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ABSTRACT
Tumor immunity is closely associated with the prognosis of tumors, including osteosarcoma (OS). 
The aim of the present study was to construct an immune-related prognostic index (PI) to predict 
the prognosis of OS. Herein, OS expression data were sourced from the Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET) database. We divided the OS patients into 
nonmetastatic and metastatic groups, allowing differentially immune-related genes (DIRGs) to be 
selected. After DIRGs were further investigated by enrichment analysis, four keys prognostic IRGs 
(CD79A, CSF3R, MTNR1B and NPPC) were identified using a Cox proportional hazards model. Then, 
an immune-related prognostic index was constructed. Finally, gene set enrichment analysis 
(GSEA) was employed to further explore the underlying mechanisms. The difference in tumor- 
infiltrating immune cell (TIIC) abundance was also discussed. In our study, eight upregulated 
genes and 30 downregulated genes were identified. Several Gene Ontology (GO) terms and the 
most significantly enriched KEGG pathways were immune-associated functions and pathways. 
Four genes, including CD79A, CSF3R, MTNR1B and NPPC, were used to establish a risk assessment 
model for evaluating OS prognosis. GSEA revealed that the risk score was related to cytokine 
receptor interaction and to the chemokine and B cell receptor signaling pathways. Furthermore, 
high risk markedly related to the infiltration of several immune cell types, including M2 macrophages, 
naïve CD4 T cells, and CD8 T cells. In sum, we developed a survival model for OS. The underlying 
molecular mechanisms of the high-risk group may affect immune-related biological processes and 
TIICs. 
Abbreviations TARGET: Therapeutically Applicable Research To Generate Effective Treatments; 
PI: Prognostic index; OS: Osteosarcoma; DIRGs: Differentially immune-related genes; GSEA: Gene 
set enrichment analysis; TIIC: Tumor-infiltrating immune cell.
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Introduce

Osteosarcoma (OS) is a primary malignant 
bone tumor with a morbidity of 4,000,000 

annually in children and adolescents [1,2]. 
Despite advances in surgery, chemotherapy 
and radiotherapy, the cumulative 5-year overall 
survival rate for OS patients without metastasis 
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is 77.9% [3]. However, OS still has a mortality 
rate of 30% [4]. Immunosuppressive therapies 
have significantly improved the prognosis of OS 
patients, which provides a reference for further 
study on the association between abnormal 
immune gene expression and OS prog
nosis [5,6].

Several studies have revealed that tumor 
immunity is closely associated with metastasis 
and chemoresistance in OS [7–9]. For instance, 
a microenvironment with low CD4+ and CD8 
+ tumor infiltrating lymphocytes (TILs) may 
contribute to a weakened antitumor immune 
response [10]. Programmed cell death receptor- 
ligand 1 (PD-L1) is a glycoprotein expressed on 
the cell surface of T and B lymphocytes, den
dritic cells, macrophages, and tumor cells 
[11,12]. PD-L1 has been shown to modulate 
drug resistance to paclitaxel and doxorubicin 
and OS cell growth [50% and 23.7% intermedi
ate and high expression of OS, respectively] 
[13]. Importantly, PD-L1 expression in tumor 
cells is closely associated with the TIL level, 
which often has a higher risk of tumor metas
tasis and poorer prognosis [14]. These findings 
indicate that tumor immunity is a key mediator 
of tumor migration. Therefore, it is pivotal to 
study the prognostic value and the clinical rele
vance of IRGs in OS.

For the current study, original mRNA micro
array datasets were downloaded from the 
TARGET database (65 OS nonmetastatic sam
ples and 22 metastatic OS samples). R software 
was used to identify DIRGs between nonmeta
static and metastatic samples. The functional 
roles of DIRGs were examined. Thereafter, the 
prognostic index (PI), as an independent index 
for OS prognosis, was developed based on 
IRGs. The potential mechanisms are also 
discussed.

Materials & methods

Data sources

The RNAseq data and corresponding clinical fol
low-up information were downloaded from the 
public TARGET database, which included a total 

of sixty-five OS nonmetastatic samples and a total 
of twenty-two OS metastatic samples.

IRG extraction and DIRG analysis

A total of 2498 genes from the ImmPort Shared 
Data were identified as IRGs. The R statistical 
software package ‘limma’ was applied to esti
mate DEGs. |log(FC)| ≥ 0.5 and p-value< 0.05 
were used as cutoffs to identify DIRGs. Using 
the ‘ggpubr’ and ‘pheatmap’ packages generated 
boxplots and heatmaps, respectively.

Function enrichment analysis of DIRGs

The Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) 6.8 (https://david. 
ncifcrf.gov) was used for gene function analysis 
[4]. GO and KEGG pathways were analyzed and 
visualized by the clusterProfiler R package [15]. 
The critical value of significance for the GSEA 
screening was set at P < 0.05.

Survival analysis

Univariate Cox regression (UCR) analysis was 
used to identify genes whose expression was 
related to the overall survival of patients with 
OS. Genes with a P-value less than 0.05 were 
considered candidate genes related to patient 
survival. The independent prognostic factors 
were identified by multivariate Cox proportional 
hazards regression (MCR) analysis. Overall sur
vival was analyzed using the Kaplan-Meier sur
vival curve to assess differences in survival. The 
specificity for diagnostic accuracy was proven by 
the receiver operating characteristic (ROC) curve 
(AUC). We used the cBioPortal tool to deter
mine survival-associated IRG alterations in 
sarcoma.

Development of the nomogram

The nomogram was constructed based on metas
tasis and risk score using the ‘survival’and 
‘rms’package for R.
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GSEA

GSEA has been extensively applied to identify under
lying pathways. Eighty-seven OS patients were 
divided into two groups according to the median 
risk score, including high-and low-risk groups. The 
C2.cp.kegg.v7.0.symbols.gmt dataset was obtained 
from the Molecular Signatures Database (MsigDB). 
NOM P-value <0.05, |NES| >1 and FDR q < 0.25 
were considered statistically significant.

CIBERSORT estimation

CIBERSORT provides an abundance ratio estimate 
using gene expression data of numerous cell types in 
a mixed cell population [16,17]. The CIBERSORT 

algorithm was used to analyze an entire data set of 
twenty-two immune cell subtypes of OS from 
TARGET, which was grouped into two risk groups 
(high – and low-risk groups).

Statistical analysis

All statistical analyses were conducted with 
RStudio software and SPSS v.23.0 software. 
Student’s t-test for independent samples was 
carried out to assess the notable differences 
between both groups. Independent prognostic 
factors were evaluated using UCR and MCR 
analysis. P < 0.05 was considered statistically 
significant.

Figure 1. Differentially expressed immune-related genes (IRGs). (a) Heat map. (b) Expression patterns of 29 immune-related genes 
(IRGs) in nonmetastatic and metastatic osteosarcoma samples. The red dots on the X-axis indicates the metastatic samples and the 
blue dots indicate the nonmetastatic samples. N, nonmetastatic samples; T, metastatic samples.
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Results

Identification of DIRGs

We identified a total of thirty-eight DIRGs when 
comparing metastatic samples to nonmetastatic 
primary samples from the TARGET dataset; eight 
of these genes were notably upregulated and thirty 
genes were markedly downregulated (Figure 1).

DIRG enrichment analysis

To properly understand the underlying molecular 
functions (MFs), biological processes (BPs), KEGG 
pathways, and cellular components (CCs) associated 
with DEGs, we applied KEGG and GO pathway 
enrichment analyses. The top 5 terms for BP were 
as follows: lymphocyte proliferation, mononuclear 
cell proliferation, leukocyte proliferation, leukocyte 

Figure 2. Results of gene functional enrichment. (a) GO analysis shows the biological processes and molecular functions involved in 
DIRGs. (b) KEGG pathway analysis of differentially immune-related genes.
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migration and T cell activation. The terms of CC 
were as follows: receptor complex, neuronal cell 
body membrane, and cell body membrane. The top 
5 terms for MF were as follows: receptor ligand 
activity, receptor regulator activity, carbohydrate 
binding, steroid hormone receptor activity and cyto
kine receptor activity (Figure 2(a)). Four signifi
cantly enriched signaling pathways were identified, 
including NK cell-mediated cytotoxicity, hemato
poietic cell lineage, neuroactive ligand, and cyto
kine−cytokine receptor interaction (Figure 2(b)).

Identification of survival-associated IRGs

A total of nine DIRGs related to clinical out
comes were extracted (P < 0.05) (Table 1). 
Figure 3(a) shows a forest plot of hazard ratios 
(Fp/HR), illustrating the associations between 9 
survival-related IRGs and the overall survival 
rate in OS patients. The Fp/HR indicated that 
most IRGs were correlated with better clinical 

outcomes in OS patients. The mutations of 9 
survival-related IRGs were analyzed using 
cBioPortal, which indicated that several genes 
had amplification, missense, and deep deletion 
(Figure 3(b)).

Table 1. The specific information of IRGs.
ID Description Name Expression

ITGAL Integrin, alpha L (antigen CD11A (p180)) Down
CD79A CD79a molecule, immunoglobulin-associated 

alpha
Down

PIK3CG Phosphoinositide-3-kinase, catalytic, gamma 
polypeptide

Down

TNFSF8 Tumor necrosis factor (ligand) superfamily, 
member 8

Down

CSF3R Colony stimulating factor 3 receptor 
(granulocyte)

Down

MTNR1B Melatonin receptor 1B UP
S100A1 S100 calcium binding protein A1 UP
NPPC Natriuretic peptide precursor C UP
IGLV1- 

51
Immunoglobulin lambda variable 1–51 Down

Figure 3. Prognostic value and mutations of IRGs. (a) Forest plot of immune genes related to OS survival. (b) Mutations in prognosis- 
related IRGs.
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Construction of models for prognosis

A PI was developed based on MCR analytical 
results. Next, we divided the subjects into two 

cohorts and constructed a risk curve (Figure 4(a– 
f)). Patients with a low risk score had a higher 
survival rate than patients with a high risk score. 
This immune-based PI could be an essential 

Figure 4. Immune-related prognostic index (PI) of OS patients. (a) Patient overall survival was notably lower in the high-risk group. 
(b) The heatmap of the four signature genes expression profiles. (c-d) The distribution of risk scores, patient survival time, and status 
for OS. (e-f) Univariate and multiple regression analysis of OS and the relationships between risk score, sex, metastasis, and age.

Figure 5. The prognostic value of immune-related prognostic index of OS patients. (a) Survival-dependent receiver operating 
characteristic (ROC) curves for validation of prognostic value of the prognostic index. (b) The nomogram for predicting overall 
survival.
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prognostic classification system for patients with 
OS (Figure 4(d)). The formula for the risk score of 
every OS patient was constructed: risk 
score = [CD79A * (−1.926)] + [CSF3R * 
(−1.4990)] + [MTNR1B *(2.3731)] + [NPPC * 
(1.1894)]. The AUC of the PI in predicting the 
prognosis of OS as analyzed using the ROC curve 
was 0.761 (Figure 5(a)), showing that the PI sig
nature had a better ability to predict survival. The 
results from both the UCR and MCR analyses are 
outlined in Figure 4(e and f). For the univariate 
risk score, metastases were found to be indepen
dent predictors.

Predictive nomogram model of independent 
prognostic factors

A nomogram was established using the indepen
dent significant prognostic factors, which contain 
metastasis and risk score for predicting survival 
probability for twelve, twenty-four, and forty- 
eight months. The total points of this nomogram 
were summed and subsequently converted to 
reveal the probability of 1-year, 2-year and 3-year 
survival (Figure 5(b)). These results demonstrated 
that the nomogram displayed the highest levels of 
accuracy in predicting the survival of OS patients.

GSEA

To further research the underlying signaling path
way, GSEA was used to determine the associated 
signaling pathways between the two risk groups. 
The results showed that the high-risk groups were 
positively associated with the cell cycle and nega
tively related to chemokine and B cell receptor 
signaling pathways, cell adhesion molecules 
(CAMs), and cytokine-cytokine receptor (CCR) 
interactions (Figure 6 and Table 2). These results 
establish the basis for the follow-up OS 
immunotherapy.

Survival risk is related to the proportion of the 
various TIIC types in OS

The CIBERSORT algorithm was used to calculate 
the fraction of the immune cells and thus further 
identify the differences in the TIIC profiles between 
the two risk groups. High-risk patients exhibited 

a higher level of CD4 naïve T cells (P = 0.028) and 
M0 macrophages (P = 0.026) (Figure 7(a)). In con
trast, the low-risk group had higher fractions of CD8 
T cells (P < 0.001), M2 macrophages (P = 0.007) and 
neutrophils (P = 0.018) (Figure 7(a)). Furthermore, 
higher level of CD4 naïve T cells (P = 0.027) and 
T cells CD4 memory activated (P = 0.014) nagative 
associated with metastasis of osteosarcoma (Figure 8 
(a, b)). However, the level of CD4 naïve T cells 
(P = 0.095) and T cells CD4 memory activated 
(P = 0.066) which were not related with overall 
survival of osteosarcoma patients (Figure 8(c, d)). 
We believe that this may be related to the small 
sample size. It is necessary to further expand the 
sample size for research in the future.

Discussion

OS is one of the most prevalent bone malignancies 
in adolescents and young adults. The slow 

Figure 6. Enrichment plots of gene ontology annotation 
between high- and low-risk groups.

Table 2. Immune-related gene sets that associated with high- 
risk group.

NAME ES NES
NOM 
p-val

FDR 
q-val

Cell cycle 0.457 1.884 0.012 0.227
Cell adhesion molecules −0.682 −2.302 0.000 0.002
B cell receptor signaling 

pathway
−0.645 −2.275 0.000 0.002

Chemokine Signaling Pathway −0.594 −2.265 0.000 0.002
Cytokine cytokine receptor 

interaction
−0.601 −2.225 0.000 0.003

ES, enrichment score; NES, normalized enrichment score; NOM, nom
inal; FDR, false discovery rate. 
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progress of molecular targeted therapy and the 
lack of effective prognostic biomarkers are issues 
for OS patients. It is necessary to understand the 
mechanism underlying this type of cancer [18,19]. 
Therefore, the exploration of new immune factors 
may offer novel molecular targets in this tumor 
therapy method. However, most existing studies 
were conducted on single genes or proteins. To 
identify key immunity genes for OS, we screened 
DIRGs, and four key prognostic IRGs were identi
fied, all of which may play a crucial role in OS and 
could be potential therapeutic targets.

In the current study, we looked at the IRG 
expression profile of samples from the TARGET 
database and aimed to identify prognostic 

biomarkers for patients with OS. We first screened 
38 DIRGs between nonmetastatic samples and 
metastatic samples. Considering that these DIRGs 
may be associated with tumorigenesis and the 
development of OS, GO and KEGG enrichment 
analyses of these DIRGs were also performed in 
DAVID datasets. Interestingly, functional analysis 
and KEGG pathway analysis revealed that the 
DIRGs were enriched in immune-associated func
tions and pathways, including lymphocyte prolif
eration, leukocyte migration and T cell activation. 
In the univariate survival analysis, the expression 
of nine IRGs was found to be markedly related to 
the TARGET database prognosis. The PI model 
was then constructed by multivariate Cox 

Figure 7. Evaluation of the proportions of TIICs based on CIBERSORT. (a) The varied proportions of 22 subtypes of immune cells in 
tumor samples from the high- and low-risk groups. (b) Heatmap of 22 immune-infiltrating cell types in tumor samples.
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regression based on four key prognostic IRGs 
(CD79A, CSF3R, MTNR1B and NPPC), and this 
model acted as an independent prognostic indica
tor of survival in OS patients. Most of these genes 
were closely related to the development, progres
sion and prognosis of tumors in previous studies. 
GSEA demonstrated significant enrichment of the 
4-gene signature associated with chemokine and 
B cell receptor signaling pathways, CCR interac
tion, and CAMs.

CD79a is part of the B cell receptor, and most 
T cell neoplasms do not express CD79a proteins 
[20]. High immune infiltration of CD79a+ B cells 
in the tumor stroma tends to be associated with good 
survival in colorectal liver metastasis patients [21]. 
However, little is known regarding the underlying 
regulatory mechanism of CD79a in OS growth and 
metastasis. CSF3R hypermethylation is related to 

cisplatin resistance in hepatoblastoma patients [22]. 
CSF3R expression is positively related to prognosis 
in patients with acute myeloid leukemia [23]. In this 
study, we found that the low-risk group had signifi
cantly higher CD79A and CSF3R expression than 
the high-risk group, which suggests that tumor 
immunity might be related to somatic mutations. 
MTNR1B (melatonin receptor 1B) is the membrane 
receptor of melatonin. The tumor-suppressive role 
of MTNR1B has been studied in numerous tumors 
(β-catenin signaling), including prostate, lung, gas
trointestinal, and breast cancers [24,25]. However, 
the roles of NPPC in tumors remain unclear and 
need further study.

Immune infiltration is a feature of most cancers, 
and many cancers have a complex chemokine net
work that modulates tumor cell growth, survival 
and migration, as well as the extent and phenotype 

Figure 8. The level of immune cells and Kaplan-Meier analysis in patients with OS. (a) Relationship between the level of CD4 naïve 
T cells and metastasis. (b) Relationship between the level of T cells CD4 memory activated cells and metastasis. (c) The association 
between CD4 naïve T cells and overall survival of OS. (d) The association between T cells CD4 memory activated and overall survival 
of OS.
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of this infiltration [26,27]. Neutrophils might play 
an essential role in tumor progression and devel
opment by providing a suitable microenvironment 
for their growth, thus serving as biomarkers for 
inflammation and as therapeutic targets [28,29]. 
On the other hand, tumor-associated macrophages 
(TAMs) promote tumor progression by providing 
nutrients for the invasion of tumor cells [30,31]. In 
this study, we found that the high-risk group had 
higher fractions of CD4 naïve T cells and M0 
macrophages. However, there were higher frac
tions of CD8 T cells, M2 macrophages and neu
trophils in the low-risk group. These data 
indicated that high risk group can affect immune 
cell infiltration signatures.

In summary, we developed a 4-gene-based 
risk model for OS prognosis prediction via 
a thorough analysis of IRGs. The model could 
provide new insights into the development of 
immunotherapies for OS. Moreover, the high- 
risk group closely correlated with several TIICs, 
particularly CD8 T cells, M2 macrophages, and 
CD4 naïve T cells. Moreover, chemokine and 
B cell receptor signaling pathways, CAMs, and 
CCR interactions were significantly enriched in 
the high-risk group of OS patients. In summary, 
a 4-gene-based risk model may serve as a marker 
for predicting prognosis and correlates with 
immune infiltration in OS. However, prospective 
studies are needed to confirm our findings to aid 
in personalized clinical practice.

Conclusion

We developed a four-immune gene prognostic index 
of osteosarcoma, including CD79A, CSF3R, 
MTNR1B and NPPC. This prognostic index could 
be used as an instrumental variable in the prognosis 
prediction of osteosarcoma. The underlying molecu
lar mechanisms may affect immune-related biologi
cal processes and TIICs. In conclusion, prognostic 
index could predict prognosis for patients with OS 
and might provide novel insights into the relation
ship between OS and tumor immune infiltration.

Highlights

(1) An immune-related prognostic index to pre
dict the prognosis of OS was constructed.

(2) The prognostic index is an independent 
index for OS prognosis.

(3) The prognostic index may affect immune- 
related biological processes and TIICs.
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