
Introduction

Following traumatic brain injury (TBI), a robust inflam-
matory response develops that involves the activation 

of glia and neurons as well as local accumulation of
leukocytes [1]. Accumulation of reactive microglia/
macrophages, polymorphonuclear granulocytes and 
lymphocytes has been observed in and around
affected tissues [2–5]. Certain cytokines, like EMAP-
II, can promote cell activation and migration to
lesional tissues and contribute to secondary brain
damage following TBI [6]. The appearance of
microglia clusters and infiltrating macrophages
expressing cellular activation markers, e.g. MHC-II

FTY720 attenuates accumulation of 

EMAP-II+ and MHC-II+ monocytes in early lesions of 

rat traumatic brain injury

Zhiyuan Zhang a, †, Zhiren Zhang a, *, †, Uwe Fauser a, Matthias Artelt b,
Michael Burnet b, Hermann J. Schluesener a

a Institute of Brain Research, University of Tuebingen, Tuebingen, Germany,
b Synovo GmbH, Tuebingen, Germany

Received: December 7, 2006; Accepted: January 11, 2007

Abstract

FTY720 (Fingolimod) is a novel type of immunosuppressive agent inhibiting lymphocyte egress from second-
ary lymphoid tissues thereby causing peripheral lymphopenia. FTY720 can inhibit macrophage infiltration into
inflammatory lesions under pathological conditions. FTY720 has been clinically evaluated for prophylaxis of
allograft rejection and treatment of multiple sclerosis, showing promising immunosuppressive effects.
A robust inflammatory response after traumatic brain injury (TBI) plays an important role in the secondary or
delayed injuries of TBI. Here we have investigated by immunohistochemistry in a rat TBI model the effects of
FTY720 on early cell accumulation into the inflammatory tissue response and on expression of major histo-
compatibility complex class II (MHC-II) and endothelial-monocyte activating polypeptide II (EMAP-II).
Accumulation of MHC-II+ or EMAP-II+ cells became significant 1 day after injury and continuously increased
during the early time periods. Further, double-staining experiments confirmed that the major cellular sources
of MHC-II were reactive macrophages, however MHC-II+ cells only constituted a small subpopulation of reac-
tive macrophages. Immediately after TBI, peripheral administration of FTY720 (1 mg/kg in 1 mL saline, every
second day) significantly attenuated the accumulation of MHC-II+ macrophages from Day 1 to 4 and signifi-
cantly attenuated the accumulation of EMAP-II+ macrophages/microglia at Day 4. Our findings show that
FTY720 attenuates early accumulation of EMAP-II+ and MHC-II+ reactive monocytes following TBI, indicat-
ing that FTY720 might be a drug candidate to inhibit brain inflammatory reaction following TBI.

Keywords: traumatic brain injury • FTY720 • MHC-II • EMAP-II • monocytes

J. Cell. Mol. Med. Vol 11, No 2, 2007 pp. 307-314

†Both authors contributed equally to this work.
* Correspondence to: Zhiren ZHANG
Institute of Brain Research, University of Tuebingen,
Calwer Str. 3, D-72076 Tuebingen, Germany.
Tel: +49-7071-2984882 
Fax: +49-7071-295456 
E-mail: zhangzhiren@yahoo.com

© 2007 The Authors
Journal compilation © 2007 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

doi:10.1111/j.1582-4934.2007.00019.x



308 © 2007 The Authors
Journal compilation © 2007 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

antigens, is associated with neuronal and axonal
damage [7–9].

EMAP-II is a proinflammatory antiangiogenic
cytokine, up-regulated and involved in inflammatory
cascades of secondary damage following CNS injury
[10, 11]. The expression of EMAP-II is a sensitive
marker of microglia/macrophage activation and asso-
ciated with the reactivation and accumulation /infiltra-
tion of microglia/macrophages after injury in the CNS
[11]. MHC-II antigens are also an indicator of reactive
microglia/macrophages [12]. Expression of MHC-II on
microglia/macrophages is induced following a variety
of pathological events, including brain trauma [2, 8,
13]. Clusters of microglia with up-regulated MHC-II
antigens are observed not only in lesioned areas but
also in regions without overt tissue damage and
remote from the site of impact following TBI [7, 14].
However, expression pattern of MHC-II following
weight-drop induced TBI remains unknown.

FTY720 (Fingolimod), 2-amino-2-(2-[4-octylphenyl]
ethyl)-1, 3-propanediol hydrochloride, is the first of a
new class of immunosuppressive agents: sphingo-
sine 1-phosphate (S1P) receptor agonists and has
shown promising immunosuppressive effects in vivo
and in vitro [15–17]. FTY720 functions through a new
mechanism, inhibiting lymphocyte egress from sec-
ondary lymphoid tissues and thymus by agonistic
activity at S1P receptors. It sequesters the circulating
lymphocytes into lymph nodes, resulting in reduced
peripheral lymphocyte counts, but does not alter
major effector functions of lymphocytes. Therefore,
FTY720 is a potent immunosuppressive agent with
minor toxicity and is well tolerated by patients.
Furthermore, FTY720 has a novel mechanism of
action that has not been observed with other
immunosuppressive agents and shows a synergism
with currently applied immunosuppressive agents.
FTY720 has been shown to be highly effective in
experimental allotransplantation and autoimmune
disease models. Interestingly FTY720 reduces the
number of lesions detected by MRI and clinical dis-
ease activity in patients with multiple sclerosis [18]. In
animal models of multiple sclerosis, FTY720 pre-
vents the onset of disease and reduces established
neurological deficits [19–21]. In addition administration
of FTY720 can inhibit macrophage infiltration into inflam-
matory lesions under pathological conditions, like exper-
imental autoimmune encephalomyelitis and amyloid
�-protein stimulated monocyte infiltration [22, 23].

In this study, we have investigated the potential
effects of FTY720 on expression patterns of MHC-II
and EMAP-II in the first 96 hrs after weight-drop-
induced TBI.

Materials and methods

Animal experiments

Lewis rats (8–9 weeks old, 350–400 g, Elevage Janvier, Le
Genest-St-Isle, France) were housed with equal daily peri-
ods of light and dark and free access to food and water. All
procedures were performed in accordance with the pub-
lished International Health Guidelines under a protocol
approved by the local Administration District Official
Committee. The number of the rats used and their suffering
were minimized.

TBI was induced using a weight-drop contusion model
in anesthetized rats as described previously [24, 25].
Briefly, rats were randomly grouped and anesthetized with
Ketamin (120 mg/kg)/Rompun (8 mg/kg) and underwent a
craniotomy, in which a circular region of the skull (3.0 mm
diameter, centered 2.3 mm caudal and 2.3 mm lateral to
bregma) was removed over the right somatosensory cor-
tex. A weight-drop device was placed over the dura and
adjusted to stop an impact transducer (foot plate) at a
depth of 2.5 mm below the dura. Then, a 20 g weight was
dropped from 15 cm above the dura, through a guiding
tube onto the foot plate. Body temperature was maintained
using an overhead heating lamp during surgery. After injury
the scalp was closed tightly. Immediately after surgery rats
received an intraperitoneal injection of FTY720 (1 mg/kg, in
1 mL saline, once every second day) or 1 mL saline,
respectively (vehicle control group). Rats were killed 24, 48
or 96 hrs after TBI. At the end of the experiment, rats (18
TBI rats and 5 normal adult control rats) were deeply anes-
thetized with Ketamin (120 mg/kg)/Rompun (8 mg/kg) and
perfused intracardially with 4°C 4% paraformaldehyde
(PFA) in PBS. Brains were quickly removed and post-fixed
in 4% PFA overnight at 4°C. A cortical coronal slice con-
taining the contusion site was embedded in paraffin, serial-
ly sectioned (3 �m) and mounted on silan-covered slides.
The sections were numbered and during the following
immunostaining the same antibody was applied to sections
with the same number.

Immunohistochemistry

After dewaxing, brain sections were boiled (in an 850 W
microwave oven) for 15 min in citrate buffer (2.1 g citric acid
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monohyrate/L, pH 6) (Carl Roth, Karlsruhe, Germany).
Endogenous peroxidase was inhibited by 1% H2O2 in pure
methanol (Merck, Darmstadt, Germany) for 15 min.
Sections were incubated with 10% normal pig serum
(Biochrom, Berlin, Germany) to block non-specific binding
of immunoglobulins and then with the mouse monoclonal
antibodies: OX6 for MHC-II (1:100; Camon, Wiesbaden,
Germany) or EMAP-II (1:100; BMA, Augst, Switzerland)
overnight at 4°C. Antibody binding to tissue sections was
visualized with a biotinylated rabbit antimouse IgG F(ab)2

antibody fragment (1:400; DAKO, Hamburg, Germany).
Subsequently, sections were incubated with a horseradish
peroxidase-conjugated Streptavidin complex for 30 min
(1:100; DAKO, Hamburg, Germany), followed by develop-
ment with diaminobenzidine (DAB) substrate (Fluka, Neu-
Ulm, Germany). Finally, sections were counterstained with
Maier’s Hemalaun. As negative controls, the primary anti-
bodies were omitted. Blocking studies have been described
[26]. To evaluate the lesion histologically, additional sec-
tions were stained with Hematoxylin and Eosin (HE).

Double-staining

In double-staining experiments, brain sections were
immunolabeled as described above. Then they were once
more irradiated in a microwave for 15 min in citrate buffer
and were incubated with 10% normal pig serum (Biochrom,
Berlin, Germany). Subsequently the sections were incubat-
ed with the appropriate second primary monoclonal anti-
bodies for 1 h at room temperature. Three monoclonal anti-
bodies were used: ED1 (1:100; Serotec, Oxford, UK) to
localize activated microglia/macrophages, W3/13 (1:50;
Serotec, Oxford, UK) to identify T-lymphocytes and OX22
(1:100; Serotec, Oxford, UK) to detect CD45RC expressed
by B lymphocytes and a T cell subset. Consecutively, visu-
alization was achieved by adding secondary antibody
(biotinylated rabbit antimouse IgG) at a dilution of 1:400 in
TBS-BSA for 30 min and then alkaline phophatase-conju-
gated Avidin complex diluted 1:100 in Tris-BSA for another
30 min. Finally immunostaining was developed with Fast
Blue BB salt chromogen-substrate solution, but by omis-
sion of counterstaining with Hemalaun.

Evaluation and statistical analysis

After immunostaining, brain sections of each time point
after TBI were examined by light microscopy. EMAP-II and
MHC-II (OX6) expression was evaluated at the lesioned
areas.The numbers of EMAP-II+ and MHC-II+ cells of every
rat brain section were counted in 3 non-overlapping high-
power fields (HPFs, � 400 magnification) for each section.
The HPFs were selected from lesional areas that had a

maximum of positive cells. In each field studied, only posi-
tive cells with the nucleus at the focal plane were counted.
Results were given as arithmetic means of MHC-II+ cells
per HPF and standard errors of means (SEM). Statistical
analysis was performed by one-way ANOVA followed by
Dunnett’s multiple comparison tests or non-parametric t
test (Graph Pad Prism 4.0 software). For all statistical
analyses, significance levels were set at P < 0.05.

Results

Traumatic brain injury 

TBI by weight drop is a well-established animal model
for brain trauma studies and was used to generate a
reproducible cortical injury. In brains of control TBI rats
receiving no FTY720, pannecrosis, where no neuronal
structures can be observed, emerged 2 days after
injury in the ipsilateral somatosensory cortex and
selective neuronal loss ventrally adjacent the pan-
necrosis extended to near the subcortical white matter.
Leukocyte infiltration and hemorrhage were observed
soon in those pannecrotic areas. A similar pattern of
injury was seen in brains of FTY720 treated rats.

MHC-II expression pattern in rat brains
following experimental TBI

Expression of MHC-II was detected by OX6 antibody. In
normal adult rat brains, only few MHC-II+ cells (2.0 ± 0.3
per HPF, n = 5, Fig. 1A) were observed in subarachnoid
and perivascular spaces and no MHC-II immunoreac-
tivity was detected in the parenchyma of normal adult
rat brains (Fig. 2A), which is in accordance with previ-
ous reports [27] A significant accumulation of MHC-II+

cells was detected at Day 1 after TBI (6.1 ± 0.4 per HPF,
n = 3, P < 0.01; Fig. 1A) and increased over time up to
the end of our observed period, 96 hrs post-TBI (16.3 ±
2.3 per HPF, n = 3, P < 0.01; Fig. 1A). Accumulated
MHC-II+ cells were observed mainly in lesional areas
and in subarachnoid and perivascular spaces near
lesioned areas as early as Day 1 post-TBI, but MHC-II+

cells were rarely seen in perilesional and remote areas.
We further characterized MHC-II+ cells by double-

staining with monoclonal antibodies against activated
microglia/macrophages (ED1), T cells (W3/13) or B cells
(OX22). MHC-II+ cells almost all co-expressed ED1, but
only 2–5% ED1+ cells were double-stained by MHC-II
(Fig. 2B). At the same time, co-labelling by the pan-T-
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marker W3/13 or the B cell-marker OX22 with MHC-II
was rarely seen. In addition, we have not observed any
MHC-II+ cells with ramified morphology, which is a nec-
essary intermediate phenotype during microglial activa-
tion.Therefore, the major cellular sources of MHC-II in the
weight-drop TBI model appear to be reactive
macrophages. Nevertheless, MHC-II expression only
defines a small subpopulation of activated macrophages.

FTY720 treatment reduces MHC-II+ and
EMAPII+ cell accumulation in TBI rat brains 

In brains of FTY720 treated TBI rats, numbers of
MHC-II+ cells was significantly lower (Fig. 2D) than of
saline treated TBI rats (Fig. 2C) as early as Day 1
(3.4 ± 0.7 per HPF, n = 3, P < 0.01) and up to Day 4
(7.8 ± 2.2 per HPF, n = 3, P < 0.01; Fig. 1A).

EMAP-II expression was as well analyzed in TBI rats.
Significant accumulation of EMAP-II+ cells in lesional

areas was seen at Day 1 after injury (17.7 ± 4.6 per HPF,
n = 3, P < 0.05, compared to normal controls, data sub-
mitted and not shown here) and reached maximal num-
bers by Day 4 (146.3 ± 6.6 per HPF, n = 3, P < 0.01). In
brains of FTY720 treated TBI rats, inhibition of EMAP-II+

cell accumulation (Fig. 2E and 2F) was observed at Day
4 compared to saline treated group (85.6 ± 10.2 per HPF
in FTY720 group and 146.3 ± 6.6 per HPF in saline con-
trol group, n = 3, P < 0.01; Fig. 1B).

Discussion

Here we have analyzed the early expression pattern
of MHC-II in rat TBI induced by a weight-drop model
and studied effects of FTY720 on MHC-II and EMAP-
II expression. Significant MHC-II+ cell accumulation
was observed early at 24 hrs after TBI and increased
steadily up to 96 hrs during our observation period.
The major cellular sources of MHC-II were identified

Fig. 1 MHC-II+ leukocyte accumulation in rat brain after
TBI: FTY720 reduces the early accumulation of MHC-II+

and EMAP-II+ cells. (A) Bar graph showing numbers of
MHC-II+ leukocytes in normal rat brain and accumula-
tion in brain lesions of rats treated with saline or FTY720
(1 mg/kg, i.p. injected immediately after TBI and once
every second day after injury). For each section, num-
bers of MHC-II+ cells of every rat brain coronal section
were counted in three non-overlapping high-power fields
(HPFs, � 400 magnification), which were selected from
lesional areas that have a maximum of positive cells.
Results were given as arithmetic means of positive cells
per HPF and standard errors of means (SEM).
Statistical analysis was performed by non-parametric t
test (Graph Pad Prism 4.0 software). *P < 0.05 and **P
< 0.01 compared with their respective saline controls
and ++ P < 0.01 compared with the normal control. (B)
Bar graph showing accumulation of EMAP-II+ leuko-
cytes in brain lesions of saline or FTY720 (1 mg/kg, i.p.
injected immediately after TBI and once per day) treat-
ed TBI rats at days 1, 2 and 4 after injury. The numbers
of EMAP-II+ cells of each rat brain coronal section were
counted in 3 HPF in the lesioned areas. Results were
given as arithmetic means of positive cells per HPF and
standard errors of means (SEM). Statistical analysis
was performed by non-parametric t test (Graph Pad
Prism 4.0 software). **P < 0.01 compared with their
respective saline controls.
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as reactive macrophages by double-staining experi-
ments. FTY720 significantly attenuated accumulation
of MHC-II+ cells and EMAP-II+ cells in the initial stages
of lesion development in rat brains following TBI.

MHC-II molecules expressed together with
processed antigen and additional co-stimulatory mole-
cules at the surface of antigen-presenting cells are
essential to antigen presentation [28]. In normal brains,
a subpopulation of roundly shaped macrophages, usu-
ally present in the subarachnoid space, Virchow-
Robin’s space and the choroid plexus, are constitutive-
ly MHC-II positive [27, 29]. Under a variety of patho-
genic events, like intrathecal administration of TNF- �
and TNF- �, peripheral nerve axotomy and CNS infec-
tion, MHC-II expression is rapidly induced in microglia
[12, 30–36]. Here a slight but significant increase in
expression of MHC-II was also observed early follow-
ing the weight-drop trauma and was restricted to a

small sub-population of activated macrophages. Up-
regulation of MHC-II has been reported in other TBI
models but its expression pattern is different from that
of the weight-drop model. In a stab wound TBI model,
which is characterized by severe invasive mechanical
lesions, a much stronger accumulation of MHC-II+ cells
was observed compared with the weight-drop model
and most reactive macrophages/microglia were MHC-
II positive at any given time point [37]. In a closed TBI
model, which is characterized with diffuse lesion, a
much wider distribution of MHC-II+ cells was reported
[27]. Therefore, MHC-II up-expression is confirmed in
different TBI models but its expression patterns are dif-
ferent from each other, indicating that MHC-II defined
cell population might play distinguishing roles in differ-
ent TBI models.

An interesting finding in this investigation is that
FTY720 attenuated early accumulation of MHC-II+

Fig. 2 FTY720 attenuates the accu-
mulation of EMAP-II+ and MHC-II+

cells in the early lesion of rat brains
following experimental TBI. (A) In
normal rat brain, only few MHC-II+

cells (arrow indicated) were occa-
sionally seen in the subarachnoid
space. (B) Cells double-stained
with MHC-II+ (brown) and ED1+
(blue) were found in the lesioned
area at Day 2 after TBI and almost
all MHC-II+ cells co-expressed ED1
but only a small portion of ED1+
cells co-expressed MHC-II. (C-F)
Representative photomicrographs
showing that expressions of MHC-II
(B, C and D) and EMAP-II (E and
F) in brain lesions of TBI rats treat-
ed by FTY720 was attenuated as
compared to brains of saline treat-
ed rats at Day 2 (MHC-II) or Day 4
(EMAP-II) after injury. C and E:
saline treated rats; D and F:
FTY720 treated rats. Original mag-
nification: A-F � 400.
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and EMAP-II+ cells after TBI. As mentioned above,
MHC-II+ cells are reactive macrophages. Further,
EMAP-II is a proinflammatory, antiangiogenic cytokine
and expressed by activated microglia/macrophages in
the parenchyma of the CNS. Increased expression of
EMAP-II is considered a sensitive marker of
microglia/macrophage activation [10, 11]. Therefore,
FTY720 actually suppressed accumulation of reactive
microglia/macrophages following TBI. FTY720 is a
promising and potent immunosuppressive agent and
acts through S1P signalling pathway to sequester lym-
phocytes into secondary lymphatic tissues and thus
away from inflammatory lesions and graft sites [38,
39]. For monocytes/macrophages, depletion of circu-
lating monocytes and alteration of macrophage func-
tions following FTY720 treatment has not been report-
ed. However, under pathological conditions, like exper-
imental autoimmune encephalomyelitis and amyloid
�-protein stimulated monocyte infiltration, administra-
tion of FTY720 inhibits macrophage infiltration to
inflammatory lesions [22]. Here we have shown 
that FTY720 also suppressed reactive microglia/
macrophages accumulation to early lesions of TBI.
The general, these suppressive effects of FTY720 on
the accumulation of inflammatory cells following TBI
could provide a new option to inhibit brain inflammato-
ry reaction following TBI.

Pathological EMAP-II expression triggers the recruit-
ment of macrophages, stimulates leukocyte chemo-
taxis, induces the expression of certain cytokines and
causes endothelial apoptosis [26, 40–43].Accumulation
of EMAP-II+ microglia/macrophages has been
observed in regions of neuronal death at the lesion site
and in areas of ongoing secondary damage [10].
Following TBI, EMAP-II is involved in causing edema
and hypoxia [44, 45], which are known to alter blood
flow rheology leading to microclustering and occlusion
of fine microcappilaries resulting in the impairment of
CNS parenchymal trophic supply [46]. FTY720 attenu-
ated the accumulation of EMAP-II+ cells at Day 4 follow-
ing TBI, suggesting FTY720 might have protective
effects in early TBI.

In summary, we have studied MHC-II expression
pattern in the early phase of weight-drop induced
TBI. MHC-II expression is different in several TBI
models, indicating that MHC-II defined macrophages
sub-population might play different roles in different
TBI models. Furthermore, FTY720 attenuates early

lesional accumulation of EMAP-II+ reactive
macrophages/microglia and of MHC-II+ reactive
macrophages in TBI, suggesting that FTY720 could
be applied to inhibit brain inflammatory reactions fol-
lowing TBI.
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