetically activated during the L4 stage. The channelrhodopsin variant CHIEF was expressed in AWB

chemosensory neurons driven by the str-1 promoter. The blue light was turned on to excite AWBs in transgenetic animals fed with or without ATR. (F)

Top: snapshots of GCaMP6f fluorescent signals of an AWB neuron before, during, and after addition of male excretome. Scale bar, 10 mm. Bottom: the

calcium trace showing the AWB neuron activated by male excretome. (G) Curves and average intensities of Ca2+ signals evoked by the hermaphrodite

or male excretome in the soma of AWB with GCaMP6f expression. The shaded box represents the addition of the hermaphrodite or male excretome.

(H) Scatter diagram and quantification of the Ca2+ change. Each point represents Ca2+ peak value from one animal. (I) The percentages of animals

paralyzed on 1.4 mM aldicarb at 80 min were plotted for tax-2(p691) mutant hermaphrodites and TAX-2 expression restored in AWB or ASJ/ASI

neurons cultured in hermaphrodite- (black) and male-conditioned medium (orange). (J) The percentages of animals paralyzed on 1.4 mM aldicarb at 80

Figure 4 continued on next page
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Excitatory postsynaptic receptor clustering is increased in
hermaphrodites exposed to the male environment
The steps of the synaptic transmission process include presynaptic vesicle fusion, neurotransmission,

and neurotransmitter binding to postsynaptic receptors. The increased cholinergic synaptic transmis-

sion rate at the hermaphrodite NMJ induced by the modulator ascarosides could reflect changes in

any of these steps. We first examined whether any NMJ synaptic structures were altered, specifically

by labeling cholinergic synapses via expression of a RAB-3-GFP fusion protein in DA and DB cholin-

ergic motor neurons (using the unc-129 promoter) (Colavita et al., 1998). DA and DB neurons are

known to receive synaptic inputs in the ventral nerve cord and to form NMJs with the body-wall mus-

cle in the dorsal nerve cord, and this results in the formation of puncta comprising presynaptic RAB-

3 proteins that can be observed at DA/DB axon terminals in the dorsal cord (Colavita et al., 1998).

We observed that puncta fluorescence intensities and densities were comparable in hermaphrodites

grown in either hermaphrodite- or male-conditioned medium (Figure 5A), which suggested that the

excitatory synapse structures were unaltered by the presence of modulator ascarosides. We next

labeled the GABAergic motor neuron terminals by expressing RAB-3 fused with RFP under the unc-

25 promoter (Jin et al., 1999). Similar to the excitatory cholinergic synapses, the puncta fluores-

cence intensities and densities in the inhibitory GABAergic synapses did not differ between her-

maphrodites from male-conditioned or hermaphrodite-conditioned medium (Figure 5B), which

collectively suggest that neither excitatory nor inhibitory synapse structures are affected by the mod-

ulator ascarosides.

We then examined the extent of excitatory and inhibitory postsynaptic receptor localization in

hermaphrodites by analyzing the subcellular distributions of nicotinic acetylcholine receptors

(nAchRs; excitatory) and GABAA receptors (inhibitory). A single-copy transgenic insertion technique

was applied to express fluorescence reporter fusion variants of two known nAchR subunit proteins

(UNC-29-RFP and ACR-16-RFP) or a GABAA-receptor subunit (UNC-49-mCherry) under the control

of a muscle-specific promoter. At cholinergic synapses, the hermaphrodites from the male-condi-

tioned medium had a slight but significant increase in puncta signal intensities for the nAchRs com-

pared to those from the hermaphrodite-conditioned medium (Figure 5C,D). However, the GABAAR

intensities were not changed (Figure 5E). Both the nAchRs and GABAAR densities were unaltered

(Figure 5C–E). Thus, the male-specific modulator ascarosides are involved in increased postsynaptic

receptor abundance at excitatory synapses in hermaphrodites.

Presynaptic CaV2 calcium channel localization at NMJ cholinergic
synapses is increased in hermaphrodites exposed to the male
environment
Next, we examined if the process of presynaptic neurotransmission is regulated based on the fact

that the mEPSC frequency was increased in hermaphrodites by the male-specific pheromones

(Figure 1H–J). N-type voltage-gated calcium channels (CaV2) are required for the presynaptic cal-

cium influx process that underlies both excitatory and inhibitory neurotransmission (Liu et al., 2018;

Tong et al., 2017). Therefore, we inspected CaV2 calcium channel localization and abundance at

Figure 4 continued

min were plotted for odr-3(n1605) mutant hermaphrodites and ODR-3 expression restored in AWB neurons cultured in hermaphrodite- (black) and

male-conditioned medium (orange). In (C–E), (H–J), ***p<0.001, **p<0.01, ns not significant, two-way ANOVA with post hoc Sidak multiple comparisons

for (C), (E), and (I–J), one-way ANOVA with post hoc Dunnett multiple comparisons for (D), unpaired Student’s t-test for (H).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1.

Figure supplement 1. Genetic ablation efficiency by miniSOG.

Figure supplement 1—source data 1.

Figure supplement 2. ASE, AWC, AWA, ASH, ASI, ADF, ASG, ASK, ADL, and ASJ chemosensory neurons are dispensable for sensing modulator
ascarosides.

Figure supplement 2—source data 1.

Figure supplement 3. Activation of other sensory neurons does not change aldicarb sensitivity in hermaphrodites.

Figure supplement 3—source data 1.
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Figure 5. Modulator ascarosides promote postsynaptic AchR synaptic localization. (A) The puncta fluorescence intensities and densities marked by the

excitatory synaptic GFP::RAB-3 (under unc-129 promoter) in dorsal nerve cord axons were unaltered by modulator ascarosides. Representative images

(top panel), mean puncta intensities and puncta density (bottom panel) are shown for hermaphrodites grown in hermaphrodite- or male-conditioned

medium. (B) The puncta fluorescence intensities and densities marked by the inhibitory synaptic RFP::RAB-3 (under unc-25 promoter) were unaltered in

Figure 5 continued on next page
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presynaptic elements in hermaphrodites grown in either hermaphrodite- or male-conditioned

medium. To visualize endogenous CaV2 at excitatory or inhibitory synapses separately, we utilized

the split GFP complementary system (Cabantous et al., 2005; Kamiyama et al., 2016). In C. ele-

gans, UNC-2 encodes the CaV2 calcium channel a subunit, and we used CRISPR/Cas9 system to

insert a sequence coding for seven GFP11 fragments at the C-terminus of UNC-2/CaV2. In parallel,

the GFP 1–10 fragment was constitutively expressed in DA and DB cholinergic motor neurons under

the control of the unc-129 promoter or in the GABAergic motor neurons under the control of the

unc-47 promoter (Figure 6A). In this way, we were able to monitor the endogenous localization of

CaV2 channels at excitatory and inhibitory synapses. To validate the correct subcellular localization,

we coexpressed the presynaptic marker UNC-57/Endophilin fused with mCherry. The CaV2-GFP

fusion protein formed fluorescent puncta largely co-localized with UNC-57/Endophilin in dorsal cord

axons (Figure 6B,C, Pearson correlation coefficient 0.7808 ± 0.022 for DA/DB cholinergic motor ter-

minals, and 0.7880 ± 0.0175 for GABAergic motor neuron terminals), confirming that CaV2-splitGFP

is localized correctly at presynaptic elements. We further found that UNC-57/endophilin fluores-

cence intensities and densities were indistinguishable in hermaphrodites from the hermaphrodite-

and male-conditioned medium (Figure 6—figure supplement 1). This result is consistent with RAB-

3-GFP imaging results and support that the presynaptic structure is not altered by male pheromone

(Figure 5A,B).

Comparison of the CaV2 puncta fluorescence intensities revealed a significant increase at cholin-

ergic synapses of hermaphrodites from male-conditioned medium compared to those from the her-

maphrodite-conditioned medium (Figure 6D). A slight but notable increase in densities was also

observed (Figure 6D). In contrast, we detected no significant differences in CaV2 puncta fluores-

cence intensities and densities at GABAergic synapses (Figure 6E).

To further confirm that CaV2 is the synaptic target of modulator ascarosides, we compared the

cholinergic synaptic transmission and locomotion velocity in unc-2 hermaphrodites from male- and

hermaphrodite-conditioned medium. The mEPSC rate and locomotion velocity in the unc-2 mutant

were decreased compared to those in the wild type (Figure 7A,B), which is correlated with the

requirement of CaV2 in mediating presynaptic transmission. Furthermore, we found that the male-

specific ascarosides no longer increase mEPSC rates in the unc-2 hermaphrodites (Figure 7A–C).

Similarly, the locomotion velocity was not changed in unc-2 hermaphrodites from male-condition

medium compared to those from hermaphrodite-condition medium (Figure 7D), which suggests

that unc-2 mutation blocks the effects of the male-specific modulator ascarosides on NMJ synaptic

transmission. These findings collectively indicate that the male-specific modulator ascarosides may

promote the accumulation of CaV2 calcium channels at excitatory cholinergic synapses, accounting

for the potentiated cholinergic synaptic transmission at NMJ.

Discussion
In this study, we have revealed a novel mechanism through which the male environment modulates

the NMJ synaptic transmission, locomotion behavior, and mating efficiency in hermaphrodites. We

show that the male environment effects are mediated based on exposure to male-specific phero-

mones at a specific developmental stage in hermaphrodites (the entire L3–L4 stage). We further

demonstrate that hermaphrodite sense and process these male-specific pheromones by AWB che-

mosensory neurons using the cGMP signaling. At the hermaphrodite NMJ, presynaptic calcium chan-

nel localization and postsynaptic acetylcholine receptor clustering are elevated by exposure to male-

specific pheromones, resulting in an increased cholinergic synaptic transmission. Our results provide

mechanistic details of how environmental factors alter neuronal development and physiology,

Figure 5 continued

hermaphrodites cultured in male-conditioned medium. Representative images (top), mean puncta intensities and puncta density (bottom) are shown.

(C–E) The muscle-specific ACR-16::RFP, UNC-29::RFP, and UNC-49::RFP fluorescence intensities and densities in hermaphrodites cultured in

hermaphrodite- and male-conditioned medium. Representative images, mean puncta intensities and puncta density are shown separately. Scale bars, 5

mm. **p<0.005, ***p<0.001, ns not significant, unpaired Student’s t-test.

The online version of this article includes the following source data for figure 5:

Source data 1.
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Figure 6. Modulator ascarosides increase the abundance of excitatory presynaptic CaV2 calcium channels at the NMJ. (A) Schematic illustration of split

GFP experimental design. Seven copies of the splitGFP 11 were inserted into the C-terminal of unc-2 genomic loci by CRISPR-Cas9 system. The

splitGFP1-10 was expressed in B-type cholinergic and GABAergic motor neurons by unc-129 and unc-47 promoters. The unc-57-mCherry under the

same promoter was separated with splitGFP1-10 by SL2 and was also used as a coexpressed presynaptic marker. (B, C) Presynaptic UNC-2::splitGFP

(green) and UNC-57::mCherry (red) were co-localized in the dorsal nerve cord at both excitatory (B) and inhibitory (C) synapses. Representative images

(top, scale bar, 10 mm) and linescan curves (bottom) are shown. For linescan curves, the mCherry signals were plotted on the left Y-axis, while the

splitGFP signals were plotted on the right. one arbitrary fluorescence intensity unit equals 100 gray value. (D, E) The puncta fluorescence intensities and

densities of UNC-2::splitGFP in B-type motor neurons (D) and GABAergic motor neurons (E) of hermaphrodites cultured in hermaphrodite- or male-

conditioned medium. Representative images (scale bar, 5 mm), mean puncta intensities, and puncta densities are shown. In D and E, *p<0.05, **p<0.01,

ns not significant, unpaired Student’s t-test.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1.

Figure supplement 1. Excitatory and inhibitory synapse structures are not affected by the modulator ascarosides.

Figure 6 continued on next page
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presenting insights to better understand the associations between dysregulated neurodevelopment

and various psychiatric diseases.

C. elegans NMJ as a model to study synaptogenesis
Here, we used the C. elegans NMJ as a model to study synaptic transmission, and our work under-

score C. elegans as a useful model to study synaptic transmission in vivo. The motor circuit of C. ele-

gans relies on a precise balance between cholinergic excitation and GABAergic inhibition of body-

wall muscles to generates precise locomotion activities (Richmond and Jorgensen, 1999). Both our

and others’ studies have identified mechanisms of synaptogenesis and synaptic transmission that are

Figure 6 continued

Figure supplement 1—source data 1.
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Figure 7. CaV2 calcium channel is the synaptic target of the modulator ascarosides. (A–C) Endogenous

acetylcholine transmission was assessed by recording mEPSCs from body muscles of wild-type N2 and unc-2

mutant adult hermaphrodites cultured in hermaphrodite- or male-conditioned medium. Representative mEPSC

traces (A), the mean mEPSC rates (B), and the mean mEPSC amplitudes (C) are shown. The data for wild type (N2)

is the same as in Figure 1H–J. (D) Locomotion behavior analysis of the single wild-type and unc-2 mutant

hermaphrodite in hermaphrodite- and male-conditioned medium. The averaged and individual locomotion

velocities were plotted. In (B)–(D), *p<0.05, ***p<0.001, ns not significant, one-way ANOVA with post hoc Dunnett

multiple comparisons.

The online version of this article includes the following source data for figure 7:

Source data 1.
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shared by the C. elegans NMJ and the mammalian central nervous system (Dolphin and Lee, 2020;

Hata et al., 1993; Ogawa et al., 1998; Pevsner et al., 1994; Richmond et al., 1999; Rizo and Süd-

hof, 2012). In the worm motor circuit and the mammalian brain, acetylcholine is an excitatory neuro-

transmitter while GABA is an inhibitory neurotransmitter. Moreover, the clustering of acetylcholine

receptors and GABA receptors at synapses is observed in C. elegans and vertebrates (Maro et al.,

2015; Poulopoulos et al., 2009; Tong et al., 2015; Tu et al., 2015).

It is also highly notable that many autism-linked synaptic proteins, including Neuroligins and Neu-

rexins, have been shown to function with conserved roles in NMJ synaptogenesis and synaptic trans-

mission (Hart and Hobert, 2018; Hu et al., 2012; Kurshan et al., 2018; Philbrook et al., 2018;

Tong et al., 2017): Neuroligins and Neurexins form trans-synaptic complex and regulate synaptic

transmission in both mammalian central nervous system and C. elegans NMJ (Hu et al., 2012;

Kurshan et al., 2018; Tong et al., 2017). Neuroligins are required for postsynaptic GABAA-receptor

clustering and inhibitory synaptic transmission (Maro et al., 2015; Poulopoulos et al., 2009;

Tong et al., 2015; Tu et al., 2015). While Neurexins undergo ectodomain shedding by ADAM10

protease (Borcel et al., 2016; Tong et al., 2015), bind to presynaptic CaV2 calcium channel a2d

subunits, and regulate calcium channel activity (Luo et al., 2020; Tong et al., 2017). Thus, the mech-

anisms we identified here in the C. elegans NMJ may provide new insights into how synaptic trans-

mission is maintained in the mammalian brain.

Sexual dimorphic modulation on NMJ synaptic transmission
We show that a previously unknown circuit comprised of AWB chemosensory neurons regulates

NMJ synaptic transmission in C. elegans. Interestingly, the male-enriched pheromones increase the

acetylcholine transmission specifically in hermaphrodites but not in males, suggesting sexual dimor-

phism in the regulation of NMJ synaptic transmission. This could be mediated by sex-specific neuro-

nal circuits that are composed of either sex-specific or sex-shared neurons to process and transmit

male pheromone signals to NMJ. A C. elegans male has 385 neurons, whereas a hermaphrodite has

302 neurons. The majority of male-specific neurons are localized in the male tail and are involved in

the complex mating behaviors. There are several hermaphrodite-specific neurons in the nervous sys-

tem, including VC and HSN motor neurons, which are mainly required for reproductive functions

(Banerjee and Hallem, 2018; Emmons, 2018; Garcı́a and Portman, 2016). On the other hand, sev-

eral sex-shared neurons, including motor neurons, AWA, AWC, and ASK chemosensory neurons,

DVA mechanosensory neurons, as well as AVA interneurons, could contribute to sex-specific neural

circuits by mediating attraction and aversion behaviors (Banerjee and Hallem, 2018; Bayer and

Hobert, 2018; Cook et al., 2019; Fagan et al., 2018; Mowrey et al., 2014; Narayan et al., 2016;

Wan et al., 2019). Our results identified that AWB chemosensory neurons mediate a sexually dimor-

phic modulation of NMJ synaptic transmission. Further studies will be required to unravel the down-

stream neural circuits, including interneurons and premotor neurons, that function to process the

modulator ascaroside signals to modulate NMJ synaptic transmission. Another possibility for this

sexual dimorphic modulation is from sexually dimorphic hormone signaling pathways, such as vaso-

pressin/oxytocin and their receptors (Garrison et al., 2012).

Our data show that pheromones modulating hermaphrodite NMJ synaptic transmission are

enriched in N2 males. Previous studies have reported various male-specific ascarosides, including

ascr#10 and indole containing ascarosides (IC-ascarosides, especially icas#3 and icas#9). However,

our data indicate that ascr#10 and indole IC-ascarosides are unlikely the modulator ascarosides.

First, ascr#10 levels are comparable in N2 and TR389 males. Second, previous work has established

that ASI and ASK sensory neurons are required for hermaphrodites to sense ascr#10 and IC-ascaro-

sides (Aprison and Ruvinsky, 2017; Dong et al., 2016), whereas we find that ASI and ASK neurons

are dispensable for hermaphrodites to sense the modulator ascarosides. In contrast, our UPLC-MS

data strongly suggest that the medium-chain b-hydroxylated ascarosides (C13, C14, and C15) may

mediate this effect. Although we provided extensive genetic evidence, we have not experimentally

confirmed that these specific ascarosides are sufficient to modulate hermaphrodite NMJ synaptic

transmission.

Previous studies by Brunet and Murphy labs have shown that male pheromone exposure affects

animal health and shortens hermaphrodite life span (Maures et al., 2014; Shi and Murphy, 2014;

Shi et al., 2017). Here our data suggest that it might be different mechanisms to modulate longevity

and NMJ synaptic transmission. In previous research, they found that exposure of hermaphrodite to
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male pheromones at the beginning of their life (day 1) or sexual maturity (day 4) had a similar effect

on hermaphrodites’ life span. However, we showed that L3–L4 is a critical developmental stage for

modulation of hermaphrodite NMJ synaptic transmission by male pheromones (Figure 2A–C). Dis-

tinct male-specific pheromones may mediate the effects on longevity and NMJ. Further studies

should be carried out to identify the specific ascaroside pheromones in males.

Our work demonstrates that early pheromone environment exposure has a long-term effect on

synaptic transmission. We suspect that the observed effects may be mediated through endocrine

signaling pathways, such as DAF-7/TGF-b and DAF-2/insulin, which are known to drive both epige-

nomic and transcriptional changes. In this light, recent studies have shown how pheromone exposure

can inhibit learning behavior by disrupting the balance between two insulin-like peptides, ins-16 and

ins-4 (Wu et al., 2019). Further studies are required to characterize whether endocrine system com-

ponents like insulin signaling molecules are involved in regulating synaptic transmission in response

to male-specific ascarosides.

Presynaptic calcium channels as neuromodulation targets
Our results show that modulator pheromones regulate hermaphrodite NMJ cholinergic transmission

by altering the presynaptic localization of calcium channel CaV2 at cholinergic synapses. These

results support that CaV2 calcium channels can be viewed as potential targets for environmental

modulation of the synaptic transmission. At synapses, CaV2 channels are known to form large signal-

ing complexes in the presynaptic nerve terminal that are responsible for calcium influx and neuro-

transmitter release (Dolphin and Lee, 2020). Numerous studies have verified causal relationships for

calcium channel mutations and polymorphisms in neuropsychiatric diseases, including ASD

(Nanou and Catterall, 2018; Zamponi, 2016). Our previous studies identified a synaptic retrograde

signal mediated by autism-linked proteins that regulate CaV2 presynaptic localization to alter excit-

atory synaptic transmission (Tong et al., 2017). Here, we present the important evidence that the

presynaptic calcium channel CaV2 could also be a target of social interaction modulation to shift the

synaptic excitation and inhibition balance. These results support the idea that changes in presynaptic

calcium channel localization could be impactful in some forms of ASD.

How might changes in chemosensory neuron activity contribute to presynaptic calcium channel

localization? Our results suggest that it is not a general change of CaV2 expression levels because

we observed increased presynaptic localization at cholinergic synapses but not at GABAergic synap-

ses. We suspect that the specific synaptic recruitment of CaV2 is somehow potentiated by the mod-

ulator ascarosides. Previous studies have suggested that protein interactions are required for cell-

surface localization of calcium channels as well as their docking at the active zone. It is therefore pos-

sible that pre-synapse specific proteins that are only present at cholinergic synapses may act down-

stream of the chemosensory circuits to regulate the surface localization of CaV2 channels.

Collectively, our findings reveal a novel mechanism through which pheromones in the environ-

ment modulate synaptogenesis and synaptic transmission in the nervous system. Beyond suggesting

that calcium channels may be a shared target for both genetic and environmental modulation during

development, our study lays a foundation for studies into the signaling and cell-specific functions

underlying neurodevelopmental dysfunction.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background (C. elegans)

C. elegans strains used
in this study are listed
in Supplementary file 1

Strain
(Escherichia coli)

OP50 CGC RRID:WB-STRAIN:OP50

Sequence-
based reagent

Sequence information is
listed in
Supplementary file 2

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Recombinant
DNA reagent

pPD49.26 Addgene
(Andrew Fire)

https://www.addgene.org/1686/

Recombinant
DNA reagent

pPD95.75 Addgene (Andrew Fire) https://www.addgene.org/1494/

Recombinant
DNA reagent

pCFJ910 Addgene
(Erik Jorgensen)

https://www.addgene.org/44481/

Recombinant
DNA reagent

CZ14527 Yingchuan B. Qi
Qi et al., 2012

Plasmid:
Punc-17b::tomm-
20N::miniSOG

Recombinant
DNA reagent

quan0071 Quan Wen Xu, T et al., 2018 Plasmid:
Pacr-5::chrimson

Recombinant
DNA reagent

pSG368 Shangbang Gao Gao, S et al., 2018 Plasmid: GCaMP6f

Commercial
assay or kit

PureLink HiPure
Plasmid Miniprep Kit

Invitrogen Cat#: K210002

Commercial
assay or kit

QIAprep Spin
Miniprep Kit

Qiagen Cat#: 27106

Commercial
assay or kit

PrimeSTAR Max
DNA Polymerase

Takara Cat#: R045A

Commercial
assay or kit

hyPerFUsion
high-fidelity
DNA polymerase

ApexBio Cat#: K1032

Commercial
assay or kit

Hieff CLoneTM Plus
One Step Cloing Kit

Yeasen Cat#: 10911ES62

Chemical
compound, drug

Aldicarb ApexBio Cat#: B4778

Chemical
compound, drug

All-trans-Retinal Sigma Cat#: R2500

Chemical
compound, drug

Geneticin, G418 Sulfate GOLDBIO Cat#: G-418–1

Chemical
compound, drug

2,3-Butanedione
monoxime

Sigma Cat#: B0753

Chemical
compound, drug

Polybead Microspheres
0.10 mm

Polysciences Cat#: 00876–15

Chemical
compound, drug

Fluospheres carboxylat Life Science Cat#: F8813

Software, algorithm ImageJ NIH https://imagej.nih.gov/
ij/download.html

Software, algorithm Igor pro 6.3 WaveMetrics https://www.wavemetrics.com/
products/igorpro/igorpro.htm

Software, algorithm GraphPad Prism 8 GraphPad https://www.graphpad.com/
scientific-software/prism/

Software, algorithm MATLAB MathWorks https://www.mathworks.com/
products/matlab.html?s_tid=
hp_products_matlab

Software, algorithm MetaMorph Molecular Devices https://www.moleculardevices.com/
systems/metamorph-research-
imaging/metamorph-microscopy-
automation-and-image-analysis-
software

Software, algorithm WormLab MBF Bioscience https://www.mbfbioscience.com/
wormlab
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Contact for reagent and resource sharing
Further information and requests for resources and reagents should be directed to and will be ful-

filled by the Lead Contact Xia-Jing Tong (tongxj@shanghaitech.edu.cn).

Experimental model and subject details
Animals
C. elegans were maintained under standard conditions at 20˚C on plates made from nematode

growth medium (NGM). E. coli OP50 was used as a food source for all experiments except where

HB101 E. coli was utilized for electrophysiology study. A description of all alleles can be found at

http://www.wormbase.org/#012-34-5. Animals were obtained from Bristol variety N2 strain unless

specially indicated. Transgenic animals were prepared by microinjection, and integrated transgenes

were isolated following UV irradiation or by miniMos insertion.

Plasmids
All worm expression vectors were modified versions of pPD49.26 (A. Fire) or miniMos vector

pCFJ910. Standard methods and procedures were utilized for all of the plasmids. A 3.1 kb ceh-36

promoter was used for expression in ASE and AWC chemosensory neurons. A 3 kb odr-10 promoter

was used for expression in AWA chemosensory neurons. A 3 kb str-2 promoter was used for expres-

sion in AWC chemosensory neurons. A 3 kb str-1 promoter was used for expression in AWB chemo-

sensory neurons. A 3 kb srb-6 promoter was used for expression in ADF, ADL, and ASH

chemosensory neurons. A 3 kb gpa-4 promoter was used for expression in ASI chemosensory neu-

rons. A 3 kb gcy-15 promoter was used for expression in ASG chemosensory neurons. A 3.9 kb sra-7

promoter was used for expression in ASK chemosensory neurons. A 4.1 kb flp-21 promoter was

used for expression in the majority of the chemosensory neurons. A 4.3 kb acr-5 promoter was used

for expression in DB and VB motor neurons. A 2.4 kb myo-3 myosin promoter was used for expres-

sion in body muscles. For rescue experiments, TAX-2 (F36F2.5.1), ODR-3 (C34D1.3.1), and ACR-16

(F25G6.3) were amplified from the N2 cDNA library using gene-specific primers.

Generation of single-copy insertion allele by homologous
recombination
The xjSI0002 allele encoding RFP-tagged ACR-16 minigene under the muscle-specific myo-3 pro-

moter was generated by miniMOS (Frøkjær-Jensen et al., 2014). The RFP sequence was inserted

between the third and the fourth transmembrane segment of ACR-16.

Aldicarb assay
The aldicarb assay was performed as previously described (Vashlishan et al., 2008). Aldicarb (Apex-

Bio) was dissolved in ethyl alcohol and added to NGM at a final concentration of 1.4 mM (Testing

hermaphrodites) or 0.5 mM (Testing males). These plates (35 mm) were seeded with 75 ml OP50 and

allowed to dry overnight before use. More than 20 animals at the young adult stage (otherwise indi-

cated) were picked on an aldicarb plate for aldicarb assay. Animals were scored as paralyzed when

they did not respond to the platinum wire prodding. The paralyzed animals were counted every 10

or 15 min. At least three double-blind replicates for each group were tested.

Preparation of conditioned media
Hermaphrodite- and male-secreted metabolites were collected according to a previous publication

(Srinivasan et al., 2008). Synchronized C. elegans (WT [N2], him-5 [N2], WT [TR389], him-5 [TR389],

daf-22 [N2], and daf-22; him-5 [N2]) with a density of 10,000 worms/plates (90 mm, three plates)

were grown on the nematode growth media (NGM) agarose (seeded with E. coli strain OP50) at 20˚

C. There were 43.07 ± 0.77%, 39.26 ± 1.55%, and 37.29 ± 1.28% males in him-5 (N2), daf-22; him-5

(N2), and him-5 (TR389) strains, respectively. After worms reached the young adult stages, they

were collected and washed three times with M9 buffer to remove bacteria. To further remove the

bacteria in the gut, the worms were then placed in M9 buffer in a shaker (150 rpm) at 20˚C for 30

min and rinsed three times with ddH2O. Subsequently, worm-secreted metabolites were collected

by incubating the worms in ddH2O in a shaker (150 rpm) for 3 hr with a density of 30,000 worms/ml.

Afterward, the worms were removed by settling on ice for 5 min. The metabolites were filtered
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through 0.22 mm filters, aliquoted, and stored at �80˚C. For conditioned medium preparation, 10 ml

metabolites mixed with 90 ml OP50 E. coli were spread on a 35 mm NGM plate. Plates were allowed

to dry overnight before use.

Calcium imaging
Muscle calcium responses were measured by detecting fluorescence intensity changes of GCaMP3.

C. elegans expressing GCaMP3 in the body-wall muscle (Pmyo-3::GCaMP3) and Chrimson in the DB

and VB neurons(Pacr-5::Chrimson) were used for calcium imaging experiments. Young adult animals

fed with 1.6 mM ATR (in 100 ml E. coli OP 50) were immobilized on 10% agarose pads by polystyrene

microbeads. Fluorescence images were captured using a Nikon 60 � 1.4 NA objective on a Nikon

spinning-disk confocal system (Yokogawa CSU-W1) at 10 ms per frame. We used wide-field illumina-

tion with a nominal wavelength at 640 nm for Chrimson activation. The GCaMP signals were cap-

tured using 488 nm laser excitation and were analyzed by ImageJ software.

Calcium responses in the soma of AWB sensory neurons were measured by detecting fluores-

cence intensity changes of GCaMP6f. A home-made microfluidic device was used for calcium imag-

ing as previously described (Liu et al., 2019; Zou et al., 2018). Briefly, a young adult animal was

rinsed by M9 buffer and loaded into a home-made microfluidic device with its nose exposed to

buffer under laminar flow. Diluted metabolites of N2 hermaphrodite and him-5 mutants was deliv-

ered using a programmable automatic drug feeding equipment (MPS-2, InBio Life Science Instru-

ment Co. Ltd, Wuhan, China). For Ca2+ fluorescence imaging in AWB, the neurons were exposed

under fluorescent excitation light for 30 s before recording, to eliminate the light-evoked calcium

transients. During the recording process, for the first 5 s, we gave the M9 solution and then switched

hermaphrodite excretome or male excretome for 30 s, removing extract liquid from 35 s and wash-

ing for 25 s. The AWB neurons were imaged with a 60� objective (Olympus) and EMCCD camera

(Andor iXonEM) at 100 ms/frame. The imaging sequences were subsequently analyzed using Image-

Pro Plus6 (Media Cybernetics, Inc, Rockville, MD).

Adult locomotion analysis
To analyze adult locomotor behavior, young adult worms were washed with M9 buffer before trans-

ferred to the unseeded NGM plate and allowed to recover for 5 min. Animal locomotion was

recorded at a rate of 10 frames per second for 1 min. The mean body-bend amplitude and crawling

locomotion velocity were analyzed by WormLab. All the assays were done at 25˚C.

Mating behaviors
Mating efficiency was assessed as previously described (Yin et al., 2017). Briefly, two young adult

stage hermaphrodites from male- or hermaphrodite-conditioned medium were cultured with two

young-adult males for 24 hr. Successful mating was scored when more than three male progenies

were generated in the mating plate. Mating efficiency was obtained by calculating the percentage

of successful mating in more than 15 plates.

Liquid culture and mass spectrometric analysis
The crude pheromone extracts were prepared according to a previously published protocol

(Zhang et al., 2013). N2 wild-type, him-5 mutant, daf-22; him-5 mutant, or TR389 him-5 mutant

worms were grown for two generations on 60 mm NGM plate seeded with E. coli OP50 bacteria.

Worms from four plates were washed by M9 buffer and cultured in 50 ml S complete medium (100

mM NaCl, 50 mM KPO4, 3 mM CaCl2, 3 mM MgSO4, 5 mg/ml cholesterol, 10 mM potassium citrate,

50 mM disodium EDTA, 25 mM FeSO4, 10 mM MnCl2, 10 mM ZnSO4, 1 mM CuSO4) at 20˚C and 200

rpm. The animals were cultured with shaking at 200 rpm for 7 days (around 30,000 worms/50 ml).

25� Concentrated E. coli OP50 bacteria were supplemented every day (0.3 ml for day 1, 1 ml for

days 2–5, and 2 ml for days 6–7). After 7 days, the supernatant medium containing metabolites was

collected by centrifugation (3000 g, 10 min). Then the supernatant media were frozen at �80˚C,

lyophilized, and extracted with methanol for UPLC-MS analysis. UPLC-MS was performed using a

Sciex TripleTOF 6600 system. Chromatographic separations were achieved using a Waters Acquity

UPLC BEH C18 column (1.7 mm, 2.1 � 10 mm), with a flow rate of 0.4 ml/min. Data acquisition and

processing were performed by Analyst and Peakview (Sciex).
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Genetic ablation with miniSOG
The genetically encoded photosensitizer, miniSOG, was used to ablate specific neurons as previously

described (Qi et al., 2012). Synchronized Late L1 larva animals (24 hr after egg hatching at 20˚C)

expressing miniSOG under specific promoters were exposed to wide-field blue light (460 nm) at an

intensity of 57 mW/cm2 for 30 min, and then animals were grown in the 20˚C incubator before

experiments. The ablation efficiency was measured by comparing mCherry fluorescent signal with

and without blue light stimulation.

Optogenetic activation of chemosensory neurons
To prepare the plates for optogenetic activation of neurons, 1.6 mM of all-trans-retinal (ATR, 100

mM dissolved in ethanol) or ethanol (control) was mixed with OP50 E. coli culture and spotted on 35

mm NGM plates. Plates were allowed to dry for 24 hr before usage. Transgenic worms with chan-

nelrhodopsin variant CHIEF expressed in ASJ/ASI, AWA, AWB, or AWC chemosensory neurons were

grown overnight on the NGM plates. Animals at L4 larval stages received 100 ms pulse stimulation

of blue light (460 nm wavelength, 2.4 mW/mm2 power) for 10 min (five times) until the animals

entered the adult stage.

Fluorescent microscopy imaging
For quantitative analysis of fluorescence intensities and densities, images were captured using a

100� (NA = 1.4) objective on an Olympus microscope (BX53). Young adult worms were immobilized

with 30 mg/ml 2,3-butanedione monoxime. The maximum intensity of dorsal cord projections of

Z-series stacks was obtained by Metamorph software (Molecular Devices). Line scans were analyzed

in Igor Pro (WaveMetrics) using a custom script (Dittman and Kaplan, 2006). The mean fluorescence

intensities of reference FluoSphere microspheres (0.5 mm, ThermoFisher Scientific) were measured

during each experiment controlled for changes in illumination intensities. To assess the synaptic

accumulation of fluorescent proteins, we used the calculation of DF/F as (Fpuncta – Faxon)/Faxon. And

we also counted the density of fluorescent puncta.

Electrophysiology
Electrophysiology was conducted on dissected C. elegans as previously described (Hu et al., 2012).

Worms were superfused in an extracellular solution containing 127 mM NaCl, 5 mM KCl, 26 mM

NaHCO3, 1.25 mM NaH2PO4, 20 mM glucose, 1 mM CaCl2, and 4 mM MgCl2, bubbled with 5%

CO2, 95% O2 at 22˚C. Whole-cell recordings were carried out at �60 mV for mEPSCs, and 0 mV for

mIPSCs. The internal solution contained 105 mM CH3O3SCs, 10 mM CsCl, 15 mM CsF, 4 mM

MgCl2, 5 mM EGTA, 0.25 mM CaCl2, 10 mM HEPES, and 4 mM Na2ATP. The solution was adjusted

to pH 7.2 using CsOH.

Statistics
All data were reported as mean ± SEM (standard error of the mean). Statistical analyses were per-

formed using GraphPad Prism (version 8). We calculated p-values by two-way ANOVA (Figures 1B,

D and 2D–F, Figure 2—figure supplement 1A–E, Figure 2—figure supplement 2, Figure 2—fig-

ure supplement 4, Figure 4—figure supplement 2A–G, Figure 4—figure supplement 3A–C), two-

way ANOVA with post hoc Sidak multiple comparisons (Figures 2B–C, G, 3B–C, F–G, 4C, E, and I–

J, Figure 3—figure supplement 1A–B), one-way ANOVA with post hoc Dunnett multiple compari-

sons (Figures 2H–I, 3E, 4D, and 7B–D, Figure 3—figure supplement 2A–C), and unpaired Stu-

dent’s t-test (Figures 1F–G, I–J, L–M, 4H, 5A–E, and 6D–E, Figure 1—figure supplement 1B,

Figure 2—figure supplement 3A and C, Figure 6—figure supplement 1A,B). In all figures, p-val-

ues are denoted as *<0.05, **<0.01, ***<0.001.
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Hata Y, Slaughter CA, Südhof TC. 1993. Synaptic vesicle fusion complex contains unc-18 homologue bound to
syntaxin. Nature 366:347–351. DOI: https://doi.org/10.1038/366347a0, PMID: 8247129

Homozygosity Mapping Consortium for Autism, Doan RN, Bae BI, Cubelos B, Chang C, Hossain AA, Al-Saad S,
Mukaddes NM, Oner O, Al-Saffar M, Balkhy S, Gascon GG, Nieto M, Walsh CA. 2016. Mutations in human
accelerated regions disrupt cognition and social behavior. Cell 167:341–354. DOI: https://doi.org/10.1016/j.
cell.2016.08.071, PMID: 27667684

Hu Z, Hom S, Kudze T, Tong XJ, Choi S, Aramuni G, Zhang W, Kaplan JM. 2012. Neurexin and neuroligin
mediate retrograde synaptic inhibition in C. elegans. Science 337:980–984. DOI: https://doi.org/10.1126/
science.1224896, PMID: 22859820

Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, Yamrom B, Lee YH, Narzisi G, Leotta A, Kendall
J, Grabowska E, Ma B, Marks S, Rodgers L, Stepansky A, Troge J, Andrews P, Bekritsky M, Pradhan K, et al.
2012. De novo gene disruptions in children on the autistic spectrum. Neuron 74:285–299. DOI: https://doi.org/
10.1016/j.neuron.2012.04.009, PMID: 22542183

Isogai Y, Wu Z, Love MI, Ahn MH, Bambah-Mukku D, Hua V, Farrell K, Dulac C. 2018. Multisensory logic of
Infant-Directed aggression by males. Cell 175:1827–1841. DOI: https://doi.org/10.1016/j.cell.2018.11.032,
PMID: 30550786

Qian et al. eLife 2021;10:e67170. DOI: https://doi.org/10.7554/eLife.67170 26 of 29

Research article Neuroscience

https://doi.org/10.1038/nbt1044
https://doi.org/10.1038/nbt1044
http://www.ncbi.nlm.nih.gov/pubmed/15580262
https://doi.org/10.1016/j.neuron.2007.08.018
http://www.ncbi.nlm.nih.gov/pubmed/17920015
https://doi.org/10.1038/s41593-020-0598-6
https://doi.org/10.1038/s41593-020-0598-6
https://doi.org/10.1016/j.neuron.2018.02.026
https://doi.org/10.1016/j.neuron.2018.02.026
https://doi.org/10.1126/science.281.5377.706
http://www.ncbi.nlm.nih.gov/pubmed/9685266
https://doi.org/10.1038/s41586-019-1352-7
http://www.ncbi.nlm.nih.gov/pubmed/31270481
https://doi.org/10.1073/pnas.0600784103
http://www.ncbi.nlm.nih.gov/pubmed/16844789
https://doi.org/10.1038/s41583-020-0278-2
http://www.ncbi.nlm.nih.gov/pubmed/32161339
https://doi.org/10.1039/C6OB01230B
http://www.ncbi.nlm.nih.gov/pubmed/27381649
https://doi.org/10.1016/j.conb.2009.07.007
http://www.ncbi.nlm.nih.gov/pubmed/19665885
https://doi.org/10.1146/annurev-neuro-070815-014056
http://www.ncbi.nlm.nih.gov/pubmed/29709211
https://doi.org/10.1016/j.cub.2018.02.029
http://www.ncbi.nlm.nih.gov/pubmed/29526590
https://doi.org/10.1038/nmeth.2889
http://www.ncbi.nlm.nih.gov/pubmed/24820376
https://doi.org/10.1016/j.conb.2016.02.002
https://doi.org/10.1016/j.conb.2016.02.002
http://www.ncbi.nlm.nih.gov/pubmed/26929998
https://doi.org/10.1126/science.1226201
https://doi.org/10.1126/science.1226201
http://www.ncbi.nlm.nih.gov/pubmed/23112335
https://doi.org/10.1038/nn.4589
http://www.ncbi.nlm.nih.gov/pubmed/28628100
https://doi.org/10.1038/nature19848
http://www.ncbi.nlm.nih.gov/pubmed/27799655
https://doi.org/10.1038/nature25192
http://www.ncbi.nlm.nih.gov/pubmed/29323291
https://doi.org/10.1038/366347a0
http://www.ncbi.nlm.nih.gov/pubmed/8247129
https://doi.org/10.1016/j.cell.2016.08.071
https://doi.org/10.1016/j.cell.2016.08.071
http://www.ncbi.nlm.nih.gov/pubmed/27667684
https://doi.org/10.1126/science.1224896
https://doi.org/10.1126/science.1224896
http://www.ncbi.nlm.nih.gov/pubmed/22859820
https://doi.org/10.1016/j.neuron.2012.04.009
https://doi.org/10.1016/j.neuron.2012.04.009
http://www.ncbi.nlm.nih.gov/pubmed/22542183
https://doi.org/10.1016/j.cell.2018.11.032
http://www.ncbi.nlm.nih.gov/pubmed/30550786
https://doi.org/10.7554/eLife.67170


Izrayelit Y, Srinivasan J, Campbell SL, Jo Y, von Reuss SH, Genoff MC, Sternberg PW, Schroeder FC. 2012.
Targeted metabolomics reveals a male pheromone and sex-specific ascaroside biosynthesis in Caenorhabditis
elegans. ACS Chemical Biology 7:1321–1325. DOI: https://doi.org/10.1021/cb300169c, PMID: 22662967

Jin Y, Jorgensen E, Hartwieg E, Horvitz HR. 1999. The Caenorhabditis elegans gene unc-25 encodes glutamic
acid decarboxylase and is required for synaptic transmission but not synaptic development. The Journal of
Neuroscience 19:539–548. DOI: https://doi.org/10.1523/JNEUROSCI.19-02-00539.1999, PMID: 9880574

Judson MC, Wallace ML, Sidorov MS, Burette AC, Gu B, van Woerden GM, King IF, Han JE, Zylka MJ, Elgersma
Y, Weinberg RJ, Philpot BD. 2016. GABAergic Neuron-Specific loss of Ube3a causes angelman Syndrome-Like
EEG abnormalities and enhances seizure susceptibility. Neuron 90:56–69. DOI: https://doi.org/10.1016/j.
neuron.2016.02.040, PMID: 27021170

Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B, Gilbert LA, Ishikawa H, Leonetti MD, Marshall WF,
Weissman JS, Huang B. 2016. Versatile protein tagging in cells with split fluorescent protein. Nature
Communications 7:11046. DOI: https://doi.org/10.1038/ncomms11046, PMID: 26988139

Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter
EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton
M, Wong GK, et al. 2014. Independent optical excitation of distinct neural populations. Nature Methods 11:
338–346. DOI: https://doi.org/10.1038/nmeth.2836, PMID: 24509633

Kurshan PT, Merrill SA, Dong Y, Ding C, Hammarlund M, Bai J, Jorgensen EM, Shen K. 2018. g-Neurexin and
frizzled mediate parallel synapse assembly pathways antagonized by receptor endocytosis. Neuron 100:150–
166. DOI: https://doi.org/10.1016/j.neuron.2018.09.007, PMID: 30269993

Lee J, Chung C, Ha S, Lee D, Kim DY, Kim H, Kim E. 2015. Shank3-mutant mice lacking exon 9 show altered
excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Frontiers in Cellular Neuroscience
9:94. DOI: https://doi.org/10.3389/fncel.2015.00094, PMID: 25852484

Lee C, Kang EY, Gandal MJ, Eskin E, Geschwind DH. 2019. Profiling allele-specific gene expression in brains from
individuals with autism spectrum disorder reveals preferential minor allele usage. Nature Neuroscience 22:
1521–1532. DOI: https://doi.org/10.1038/s41593-019-0461-9, PMID: 31455884

Levinson JN, El-Husseini A. 2005. Building excitatory and inhibitory synapses: balancing neuroligin partnerships.
Neuron 48:171–174. DOI: https://doi.org/10.1016/j.neuron.2005.09.017, PMID: 16242398

Li Q, Liberles SD. 2015. Aversion and attraction through olfaction. Current Biology 25:R120–R129. DOI: https://
doi.org/10.1016/j.cub.2014.11.044, PMID: 25649823

Liberles SD. 2014. Mammalian pheromones. Annual Review of Physiology 76:151–175. DOI: https://doi.org/10.
1146/annurev-physiol-021113-170334, PMID: 23988175

Liu H, Li L, Wang W, Gong J, Yang X, Hu Z. 2018. Spontaneous vesicle fusion is differentially regulated at
cholinergic and GABAergic synapses. Cell Reports 22:2334–2345. DOI: https://doi.org/10.1016/j.celrep.2018.
02.023, PMID: 29490270

Liu H, Qin LW, Li R, Zhang C, Al-Sheikh U, Wu ZX. 2019. Reciprocal modulation of 5-HT and octopamine
regulates pumping via feedforward and feedback circuits in C. elegans. PNAS 116:7107–7112. DOI: https://
doi.org/10.1073/pnas.1819261116, PMID: 30872487

Ludewig AH, Artyukhin AB, Aprison EZ, Rodrigues PR, Pulido DC, Burkhardt RN, Panda O, Zhang YK,
Gudibanda P, Ruvinsky I, Schroeder FC. 2019. An excreted small molecule promotes C. elegans reproductive
development and aging. Nature Chemical Biology 15:838–845. DOI: https://doi.org/10.1038/s41589-019-0321-
7, PMID: 31320757

Ludewig AH, Schroeder FC. 2013. WormBook: the online review of C. elegans Biology. WormBook 10:1–22.
DOI: https://doi.org/10.1895/wormbook.1.155.1

Luo FJ, Sclip A, Jiang M, Sudhof TC. 2020. Neurexins cluster Ca2+ channels within the presynaptic active zone.
Embo Journal 39:e103208. DOI: https://doi.org/10.15252/embj.2019103208

Mahoney TR, Luo S, Nonet ML. 2006. Analysis of synaptic transmission in Caenorhabditis elegans using an
aldicarb-sensitivity assay. Nature Protocols 1:1772–1777. DOI: https://doi.org/10.1038/nprot.2006.281,
PMID: 17487159
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