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INTRODUCTION

Neuropsychiatric disorders are poorly defined. TheDSM-5 hasmany hundred categorical disorders
(American Psychiatric Association, 2013) as does the only partially matching ICD-10 (World
Health Organization, 1992). But the categories are based on symptoms (and often a required
duration), not neurobiological causes, which are likely dimensional and reflected in traits (Kotov
et al., 2021; Michelini et al., 2021; DeYoung et al., 2022). There can also be problems with labeling.
For example, are fear and anxiety synonyms, metonyms, or antonyms (McNaughton, 2018)?
With this confusion, it is no surprise that, even with broad-spectrum pharmaceuticals and well-
developed psychological therapies, 30–60% of those receiving first-line treatment have continuing
impairment; and the criteria for multi-treatment resistance are not well defined (Bokma et al.,
2019).

These patient-level problems make it hard to construct good, matching, animal models
(McNaughton and Zangrossi, 2008). Indeed, I will argue that it should be the more successful
animal models that provide the basis for proper clinical diagnoses. Many models have been
constructed for face validity; but have poor prediction of therapeutic drug action [e.g., the elevated
plus maze does not reliably detect serotonergic drugs (Handley et al., 1993; Griebel, 1995) and a
wide range of tests—e.g. holeboard, Geller-Seifter, social interaction—each has its own profile of
detection (Cryan and Sweeney, 2011)] and, being based on behavior in healthy animals, no clear
relationship to clinical disorder—given this discrepancy it is amazing that any animal models are
predictive at all. The capacity of such animal models to predict effects on clinical disorder, is one
among many reasons for taking a trait perspective—as does the anxiolytic effect in healthy people
of the GABAA agonist, ethanol. “Psychiatry has proven to be among the least penetrable clinical
disciplines for productively marrying knowledge of human pathology with animal behavior to
develop satisfactory in vivo animal models for evaluating novel treatment approaches” (Cryan and
Sweeney, 2011).

I argue that the answer lies in using strong neuropsychological theory as a basis for model
construction, translation, and understanding of psychiatry disorders. As we noted elsewhere:

“Theory influences what we mean by the word “anxiety”, what we require of any animal model, and

what specific theoretical constructs are embedded in any specific animal model of anxiety. We argue

that, in the ideal case, the animal models we use should be embedded in a large-scale theory that

integrates all of the theoretical levels of each animal model.We argue that face validity of a model should

be ignored and that true predictive validity reduces ultimately to construct validity. So all models should

aim to have construct validity based on strong theory. Theoretical analysis shows that anxiety should

be distinguished from fear; that different anxiety disorders should be distinguished from each other; and
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that the components of any single apparent type of anxiety can

have distinct neural control. Theory can show how a model is

unsatisfactory, but it can also show that it is not the model but

rather our translation from the clinical situation that is faulty.

To model the many flavors of clinical disorder and variations in

drug effectiveness, we must use theory to link multiple animal

models, neural analysis and pharmacological analysis. The goal is

to provide us with truly predictive tests that can be used for drug

discovery as well as drug development. Most importantly, theory

is required if we are to correctly match a particular measure from

a particular model with the clinical entity we desire to model”

(McNaughton and Zangrossi, 2008).

GENERATING STRONG
NEUROPSYCHOLOGICAL THEORY

Over 50 years ago, Gray (1970), compared the effects of the
anxiolytic barbiturate sodium amylobarbitone, septal lesions, and
hippocampal lesions; and proposed on the basis of similarity
across only a few behavioral experiments that the septo-
hippocampal system is a key site for anxiolytic (as opposed to
other) drug actions. He also proposed that impairment of the
theta rhythm that is seen in the hippocampus and controlled
by the septum was the key to these common effects. Note that
this key hypothesis was based on drugs not psychology, with the
specific nature of the similarly-affected behaviors something that
needed considerable work to determine.

To develop a full theory from this hypothesis, the neural
basis of anxiolytic action, and the psychological nature of the
drugs’ effects, then received 30 years of progressive development
(Gray, 1982; Gray and McNaughton, 2000; McNaughton
and Gray, 2000) that retained the underlying hypothetical
bedrock while elaborating on the superstructure. Importantly,
despite the appearance of completely new classes of drugs
(benzodiazepines1, buspirone—a serotonin1A agonist, specific
serotonin reuptake inhibitors, pregabalin—a calcium channel
agent, and ketamine, the anxiolytic mechanism of which
is unknown), the positive and negative predictions of the
theory remained intact. For example, both benzodiazepines
and buspirone impair control of hippocampal theta rhythm
(Zhu and McNaughton, 1991, 1995a), impair hippocampus-
sensitive learning in the Morris water maze (McNaughton
and Morris, 1987, 1992), and impair hippocampus-sensitive
behavioral inhibition (Gray and McNaughton, 1983; Zhu and
McNaughton, 1995b). We have proved that the benzodiazepines
affect behavioral inhibition via an action on one of the locations
that controls theta rhythm (Woodnorth and McNaughton, 2002)
and that theta rhythmicity, in and of itself, is important for spatial
learning (McNaughton et al., 2006; Ruan et al., 2011).

This may seem a long road to have traveled but, as we will
see, it leads to more than one desirable destination. A good
theory, properly applied, solves many problems—and, as Newton
showed, need not be complicated in its core elements even

1The benzodiazepines act on the same GABAA receptor as do the barbiturates,

meprobamate, and other classical anxiolytics—but they do so by changing the way

the GABA site works (Haefely, 1990), not through a site that acts directly to open

the channel. This was a breakthrough for toxicity and related side effects.

though their working out can be another matter (as shown by
the 3-body problem).

FROM THEORY TO CONSTRUCT VALIDITY

It is important to note that the anxiety-septohippocampal-theta
theory implies construct validity for some models and not
others. Operant tests of “behavioral inhibition” have long had
anxiolytic predictive validity; and fell out of favor because of
their cost. But the role of goal conflict in the theory (Gray and
McNaughton, 2000) gives the bulk of them stronger construct
validity; and also explains the lack of effect of anxiolytics on
action inhibition (McNaughton et al., 2013; Shadli et al., 2015),
which is functionally distinct but lexically confusable. Similarly,
the theory provides a good theoretical basis for contextual
conditioning (Luyten et al., 2011), and the elevated T-maze
(McNaughton and Zangrossi, 2008) and but less so the elevated
plus maze (Pellow et al., 1987) unless ethological measures are
used (Cole and Rodgers, 1994, 1995; Rodgers and Cole, 1994).

Here it is worth noting that the only current model of clinical
anxiolytic action that has no false positives nor false negatives
(McNaughton et al., 2007) in 40 years of testing (McNaughton
and Sedgwick, 1978) is reticular stimulation elicited hippocampal
theta rhythm. This is, of course, one of the key foundational
elements of the theory. But it has also withstood the challenge
of the progressive appearance of new classes of anxiolytic and
of recent predictive tests (Engin et al., 2009; Siok et al., 2009).
Importantly for its construct validity, specific manipulations of
the theta control system alter behavior in a manner consistent
with the psychological aspects of the theory when they alter theta
in a fashion consistent with theta changes being the basis for their
behavioral actions.

FROM MODEL TO TRANSLATIONAL TEST

It might seem difficult to take a rat model that uses depth
stimulation and recording in rats and use it to develop an
equivalent human test. This is where theory can provide a bridge.

In the theory (Gray and McNaughton, 2000) hippocampal
theta is necessary but not sufficient for goal conflict processing
andwill be present evenwhen the hippocampus has no functional
output. The prefrontal cortex can show its own forms of
theta (Mitchell et al., 2008) but becomes synchronous with
hippocampal theta during, e.g., risk assessment behavior (Young
andMcNaughton, 2009) and novelty detection (Park et al., 2021);
and theta (and other rhythms) changes across the hippocampus-
amygdala-prefrontal network in response to stress (Merino et al.,
2021). This suggests that we should be able to use prefrontal scalp
EEG to record theta rhythmicity that is functionally equivalent to
the hippocampal theta in the rat model.

The psychological core of the theory is goal conflict (Gray
and McNaughton, 2000). We therefore tested for frontal theta
rhythmicity linked to goal conflict in a simple gain/loss-
based approach/avoidance task in student participants (Neo and
McNaughton, 2011; Neo et al., 2020) and found a conflict-related
power increase at the right-frontal site, F8. Right frontal cortex,
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FIGURE 1 | (A) The relationship of Spielberger State Trait Anxiety Inventory (Spielberger et al., 1983) trait values (STAI) to DSM (American Psychiatric Association,

2013) diagnosis in the same groups as B. Bars are ±SEM. (B) The relationship of goal conflict specific rhythmicity (GCSR, 4–7Hz maximum value) to DSM diagnosis.

The data are from (Shadli et al., 2021b) with permission of the author. Note that the trait anxiety scores are high (clinical cases are usually >45), and very similar across

the groups. GCSR appears elevated across all diagnoses but varies across the groups (there is no obvious factor controlling this variation). CON, community control;

GAD, generalized anxiety disorder; GMD, GAD + major depression; SAD, social anxiety disorder; OTH, mixed other anxiety-related diagnoses with small N per

diagnosis. (C) Nosological mapping to hierarchical systems. Goal attraction, goal repulsion, and goal inhibition (activated by conflict between goals) are each

controlled by systems in which modules are organized hierarchically in relation to motivational distance (from contacting to distant) and neural location (caudal to

rostral). Conservation of modulatory control during phylogeny (McNaughton, 2020) means that hormonal compounds, e.g., benzodiazepine receptor ligands, and

neuromodulators, e.g., serotonin, can target all the modules of a specific system (as with benzodiazepines and goal inhibition; yellow highlight) or all the modules of

several systems (as with serotonin). Note that in the case of serotonin (most obviously via specific serotonin reuptake inhibitors), its effects (indicated by the gradation

of the purple shading) appear to be to shift control from lower to higher levels of the systems (Carver et al., 2008) rather than to increase or decrease activity across an

entire system. There is also the capacity for more localized dysfunction and pharmacological specificity, as with obsession (orange highlight) and panic (red highlight).

(Continued)
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FIGURE 1 | Figure and legend based on (McNaughton et al., 2016; Silva and McNaughton, 2019; McNaughton, 2020) with permission of the author. a, anterior; b,

basal; c, central; d, dorsal; ext, external; int, internal; l, lateral; m, medial; p, posterior v, ventral; BNST, bed nucleus of the stria terminalis; SAD, Social Anxiety

Disorder; OCD, obsessive compulsive disorder; OFC, orbitofrontal cortex; PAG, periaqueductal gray; θ, these compounds affect the system as a whole by reducing

theta rhythmic input.

and the right inferior frontal gyrus in particular, are involved in
stopping (a key output of the goal conflict system) in the stop
signal task (SST). So, we used the SST and found that it generated
a goal-conflict specific “theta” rhythmicity (GCSR) at F8 (Neo
et al., 2011).

The SST has the advantage, for clinical work, that it does not
use monetary gain and loss. We, therefore, proceeded to validate
GCSR within the theory by showing that it is sensitive to the
three main types of specifically anxiolytic (i.e. not antipanic)
drugs (McNaughton et al., 2013), similarly validated an improved
version of the task (Shadli et al., 2015, 2020), demonstrated its
relation to handedness (Shadli et al., 2021a), and demonstrated
that its value is high in a subgroup of those with high trait
anxiety scores and DSM “anxiety disorder” diagnoses (Shadli
et al., 2021b).

DISCUSSION

It is tempting to ask, at this point, “What sort of DSM anxiety
does GCSR represent?”. However, as a biomarker for a causal
agent (equivalent to SARS-Cov-2), it will be linked to a wide
range of symptomatic expressions of its disorder (equivalent to
COVID-19) and show both positive and negative discrepancies
from any DSM symptom-based class (equivalent to “flu-like
respiratory infection”). The key original problem is that current
diagnoses do not map to the underlying biological disorder that
generates the symptoms.

Figures 1A,B show that, despite very similar scores on the trait
scale of the Spielberger State Trait Anxiety Inventory (Spielberger
et al., 1983), the diagnostic groups differ in a non-categorical
way in terms of GCSR. This fits both previous doubts about
the current categories and the recent move to a trait perspective
on psychopathology (Kotov et al., 2021; Michelini et al., 2021;
DeYoung et al., 2022). It also fits the nosological mapping of
the neuropsychological theory (Gray and McNaughton, 2000;
McNaughton and Corr, 2004; McNaughton, 2020) summarized

in Figure 1C. The first important feature of this nosology is
that theta is a modulator across the range of conflict control
structures, with its strongest effects in the middle of the hierarchy
(see shading in figure). Thus, the disorder for which GCSR is a
biomarker will represent only one trait component of the possible
conflict-related disorders. The second important feature is that
within the separate repulsion system, there are distinct areas
controlling obsession (and so linked to obsessive compulsive
disorder) and panic (and so linked to panic disorder); each
with their own pharmacological sensitivities and so capacity for
distinct contributions to disorder; while, conversely, serotonergic
modulation can impact on all systems; as can noradrenergic
modulation, which is also involved in anxiety control but to
a more limited extent (Gray, 1982; Gray and McNaughton,
2000; McNaughton and Gray, 2000). These are all immediate
targets for the search for relevant models that will deliver new
biomarkers. A third particularly important feature is that this
neuropsychology implies only a loose connection between causes
of disorder and symptoms. Pathological panic can generate
anxiety in an otherwise normal anxiety system, and vice versa,
with the capacity for a vicious cycle (McNaughton and Corr,
2016); while a dysfunctional serotonin system could generate a
combination of pathological panic and pathological anxiety.

On this view, problems with previous animal models
of psychiatric disorder may have resulted from both
inappropriate assumptions behind perception of face
validity and inappropriate relation of symptoms to
diagnostic categories. Strong theory that accounts for the
fundamental similarities of species, while allowing for
their species-specific superficial expression should provide
a way forward.
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