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Abstract: Glucose-dependent insulinotropic polypeptide (GIP) has been reported to have an athero-
protective property in animal models. However, the effect of GIP on macrophage foam cell formation,
a crucial step of atherosclerosis, remains largely unknown. We investigated the effects of GIP on
foam cell formation of, and CD36 expression in, macrophages extracted from GIP receptor-deficient
(Gipr−/−) and Gipr+/+ mice and cultured human U937 macrophages by using an agonist for GIP
receptor, [D-Ala2]GIP(1–42). Foam cell formation evaluated by esterification of free cholesterol to
cholesteryl ester and CD36 gene expression in macrophages isolated from Gipr+/+ mice infused
subcutaneously with [D-Ala2]GIP(1–42) were significantly suppressed compared with vehicle-treated
mice, while these beneficial effects were not observed in macrophages isolated from Gipr−/− mice
infused with [D-Ala2]GIP(1–42). When macrophages were isolated from Gipr+/+ and Gipr−/− mice,
and then exposed to [D-Ala2]GIP(1–42), similar results were obtained. [D-Ala2]GIP(1–42) attenuated
ox-LDL uptake of, and CD36 gene expression in, human U937 macrophages as well. Gene expression
level of cyclin-dependent kinase 5 (Cdk5) was also suppressed by [D-Ala2]GIP(1–42) in U937 cells,
which was corelated with that of CD36. A selective inhibitor of Cdk5, (R)-DRF053 mimicked the
effects of [D-Ala2]GIP(1–42) in U937 cells. The present study suggests that GIP could inhibit foam
cell formation of macrophages by suppressing the Cdk5-CD36 pathway via GIP receptor.

Keywords: GIP; CD36; Cdk5; GIP receptor; macrophages

1. Introduction

Cardiovascular disease (CVD) is one of the devasting complications in diabetes and
accounts for the increased risk of mortality in these patients all over the world [1,2]. Indeed,
the Emerging Risk Factors Collaboration study revealed that after adjustment for traditional
coronary risk factors, the risk of death from cardiovascular causes increased by 2.3-fold in
patients with diabetes compared with non-diabetic subjects [1].

In the subendothelial space, low-density lipoprotein (LDL) is changed to oxidized
LDL (ox-LDL) by oxidative modifications of apolipoprotein B100, which could stimulate
adhesion molecule and chemokine expression within the atherosclerotic plaques, thereby
promoting esterification of free cholesterol to cholesteryl ester and foam cell formation
of macrophages, one of the initial characteristic features of atherosclerotic CVD [3–5].
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Scavenger receptor CD36 has been shown to contribute to ox-LDL uptake by macrophages
and subsequent foam cell formation within the atherosclerotic lesions [3,5].

Glucose-dependent insulinotropic polypeptide (GIP), which is one of the incretins
produced by K-cells in the small intestine in response to lipids and/or sugars, has been
known to promote secretion of insulin in a glucose-dependent manner [6–9]. Besides its
blood glucose-lowering action, GIP has been reported to have atheroprotective actions in
animal models [10–15]. Indeed, we have previously reported that chronic infusion of active
GIP(1–42) attenuates aortic plaque formation in apolipoprotein E-null (Apoe−/−) mice,
whose actions were totally independent of blood pressure, body weight, food intake, and
plasma lipid or glucose levels [14,15]. Furthermore, ex vivo-treatment with active GIP(1–42)
has also been found to suppress the foam cell formation of, and CD36 gene expression
in, macrophages isolated from Apoe−/− mice [14,15]. However, the underlying molecular
mechanism for the inhibitory effects of GIP on foam cell formation of macrophages remains
largely unknown. In other words, how GIP could inhibit foam cell formation of, and CD36
gene expression in, macrophages are not sufficiently understood.

Cyclin-dependent kinases (Cdks) have principal roles in regulation of cell cycle, tran-
scription, and differentiation [16,17]. Cyclin-dependent kinase 5 (Cdk5) is considered to be
unique because in contrast to other Cdk members, Cdk5 is not a modulator of cell cycle
procession [18–20], but a regulator of gene modulation and cell survive [21]. Cdk5 could
phosphorylate lysine–serine–proline motif of neurofilaments, which plays a crucial role
in neuronal cell development, differentiation and migration in supernumerary spinal and
cranial motor neurons, while its functional disorder is involved in neurodegenerative disor-
ders, such as Alzheimer’s disease [21–23]. Recently, Cdk5 has been reported to contribute
to endothelial cell senescence [24], and truncated regulatory subunit of Cdk5 has been
shown to be accumulated within the atherosclerotic lesions, and long-term suppression of
Cdk5 attenuates the progression of atherosclerosis in Apoe−/− mice by reducing the inflam-
matory reactions [18]. Moreover, Cdk5 is abundantly expressed in macrophages and could
mediate the lipopolysaccharide-induced inflammatory reactions [19]. Furthermore, we
have recently found that advanced glycation end products (AGEs), aging molecules formed
at an accelerated rate under diabetes, stimulate macrophage foam cell formation via the
activation of Cdk5-CD36 pathway [25]. Since AGEs are localized in monocyte/macrophage-
derived foam cells within the atherosclerotic plaques, macrophage foam cell formation
evoked by AGEs could cause the atherosclerotic plaque instability and resultantly increase
the risk of CVD in diabetes [26–30]. These observations suggest that the Cdk5-CD36
pathway in macrophages could be a therapeutic target for CVD. However as far as we
know, there is no paper to show the effects of GIP on foam cell formation and Cdk5-CD36
pathway in macrophages. Therefore, we investigated here whether [D-Ala2]GIP(1–42), an
agonist for GIP receptor, could inhibit the macrophage foam cell formation by suppressing
the Cdk5-CD36 pathway via GIP receptor interaction by using macrophages extracted from
[D-Ala2]GIP(1–42)-administrated GIP receptor-deficient (Gipr−/−) and Gipr+/+ mice, [D-
Ala2]GIP(1–42)-treated macrophages isolated from Gipr−/− and Gipr+/+ mice, and human
U937 macrophages.

2. Materials and Methods
2.1. Materials and Reagents

Materials and chemical regents were purchased as follows: [D-Ala2]GIP(1–42) from
Phoenix Pharmaceuticals. Inc. (Burlingame, CA, USA), a human monocytic lymphoma
line, U 937 cells from JCRB (JCRB9021; Osaka, Japan), phorbol 12-myristate 13-acetate
(PMA) and Roswell Park Memorial Institute (RPMI) 1640 medium from Sigma Aldrich
(St. Louis, MO, USA), 1,1′-dioctadecyl-3,3,3′,3′-tetamethylindocarbocyanine perchlorate
(Dil)-ox-LDL from Highland Technology Center (Frederick, MD, USA), and a selective
Cdk5 inhibitor, (R)-DRF053 was from R&D Systems, Inc. (Minneapolis, MN, USA).
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2.2. Animal Experiments

The protocol and design of this experiments were approved by the Animal Care Com-
mittee of Showa University (permission number: 04141) and Akita University Graduate
School of Medicine (approval number: a-1-2520). All experiments, surgeries or sacrifices,
were conducted with efforts to minimize the suffering using general anesthesia of isoflurane.
Gipr−/− and Gipr+/+ mice were bred (backcrossed to C57BL/6J strain for >18 generations to
minimize variability of gene) as described previously [31]. A total of 10 male Gipr−/− and
Gipr+/+ mice, respectively, at 7 weeks old were transferred from Akita University Graduate
School of Medicine to Animal Institute of Showa University School. The mice were kept on
a standard food with free water in the room controlled at 21 ◦C temperature, under a 12-h
light and dark cycle and 40–60% humidity. At 9 weeks old, the mice were subcutaneously
infused with [D-Ala2]GIP(1–42) at 25 nmol/kg/day or saline by osmotic mini-pumps.
At 13 weeks old, we collected blood samples and peritoneal macrophages from the mice
after intraperitoneal injection of thioglycolate broth as described previously [14,15,32–36].
Also, macrophages were first isolated from Gipr−/− and Gipr+/+ mice at 21 weeks old,
respectively, and then exposed to [D-Ala2]GIP(1–42) at 1 nmol/L for 18 h as described
previously [14,15].

2.3. Characteristics and Biochemical Parameters in Mice

Blood samples collected after a 12-h fast were used for the evaluation of biochemical
parameters. Food intake, body weight, heart rate, and systolic and diastolic blood pressure
(SBP and DBP) were calculated, and total-cholesterol (Total-C), high-density lipoprotein
cholesterol (HDL-C), triglycerides, insulin, Total-GIP, fasting blood glucose (FBG), glycated
hemoglobin (HbA1c) levels were measured as described previously [14,15,32–36].

2.4. Cholesterol Esterification Assay of Macrophages Extracted from Mice

Cholesterol esterification assay was performed as described previously [14,15,32–36].
Peritoneal macrophages extracted from Gipr−/− and Gipr+/+ mice were incubated with
10 µg/mL ox-LDL and 0.1 mmol/L [3H]oleate. After 18 h, cellular lipids were extracted and
the radioactivity of cholesterol [3H] oleate was measured by a thin-layer chromatography.

2.5. Experiments of U937 Macrophages

U937 cells were cultured in RPMI 1640 medium containing 10% fetal bovine serum
(FCS), 100 µg/mL streptomycin and 100 U/mL penicillin. The floating cells were seeded
onto 24-well dishes and incubated with 40 ng/mL PMA in RPMI 1640 medium containing
10% FCS at 37 ◦C in a humidified atmosphere with 5% CO2 for 24 h. After twice rinsing
gently by phosphate-buffer saline (PBS), adherent cells were prepared as differentiated
macrophages. Previously, the adherent cells used like this experiment were differenti-
ated from monocytes to macrophages by analysis of fluorescence-activated cell sorting
(FACS) [25,32,36–40]. U937 macrophages were treated with or without 1 nmol/L [D-
Ala2]GIP, or 0.215 µmol/L (R)-DRF053 in RPMI 1640 medium including 10% FCS at 37 ◦C
in 5% CO2 for 18 h.

2.6. Dil-ox-LDL Uptake into Macrophages

The U937 cells were treated with 10 µg/mL Dil-ox-LDL in RPMI 1640 medium includ-
ing 10% FCS at 37 ◦C in 5% CO2 for 18 h [25,32,36]. After twice washing with PBS gently,
immunofluorescence was observed using Keyence BZ-X710 microscope and analyzed with
the Keyence BZ-X710 software (Osaka, Japan). The quantification of fluorescent intensity
of red color per cells was calculated as described previously [25,32,36].

2.7. Levels of Gene Expression

Levels of gene expression were determined by real-time RT-PCR using TaqMan or
SYBR gene expression assay as described previously [14,15,32–36]. In brief, total RNA was
extracted from the adherent macrophages to synthesize cDNA. Gene expression levels were
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initialized with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA-derived
intensities, and the data were expressed as relative levels to the controls. Probes and primers
for mice were as follows: mouse; Gipr, Mm01316344_ml; CD36, Mm01135198_ml; Gapdh,
Mm03302249_g1. Probes and primers for human were as follows; CD36, Hs00169627_ml;
Cdk5, NM_001164410.3, NM_004935.4; Gapdh, Hs99999905_ml.

2.8. Statistical Analysis

Data were presented as mean ± SD. The statistical analyses above two groups were
performed by appropriate ANOVA; Unpaired t-test was used to compare two groups.
The correlation between two groups was analysed by Peason’s correlation test. All anal-
yses were performed using PRISM (version 7.05, GraphPad Inc., San Diego, CA, USA).
Differences were defined statistically significant at p < 0.05.

3. Results

3.1. Characteristics and Biochemical Data of Gipr−/− Mice and Gipr+/+ Mice

Laboratory data of Gipr−/− and Gipr+/+ mice infused with or without [D-Ala2]GIP(1–
42) are presented in Table 1. There were no significant differences of food intake, body
weight, heart rate, SBP or DBP, Total-C, HDL-C, triglycerides, insulin, Total-GIP, FBG and
HbA1c among 4 groups.

Table 1. Laboratory characteristics of Gipr−/− mice and Gipr+/+ mice at 13 weeks old.

Gipr+/+ Mice Gipr+/+ Mice
+[D-Ala2]GIP(1–42)

Gipr−/− Mice Gipr−/− Mice
+[D-Ala2]GIP(1–42)

Number 5 5 5 5
Final body weight (g) 24 ± 0.8 24.1 ± 1.7 22.3 ± 1.4 22.5 ± 0.7
Food Intake (g/day) 4.0 ± 0.7 4.1 ± 1.0 4.3 ± 0.5 4.3 ± 0.6

SBP (mmHg) 102 ± 11 100 ± 8 102 ± 8 103 ± 11
DBP (mmHg) 63 ± 9 58 ± 4 65 ± 9 62 ± 10

Heart rate (bpm) 538 ± 50 561 ± 55 591 ± 48 594 ± 51
Total-C (mg/dL) 104 ± 10 106 ± 4 112 ± 10 117 ± 23
HDL-C (mg/dL) 36 ± 16 41 ± 7 53 ± 12 49 ± 12

Triglycerides (mg/dL) 99 ± 8 103 ± 7 52 ± 43 58 ± 44
Insulin (ng/mL) 0.4 ± 0.25 0.41 ± 0.13 0.43 ± 0.2 0.46 ± 0.12

Total-GIP (pmol/L) 30 ± 8 46 ± 18 34 ± 5 43 ± 7
FBG (mg/dL) 99 ± 8 98 ± 9 100 ± 21 101 ± 9

HbA1c (%) 4.7 ± 0.2 4.8 ± 0.2 4.9 ± 0.1 4.9 ± 0.2

GIP, glucose-dependent insulinotropic polypeptide; SBP, systolic blood pressure; DBP, diastolic blood pressure; Total-C, total-cholesterol;
HDL-C, high-density lipoprotein cholesterol; FBG, fasting blood glucose; HbA1c, glycated hemoglobin; Results are presented as mean
values ± standard deviation. The significant value was shown as p < 0.05 vs. each group.

3.2. Effects of [D-Ala2]GIP(1–42) on Foam Cell Formation of, and CD36 Expression in,
Macrophages Isolated from Gipr−/− Mice and Gipr+/+ Mice

We first investigated the effects of GIP on foam cell formation of, and CD36 gene
expression in, macrophages by using Gipr−/− mice and Gipr+/+ mice subcutaneously in-
fused with or without [D-Ala2]GIP(1–42) at 25 nmol/kg/day for 4 weeks. As shown
in Figure 1A,B, Gipr gene was actually expressed in peritoneal macrophages extracted
from Gipr+/+ mice, while it was not detected in Gipr−/− mice (Figure 1A,B). Foam cell
formation measured by the radioactivity of cholesterol [3H]oleate and CD36 expression in
macrophages isolated from Gipr+/+ mice infused subcutaneously with [D-Ala2]GIP(1–42)
were significantly suppressed compared with vehicle-infused mice, while these benefi-
cial effects were not observed in macrophages isolated from Gipr−/− mice infused with
[D-Ala2]GIP(1–42) (Figure 1C,D). When macrophages were first extracted from Gipr−/−

mice and Gipr+/+ mice, and then exposed to [D-Ala2]GIP(1–42), [D-Ala2]GIP(1–42) at
1 nmol/L significantly inhibited the foam cell formation of, and CD36 gene expression in,
macrophages derived from Gipr+/+ mice, but not from Gipr−/− (Figure 1E,F).
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Figure 1. Effects of [D-Ala2]GIP(1–42) on foam cell formation and CD36 gene expression in Gipr−/− mice and Gipr+/+ mice.
Peritoneal macrophages were isolated from Gipr−/− mice and Gipr+/+ mice infused subcutaneously with or without [D-
Ala2]GIP(1–42) at 25 nmol/kg/day for 4 weeks. The cells were incubated with 10 µg/mL ox-LDL containing at 0.1 mmol/L
[3H]oleate in RPMI 1640 medium supplemented with 10% fetal bovine serum (FCS) containing 100 U/mL penicillin and
100 µg/mL streptomycin at 37 ◦C in 5% CO2 for 18 h. (A) Melt curve of gene expression of Gipr in peritoneal macrophages
extracted from Gipr+/+ mice. (B) Gene expression levels of Gipr in peritoneal macrophages from Gipr−/− mice and Gipr+/+

mice. (C,D) Foam cell formation evaluated by the radioactivity of cholesterol [3H]oleate (C) and CD36 gene expression levels
(D) in macrophages isolated from Gipr−/− and Gipr+/+ mice infused subcutaneously with or without [D-Ala2]GIP(1–42). (E,F)
Macrophages were first extracted from Gipr−/− and Gipr+/+ mice, and then exposed to [D-Ala2]GIP(1–42) at 1 nmol/L. Foam
cell formation (E) and CD36 gene expression (F) were evaluated. Total RNAs were transcribed and amplified by real-time
PCR. Values were normalized by the intensity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA-derived
signals and then compared to the control intensities. Number = 5 for each group. Data are presented as mean ± standard
deviation. The significant value was shown as FFF p < 0.005, FF p < 0.01 and F p < 0.05.

3.3. Effects of [D-Ala2]GIP(1–42) and (R)-DRF053 on U937 Macrophages

We then examined the effects of [D-Ala2]GIP(1–42) on macrophage foam cell for-
mation evaluated by uptake of Dil-ox-LDL into U937 cells. Immunofluorescent staining
images revealed that [D-Ala2]GIP(1–42) significantly decreased the intensity of Dil-ox-
LDL-positive cells (Figure 2A–E). Furthermore, as shown in Figure 2F,G, Cdk5 and CD36
gene expression levels were significantly suppressed by [D-Ala2]GIP(1–42) in U937 cells,
whereas a selective inhibitor of Cdk5, (R)-DRF053 dihydrochloride mimicked the effects of
[D-Ala2]GIP(1–42) on U937 macrophages. In addition, no additive combination effects of
Cdk5 inhibitor and [D-Ala2]GIP(1–42) on CD36 expression and Dil-ox-LDL uptake were
observed (Figure 2E,G). Furthermore, there was a significant correlation between Cdk5 and
CD36 gene expression levels (Figure 2H).
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Figure 2. Effects of [D-Ala2]GIP(1–42) and (R)-DRF053 dihydrochloride on Dil-ox-LDL uptake, Cdk5 and CD36 gene
expression in U937 cells. U937 were incubated with 10 µg/mL Dil-ox-LDL with or without 1 nmol/L [D-Ala2]GIP(1–
42) or 0.215 µmol/L, a selective inhibitor of Cdk5 (R)-DRF053 dihydrochloride in RPMI 1640 medium supplemented
with 10% FCS containing 100 U/mL penicillin and 100 µg/mL streptomycin at 37 ◦C for 18 h. (A–D) Representative
immunofluorescent staining images in human U937 macrophages. Dil-ox-LDL-positive cells were stained in red. Scale
bars, 50 µm. (E) Quantification of fluorescence intensity in red. Dil-ox-LDL uptake was normalized by the control values.
(F–H) Gene expression levels of Cdk5 (F), and CD36 (G), and their correlation (H). Total RNAs were transcribed and
amplified by real-time PCR. Data were normalized by the value of GAPDH mRNA-derived signals and then related to the
control intensities. Number = 12 for each group. Error bars are standard deviation. FFF p < 0.005, FF p < 0.01 vs. control.

4. Discussion

We have previously reported that chronic infusion of active GIP(1–42) at 25 nmol/kg/day,
the same concentration used in the present experiments, significantly suppresses the foam
cell formation of macrophages and subsequent progression of atherosclerosis in Apoe−/−

mice [14,15]. However, the underlying molecular mechanisms for this remain largely
unclear. To address the issue, we first examined the effects of [D-Ala2]GIP(1–42), a dipep-
tidyl peptidase-4-resistant GIP receptor agonist on foam cell formation of, and CD36
gene expression in, macrophages isolated from Gipr−/− and Gipr+/+ mice. We found here
that subcutaneously long-term infusion of [D-Ala2]GIP(1–42) to mice significantly inhib-
ited the foam cell formation evaluated by the radioactivity of cholesterol [3H]oleate and
CD36 gene expression in macrophages isolated from Gipr+/+ mice compared with vehicle-
treated mice, while these beneficial effects of [D-Ala2]GIP(1–42) were not observed in
macrophages isolated from Gipr−/− mice. These observations suggest that the inhibitory
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effects of [D-Ala2]GIP(1–42) on foam cell formation of, and CD36 gene expression in,
mouse macrophages could be mediated through the interaction with GIP receptor. CD36
is one of the main scavenger receptors, which could regulate foam cell formation of
macrophages, the early characteristic features of atherosclerosis [3,5]. We have recently re-
ported that (1) neutralizing anti-CD36 antibody inhibits ox-LDL uptake into AGE-exposed
U937 macrophages [25] and (2) [D-Ala2]GIP(1–42) attenuates cholesterol accumulation of
macrophages in Apoe−/− mice in association with the reduction of CD36 expression [14,15].
These observations suggest that the suppressive effect of [D-Ala2]GIP(1–42) on foam cell
formation could be mediated by reduction of CD36 gene expression in macrophages.

Cdk5 is constitutively expressed in macrophages, which could contribute to inflam-
matory reactions in these cell types [19]. In this study, gene expression levels of Cdk5 and
CD36 were significantly suppressed by [D-Ala2]GIP(1–42) in U937 macrophages, and these
gene expression levels were correlated with each other. Since (1) a selective inhibitor of
Cdk5 mimicked the effects of [D-Ala2]GIP(1–42) on U937 macrophages and (2) no additive
combination effects of Cdk5 inhibitor and [D-Ala2]GIP(1–42) were observed, reduction
of foam cell formation and CD36 gene expression, [D-Ala2]GIP(1–42) may inhibit foam
cell formation of macrophages through the suppression of Cdk5-CD36 pathway via the
interaction with GIP receptor. Recently, we have found that (R)-DRF053, a selective in-
hibitor of Cdk5 significantly inhibits foam cell formation of AGE-exposed macrophages by
reducing CD36 gene expression [25]. These findings suggest that reduction of Cdk5 gene
expression by [D-Ala2]GIP(1–42) may contribute to its suppressive effects on macrophage
foam cell formation.

Interaction of GIP with the GIP receptor induces activation of adenosine monophosphate-
activated protein kinase (AMPK) through the phospholipase C and calcium/calmodulin-
dependent protein kinase pathway [11,41–43]. Recently, crocin, a carotenoid compound,
has been found to activate AMPK and subsequently improve metabolic dysfunction in
diabetic mice via the suppression of Cdk5 expression [44,45]. These observations suggest
that GIP and its receptor interaction may inhibit macrophage foam cell formation by
suppressing the Cdk5-CD36 pathway via the activation of AMPK (Figure 3).
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Figure 3. Possible mechanisms how [D-Ala2]GIP(1–42) could inhibit foam cell formation of
macrophages. [D-Ala2]GIP may suppress macrophage foam cell formation through the transcrip-
tional inhibition of CD36 via Cdk5 pathway. GIP, glucose-dependent insulinotropic polypeptide;
GIPR, receptor of glucose-dependent insulinotropic polypeptide; Cdk5, cyclin-dependent kinase 5;
ox-LDL, oxidized low-density lipoprotein.

Our study has some potential limitations. First, [D-Ala2]GIP(1–42) is a human type
of GIP agonist. Amino acid sequences of human GIP(1–42) is almost identical to that of
mouse [46]. This could support the compatibility of [D-Ala2]GIP(1–42) in mouse experi-
ments. Second, (R)-DRF053 is not a specific selective inhibitor of Cdk5, but it inhibits Cdk1
and other Cdk members among other kinases. However, we cannot obtain an additional
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structure unrelated inhibitor of Cdk5. It would be interesting to examine the effects of
[D-Ala2]GIP(1–42) on CD36 gene expression and form cell formation of macrophages in
Cdk5-knockout mice. Third, Cdk5 gene expression in the mice was not examined in the
present experiments because of the lack of samples. Therefore, although an inhibitor of
Cdk5, (R)-DRF053 inhibited CD36 mRNA levels in U937 cells and that there was a posi-
tive correlation between Cdk5 and CD36 mRNA levels (Figure 2F–H), the conclusion that
inhibition of the Cdk5-CD36 pathway via the GIP receptor suppresses macrophage foam
cell formation cannot be definitely proved without confirmation in mouse experiments.
Fourth, protein expression levels of CD36 were not evaluated, however we found that
CD36 gene expression and foam cell formation in mouse and human macrophages were
correlated with each other. Therefore, CD36 protein expression could be functionally
correlated with foam cell formation of macrophages [5], and CD36 gene expression leads
to reflect surface cellular expression of the protein. Additionally, some reports showed
that Cdk5 activity is highly correlated with level of Cdk5 gene expression [17,47]. Finally, it
would be interesting to examine the effects of AMPK inhibitor on foam cell formation of
[D-Ala2]GIP(1–42)-exposed U937 cells.

5. Conclusions

We found here that [D-Ala2]GIP(1–42) could inhibit foam cell formation of macrophages
through Cdk5-CD36 pathway via GIP receptor. Inhibition of Cdk5-CD36 pathway by GIP
in macrophage may be a novel therapeutic target for atherosclerotic cardiovascular disease.
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