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Delineation of Tumor Habitats 
based on Dynamic Contrast 
Enhanced MRI
Yu-Cherng Channing Chang1, Ellen Ackerstaff   2, Yohann Tschudi3, Bryan Jimenez   3, Warren 
Foltz4, Carl Fisher5, Lothar Lilge5, HyungJoon Cho6, Sean Carlin7,11, Robert J. Gillies   8, 
Yoganand Balagurunathan   8, Raphael L. Yechieli   3, Ty Subhawong9, Baris Turkbey10, Alan 
Pollack3 & Radka Stoyanova3

Tumor heterogeneity can be elucidated by mapping subregions of the lesion with differential 
imaging characteristics, called habitats. Dynamic Contrast Enhanced (DCE-)MRI can depict the tumor 
microenvironments by identifying areas with variable perfusion and vascular permeability, since 
individual tumor habitats vary in the rate and magnitude of the contrast uptake and washout. Of 
particular interest is identifying areas of hypoxia, characterized by inadequate perfusion and hyper-
permeable vasculature. An automatic procedure for delineation of tumor habitats from DCE-MRI was 
developed as a two-part process involving: (1) statistical testing in order to determine the number of 
the underlying habitats; and (2) an unsupervised pattern recognition technique to recover the temporal 
contrast patterns and locations of the associated habitats. The technique is examined on simulated 
data and DCE-MRI, obtained from prostate and brain pre-clinical cancer models, as well as clinical data 
from sarcoma and prostate cancer patients. The procedure successfully identified habitats previously 
associated with well-perfused, hypoxic and/or necrotic tumor compartments. Given the association of 
tumor hypoxia with more aggressive tumor phenotypes, the obtained in vivo information could impact 
management of cancer patients considerably.

Cancer is the second leading cause of death in the U.S., with over 1.6 million new cases and half a million deaths 
each year1. Given its prevalence, research has focused on new treatments and an expanded understanding of the 
nature of the disease. Tumors are commonly heterogeneous2–5, stemming from selection pressures on different 
cancer cell clones5. This heterogeneity is largely held to be responsible for the variable outcomes among patients 
receiving the same therapy and the loss of effectiveness of an agent in a single patient over time2, 6. Tumor heter-
ogeneity can be elucidated by mapping subregions of the lesion with differential imaging characteristics, called 
habitats7–9. Delineating tumor habitats in vivo is important for determining prognosis and providing effective 
treatment. Simply detecting tumors may not be enough; the full degree of tissue heterogeneity must also be 
understood. In this regard, tissue biopsies have the limitation of sampling only a small fraction of the tumor10, 11. 
Therefore, volumetric imaging methods hold promise as a means of characterizing tumor heterogeneity.

Hypoxia is a key determinant of tumor habitats as it favors molecular pathways towards tumor aggressiveness. 
Hypoxic tumors, often associated with a more aggressive tumor phenotype, are more resistant to chemo- or 
radiation therapy than well-vascularized, well-oxygenated tumors12–15. Hypoxia occurs in solid tumors when the 
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consumption of oxygen exceeds its delivery by the vascular system. In most large clinical studies, the outcome is 
worse for patients with hypoxic tumors, consistent with the long-held idea that hypoxia confers both chemother-
apy and radiation resistance13–15. Unexpectedly, higher proportions of hypoxic tumor areas were also found to 
predict metastasis development in patients treated with surgery alone, pointing to biological effects beyond those 
linked to drug and radiation resistance16, 17.

Magnetic Resonance Imaging (MRI) provides a promising glimpse into tumor heterogeneity. The imaging 
habitats, comprising the tumor, defined by their distinct physiology can be characterized by their MRI features7. 
In particular, Dynamic Contrast Enhanced (DCE-) MRI can characterize the microenvironment in solid tumors 
by determining areas of inadequate or heterogeneous perfusion with hyper-permeable vasculature18. As tumor 
oxygenation is dependent on the microcirculation, the technique may be useful to identify tumor areas with poor 
blood flow, and therefore, hypoxic microenvironments19. DCE-MRI has been shown to correlate with Eppendorf 
O2 electrode measurements in cancers20. The individual tumor habitats vary in their rate and magnitude of con-
trast uptake and washout21. Discriminating between these MR signals-versus-time patterns in vivo using MRI is 
challenging considering: (i) the pixel size (100's of microns) is at least an order of magnitude larger than the phys-
ical dimensions of the tumor microenvironment (10's of microns); as a result, the detected MR signal reflects an 
average of different signal-versus-time patterns, which is (ii) further degraded by noise, both intrinsic, and related 
to motion and other artifacts. Nonetheless, areas of tumor hypoxia can be detected using the signal-versus-time 
curves of DCE-MRI data as a surrogate marker21. The technique is based on an unsupervised pattern recognition 
(PR) technique that determines the differential signal-versus-time curve pattern associated with any given tumor 
habitat. Previously, the number of temporal contrast patterns were determined visually based on the Principal 
Components (PCs) of the DCE-MRI signal-versus-time curves21.

Here, a statistical approach for determining the number of significant PCs is presented. Further, this number 
is utilized in an unsupervised PR algorithm in order to delineate and quantitatively characterize tumor habi-
tats. The technique is examined on simulated data and DCE-MRI data obtained from prostate and brain cancer 
pre-clinical models, as well as clinical data from patients with sarcoma and prostate cancer.

Results
Simulated Data.  The goal of the proposed DCE-MRI analysis is to estimate: first, the number of habitats (k) 
in the Volume of Interest (VOI); and second, to determine the spatial distribution and characteristic signal-ver-
sus-time curves for each habitat. The procedure is evaluated on several sets of simulated data.

Determination of the Number of Habitats.  In Stoyanova et al.21, the number of independent signal-versus-time 
curves in DCE-MRI data, k, was determined via visual inspection of the Principal Components (PCs), following 
Principal Component Analysis (PCA) of DCE-MRI data from the VOI. k was the numbers of signal-related PCs.

Here, a statistical procedure for determining k is proposed. PCs are ordered by the decreasing amount of 
signal variance they explain, so the cut-off between signal and noise-related PCs will be the sought number k. 
For illustration in Fig. 1 the PCs of three simulated 2D DCE-MRI datasets are presented. PCA is carried out on 
the matrixes D1(r, t), D2(r, t), D3(r, t), r = 100 × 100, t = 1, …, 256. D1(r, t) contains a single signal-versus-time 
curve; D2(r, t) and D3(r, t) contain a mixture of two and three signal-versus-time curves, respectively. All signals 
are simulated with varying amplitudes in the presence of noise (see Methods). Upon visual inspection of the 
PCs in Fig. 1, it is clear that the PCA analysis of D1(r, t), D2(r, t) and D3(r, t) results in 1, 2 and 3 signal-related 
PCs, respectively; the remaining, higher order PCs are noise-related. The developed procedure identifies the 
noise-related PCs as follows:

	 (i)	 In the signal-related PCs, the distribution of the first m points (pre-contrast) will be different from the dis-
tribution of the remaining N-m points. For each PC, an F-test for variance was performed between the m 
and N-m points with a p-value threshold of 0.05. The number k′ of consecutive PCs that satisfied the F-test 
was determined.

	(ii)	 The data in the noise-related PCs can be assumed to be normally distributed. The Shapiro-Wilk test will be 
insignificant in this case (p > 0.05) and vice versa; p < 0.05 for signal related PCs. Again, the Shapiro-Wilk 
test is applied to the PCs and the number k″ of consecutive PCs that failed the Shapiro-Wilk test was 
determined.

	(iii)	 k is determined as k = mim(k′, k″).

To test the performance of the procedure, 4 sets of Gaussian-distributed noise with mean of 0 and variable 
standard deviation was added to D1(r, t), D2(r, t) and D3(r, t) in order to generate datasets with 2.5, 5, 7.5, and 10 
signal-to-noise ratio (SNR) ( =

σ
SNR 2h , where h represents max height of a signal-versus-time curve with stand-

ard deviation σ22). The results of the automatic procedure for identification of the signal-related PCs are shown in 
Table 1. The determined number was never smaller than the ‘true’ number of shapes k, i.e. the procedure never 
underestimated the number of habitats. Both the F-test and Shapiro-Wilk test performed comparably (paired 
t-test, p = 0.95). On average, the F-test and Shapiro-Wilk test estimated the correct number of shapes (k) in 
95.13% and 94.32% of trials (total of 1000), respectively. The F-test and Shapiro-Wilk test overestimated k by one 
(k + 1) in an average of 4.69% and 5.30% of trials and overestimated k by 2 or greater (≥k + 2) in an average of 
0.15% and 0.37% of trials. Remarkably, when both tests were combined, results were more accurate than from the 
individual tests. In particular, combining results from both tests estimated the correct number of shapes in 
99.60% of trials, overestimated k by one in 0.40% of trials, and overestimated k by 2 or greater in none of the trials, 
supporting the use of both tests in the determination of k.
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Spatial Deconvolution of Habitats.  A dataset Dmixed(r, t), with three signal-versus-time curves was simulated, 
in which individual voxels contained weighted sums of the three signal-versus-time curves. Weights for each 
signal-versus-time curve at each voxel were dependent on the location of the voxel in the dataset. To approximate 
an idealized distribution of tumor habitats in a DCE-MRI dataset, voxels in the center of the dataset were desig-
nated as necrotic tumor areas, voxels in the periphery were designated as well-perfused tumor areas, and voxels in 
between the center and periphery were set as hypoxic tumor areas (see Methods). Representative images at select 

Figure 1.  Determination of number of habitats in simulated data. (A–C) Representative signal-versus-time 
curves at varying SNR levels for simulated datasets with one, two, and three signal-versus-time curve patterns, 
respectively. (D–F) Figures show signal-related PCs and the next highest noise-related PC for simulated datasets 
with one, two, and three signal-versus-time curve patterns, respectively. The percent total variance is indicated 
for each PC.

# of curves 
in simulated 
dataset 
(“ground 
truth”)

# of curves 
determined

% of 1000 trials for F-test (k′)
% of 1000 trials for Shapiro-Wilk 
Test (k″) % of 1000 trials for min(k′, k″)

SNR SNR SNR

10 7.5 5 2.5 10 7.5 5 2.5 10 7.5 5 2.5

1

1* 94.7 93.9 95.0 95.7 94.4 93.9 94.8 94.3 99.8 99.4 99.6 99.6

2 5.0 5.8 4.9 4.2 5.4 5.5 4.9 5.3 0.2 0.6 0.4 0.4

> = 3 0.3 0.0 0.1 0.1 0.2 0.6 0.3 0.4 0.0 0.0 0.0 0.0

2

2* 95.3 94.7 95.6 95.2 95.3 94.7 94.5 93.3 99.6 99.6 99.7 99.5

3 4.5 5.3 4.2 4.5 4.5 4.9 5 6.1 0.4 0.4 0.3 0.5

> = 4 0.2 0.0 0.2 0.3 0.2 0.4 0.5 0.6 0.0 0.0 0.0 0.0

3

3* 96 94.5 95.3 95.7 94.2 94.0 94.3 94.2 99.4 99.5 99.8 99.7

4 4.0 5.4 4.4 4.1 5.5 5.6 5.5 5.4 0.6 0.5 0.2 0.3

> = 5 0 0.1 0.3 0.2 0.3 0.4 0.2 0.4 0.0 0.0 0.0 0.0

Table 1.  The results from the simulated datasets with one, two, and three signal-versus-time curves are shown 
below. The percent of trials (total of 1000) where the specified number of curves were determined are indicated 
for the two tests and their combination. Neither the tests nor their combination determined a number of 
curves less than the number of curves in the dataset. *Number of curves determined was never less than the 
corresponding “ground truth” number.
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time points and a depiction of Dmixed(r, t) are shown in Fig. 2A,B. Constrained Non-Negative Matrix Factorization 
(cNMF)23, an unsupervised PR algorithm, was applied to Dmixed(r, t) and the signal-versus-time curves for each 
habitat were readily deconvolved from the dataset using cNMF to find k solutions derived from automated deter-
mination of the number of habitats (k was determined to 3 in Dmixed(r, t)). Deconvolution was robust to noise, 
producing similar solutions at an SNR of 2.5 and 10 respectively (Fig. 2B,C). The spatial distribution of each 
signal-versus-time curve, presented by the maps of their corresponding weights recovers successfully the initial 
distribution of the simulated habitats (Fig. 2D,E).

The approach is implemented in MIM (MIM, Cleveland, Ohio) (see Methods).

Figure 2.  Deconvolution of habitats in a simulated dataset with mixed voxels. (A) Representative images of 
Dmixed(r, t) (SNR of 2.5) at selected time points (from 0 to 250 s with increments of 50 s); (B) Map showing the 
distribution of weights in each voxel for well-perfused, hypoxic, and necrotic habitats in Dmixed(r, t), as indicated 
by the level of red, green, and blue, respectively; (C,D) Results from cNMF after seeking three solutions in 
Dmixed(r, t) at an SNR of 2.5 and 10, respectively. The number of solutions sought was automated through the 
combined test, which indicated the number of curves present in the dataset; (E,F) cNMF weights showing the 
spatial distribution of the recovered well-perfused, hypoxic, and necrotic signal-versus-time curves (left to 
right) for Dmixed(r, t) at an SNR of 2.5 and 10, respectively.
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Experimental in vivo Data.  Preclinical Prostate Cancer Model.  The automatic procedure for identifica-
tion of signal-related PCs and mapping the tumor habitats was validated on a previously analyzed DCE-MRI 
dataset from a Dunning rat R3327-AT prostate cancer syngeneic hind leg tumor (for experimental and MRI 
acquisition details, see Methods and Cho et al.18). Figure 3A shows the PCs and their corresponding scores from 
PCA decomposition of the tumor dataset up to the first noise-related PC, as determined by the automatic pro-
cedure (i.e., the first 6 PCs are shown, demonstrating the noise-related PCs beyond the 3 unique signal-related 
PCs determined by procedure). Subsequently, the determined number of signal-related PCs was used in cNMF 
to seek signal-versus-time curves for the three unique signal patterns in the tumor dataset. Figure 3B shows the 
signal-versus-time curves derived from cNMF and their corresponding weights in each of the 5 image slices of 
the tumor dataset. The temporal patterns of the signal-versus-time curves bear a strong resemblance to those 
previously identified18, 21 to be associated with well-perfused, hypoxic, and necrotic tumor microenvironments in 
the dataset. The comparison between the image, depicting the hypoxic environment and the corresponding slice 
with pimonidazole (a hypoxia marker24, displayed in green) staining shows significant areal overlap (Figure 3C). 
At the same time, there are notable differences between the two maps18, 21, 25. Aside from the differences in slice 
thicknesses (0.79 mm for in vivo and 8 µm for ex vivo), there are also mechanistic differences. The pimonida-
zole staining is based on the cellular uptake and metabolism of the 2-nitroimidazole, which depends not only 
on oxygen level but also on the perfusion (delivery of pimonidazole), cell viability, and cellular nitroreductase 
activity24. Hence, less intense pimonidazole staining is observed in areas farther away from well-perfused areas 
(red in Fig. 3B). Meanwhile, in the DCE hypoxia map, the intensities are related to the contrast generated from 
the contrast agent being delivered and leaked (with delayed washout) into the tissue by the vasculature, without 
entering cells. Spatial heterogeneity of the various habitats beyond hypoxia are represented in the corresponding 
well-perfused and necrotic maps (Fig. 3B).

Preclinical Brain Tumor Model.  DCE-MRI data from two preclinical models of brain tumors were analyzed 
using the procedure: (i) U87 tumor, developed from a human Grade IV astrocytoma cell line26; and (ii) Rat 
Glioma 2 (RG2) tumor, developed from a malignant, invasive murine glioma cell line26. RG2 tumors are more 
aggressive and rapidly spreading, while U87 tumors are the slower growing of the two types. To achieve equal 
size at treatment, tumors were allowed to grow for 4–5 weeks and 11–14 days post-implantation for U87 and 
RG2 tumors, respectively, resulting in similarly sized tumors of volume 0.0279 cm3 and 0.0265 cm3. Tumors were 
then treated with Aminolevulinate (ALA)-induced Protoporphyrin IX (PpIX)-mediated Photodynamic Therapy 
(PDT)27. DCE-MRI was performed seven days following PDT, at which time the tumor size of RG2 was markedly 
increased (0.0623 cm3), while U87 remained unchanged (0.0279 cm3). The results of the analysis procedure are 
presented in Fig. 4. Two habitats were identified 7 days post treatment for the U87 tumor and three for the RG2 
tumor. In the U87 tumor, 65% of the tumor can be described by fast contrast agent wash-in and wash-out (red), 
associated with well-perfused18, 21 tumor regions (Fig. 3B). The 2nd habitat in the U87 tumor showed delayed 
contrast wash-in and wash-out, similar to hypoxic areas in previous studies18, 21, 25, 28 (Fig. 3B). In the RG2 tumor, 
the 3 habitats covered 43% (red), 28% (green) and 21% (blue) of the tumor respectively. The 3rd habitat shows 

Figure 3.  Application of technique for delineation of tumor habitats to a pre-clinical prostate tumor model. (A) 
First six PCs and their corresponding scores from PCA decomposition of DCE-MRI prostate cancer syngeneic 
tumor dataset. Automatic determination of the number of signal-related PCs revealed three signal-related 
PCs; (B) Signal-versus-time curve patterns and their corresponding weights from cNMF analysis of the tumor 
dataset seeking three unique patterns. Based on the Area Under the Curve (AUC) between 0 and 90 sec of the 
patterns, the weights are assigned to hypoxic (green), necrotic (blue) and well-perfused (red) habitats; (C) Top 
image shows hypoxic tumor areas in a sample slice, as determined from the present approach (taken from B). 
Bottom image shows hypoxic areas, indicated through pimonidazole staining on a co-registered frozen section 
for comparison.
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contrast agent leakage and diffusion into to tumor areas without functional microvasculature, typically associated 
with tumor necrosis.

Clinical in vivo Data.  Sarcoma.  Two sets of DCE-MRI were obtained five months apart from a 38 year-old 
patient with a grade 2 fibrosarcoma in the lower leg: one pre-chemotherapy and the second a month after com-
pletion of treatment (for MRI acquisition details and co-registration, see Methods). The habitat analysis of the 
two DCE-MRI exams of the patient is shown in Fig. 5. The MRI-estimated tumor volumes were 64 and 50.1 cm3, 
indicating ~20% reduction of the tumor volume between the exams. Given the small number of DCE time-points, 
the number of tumor habitats could not be determined using the automatic procedure with reliability. However, 
under the assumption of three habitats, potentially corresponding to well-perfused, hypoxic, and necrotic areas, 
cNMF was used to explore unique temporal patterns and their locations within the tumor. Remarkably, the recov-
ered signal-versus-time curves from both exams resembled those of the simulated well-perfused, hypoxic, and 
necrotic signal-versus-time curves. In addition, the spatial distribution of the patterns was very similar between 
the two MRI exams, indicating minimal changes in the tumor composition following chemotherapy, and thus, 
suggesting a lack of a therapeutic effect (Fig. 5). Indeed, the fractions of the well-perfused, hypoxic and necrotic 
components in the first exam 24%, 21%, and 25% were very similar to the fractions of the same components in 
the second: 20%, 19%, and 28%. The temporal behavior of the habitats’ signal-versus-time curves was also very 
similar. The well-perfused pattern (red color) was more dominant posteriorly, possibly suggesting the direction 
of tumor infiltration. Following the second exam, resection of the tumor was performed upon which pathology 
demonstrated 6.5 × 4.5 × 4.0 mm3 mass with 10% necrosis and 90% viable tumor tissue. The estimated tumor 
volume at resection (49 cm3) was very close to the MRI-determined volume (50.1 cm3). However, the fraction of 
the necrotic tissue was overestimated with the habitat analysis. There are various possible explanations for this 
discrepancy: (i) Partial volume contamination from the surrounding muscle, as muscle is characterized with 
relatively low perfusion29 and, due to the relatively large slice thickness in the longitudinal direction (3 mm), 
voxels on the tumor periphery can be contaminated with signals from the surrounding muscle. Because of the low 
perfusion of the muscle, this component will have a similar temporal pattern as the necrotic tissue. It can be seen 

Figure 4.  Mapping of tumor habitats in a pre-clinical brain tumor model. (A,B) Representative coronal slices 
with mapped tumor habitats in DCE-MRI data from pre-clinical models of brain tumors (left (A): U87, right 
(B): RG2). (Insets) Corresponding anatomical images with outlined tumor volume. Automatic determination 
of the number of signal-related PCs revealed correspondingly two and three signal-related PCs; (Bottom) 
Corresponding characteristic average signal-versus-time curves from each habitat. Red, green, and blue well-
perfused, hypoxic, and necrotic habitats respectively.
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that a large number of voxels on the tumor border, especially anteriorly, are colored as necrotic, which is consist-
ent with the reasoning above. Using the Contract/Expand utility in MIM, the volume of the surface pixels on the 
tumor was measured to be 3.25 cm3, or about 6% of the tumor; (ii) Histological slice may not be representative of 
entire in vivo slice due to differences in spatial resolution (in-plane and slice thickness) and quality of slice align-
ment; (iii) As pathologists determine % necrosis histologically at the cellular level on sections from tumor areas 
that are solid and not grossly necrotic, histological % necrosis may not be representative and may underestimate 
whole-tumor (or whole-slice) % necrosis determined in vivo.

Prostate Cancer.  Habitat analysis of the DCE-MRI exam of a patient with prostate cancer is shown in Fig. 6 
(for MRI acquisition details, see Methods). The tumor contour was automatically generated by thresholding 
the Apparent Diffusion Coefficient (ADC) map for values less than 1000 µm/s2 30–32. cNMF was applied to the 
signal-versus-time curves from the pixels within that contour. Habitat analysis uncovered three habitats, poten-
tially corresponding to well-perfused, hypoxic, and necrotic areas. Again, the average signal-versus-time curves 
from the recovered habitats resembled closely the simulated ones for well-perfused, hypoxic, and necrotic 
signal-versus-time curves. While necrosis is rarely found in prostate cancer, it is associated exclusively with 
high-grade tumors (Gleason Score ≥9)33. Indeed, histopathological evaluation of the whole-mount step sections 
with hematoxylin and eosin (H&E) staining confirmed a large prostate Gleason Score 9 tumor, involving almost 
half of the gland.

Figure 5.  Mapping of tumor habitats in an axial slice of the lower leg of a patient with fibrosarcoma before and 
after chemotherapy. (A) Pre-treatment; and (B) After treatment. The post-treatment MRI was aligned with the 
pre-treatment MRI by rigid fusion. Tumor habitats are presented as follows: ‘well-perfused’ – red; ‘hypoxic’ – 
green; and ‘necrotic’ – blue. The two imaging exams were 5 months apart. The post-treatment exam is a month 
after completion of therapy. There are very small changes in the tumor composition, suggesting little therapeutic 
effect of the chemotherapy. The patient subsequently underwent amputation, with the tumor showing only 
10% histologic necrosis. Note that the fraction of the ‘hypoxic/necrotic’ patterns is higher in the anterior part 
of the tumor while the posterior component is better perfused and harbors infiltrating, viable tumor. (Below) 
Corresponding average signal-versus-time curves from each habitat.
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Discussion
An approach for identification of areas of hypoxia in solid tumors from DCE-MRI was previously developed, 
where the number of differential temporal contrast patterns was inferred via visual inspection of the principal 
components (PCs) of the dataset21. In this paper, a procedure to automate the determination of this number using 
statistical testing of the PCs is presented. When applied to simulated datasets with varying SNR, the procedure 
is robust to noise and sensitive to the presence of unique signal-versus-time curves. The routine never underes-
timated the true number of unique signal-versus-time curves, suggesting the procedure can be reliably utilized 
without missing unique tumor habitats in a dataset. The SNR in the in vivo data was within the range of the SNR 
of the simulated datasets. The sensitivity of the procedure was further determined to be at a subpixel level through 
application on a simulated dataset with voxels containing mixtures of three signal-versus-time curves character-
istic of well-perfused, hypoxic, and necrotic tumor habitats. The presence of all three signal-versus-time curves 
was detected, and through cNMF, the temporal pattern and spatial distribution of the three signal-versus time 
curve shapes was recovered with good fidelity. In other words, the identity and location of the tumor habitats 
were recovered from the dataset, despite being below the resolution of the DCE-MRI dataset. Given MRI’s spatial 
resolution, the presence of different habitats within single voxels can be difficult to resolve by visual inspection, 
but it can be readily deconvolved through an unsupervised PR technique. In other words, the approach is not 
only capable of identifying voxels that predominantly follow a given pattern, but also can determine voxels with 
significant contributions from more than one pattern, effectively increasing the spatial resolution of the data.

The procedure to extract temporal contrast patterns in DCE-MRI datasets can be applied to experimental and 
clinical data as demonstrated in Figs 3–6. In expectation of further application of the procedure, several potential 
pitfalls should be noted. First, the procedure involves the use of the Shapiro-Wilk test, a test for normality, based 
on the assumption that the distribution of the intensities in noisy PCs follows a normal distribution. In experi-
mental datasets, the assumption of normality may not be valid; however, the procedure is not solely reliant on the 
Shapiro-Wilk test. In addition, an F-test to compare the variance in PCs between data before and after contrast 
washin is carried out. Noisy PCs with non-normal distributions would tend to increase the number of temporal 
contrast patterns detected by the Shapiro-Wilk test, but the procedure would account for such an increase, since 
it uses the minimum number of habitats detected by either the F-test or Shapiro-Wilk test. A sufficient number of 
time points are required before and after contrast washin in order to perform the F-test in a reliably. For experi-
mental datasets in pre-clinical models, higher temporal resolution in the DCE-MRI can be readily accomplished, 
but for clinical datasets in patients, this may not be always be possible.

The selection of the ‘purity’ parameter β allows for selecting thresholds addressing a particular problem. If the 
purpose of the study is to identify strictly the ‘pure’ habitats, β can be set to ≥60%. If analyzing multiple datasets 
from the same experiments, β should be kept constant to facilitate comparison between the datasets.

The habitats, identified in the pre-clinical and clinical prostate cancer data demonstrate the ability of the 
technique to identify and quantify the fraction of each habitat in the tumor. While the identified habitats are 
characterized by contrast agent uptake behavior similar to those found preclinically, their interpretation needs 
to be validated by additional ex vivo or in vivo imaging studies. If validated and given the correlation between 

Figure 6.  Mapping of tumor habitats in prostate cancer. (A) A T2-weighted axial MR image slice of the prostate 
of a patient with prostate cancer. Tumor habitats are presented as follows: ‘well-perfused’ – red; ‘hypoxic’ – 
green; and ‘necrotic’ – blue; (B) Histopathological slide at mid prostate level with outlined tumor area (Gleason 
Score 9); (C) Corresponding average signal-versus-time curve from each habitat.
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tumor hypoxia and treatment outcomes, such results could then be used for developing predictive models and/
or stratifying patients. The analysis of the prostate cancer patient data indicates the existence of a core with very 
restricted perfusion. Unfortunately, this result cannot be validated ex vivo, since it requires additional staining 
with hypoxia markers. A larger study for confirming the association of hypoxic/necrosis areas as identified by 
DCE-MRI with histopathology is underway. Potentially,18F-Fmiso PET may be used to relate the accumulation of 
18F-Fmisonidazole (18F-Fmiso), a clinically utilized hypoxia marker34, to relate with the hypoxic areas identified 
by our proposed PR method. Other MR-based methods, beyond DCE-MRI, to assess tissue oxygenation noninva-
sively in vivo include blood oxygen level dependent (BOLD), tissue oxygen level dependent (TOLD) and oxygen 
enhanced (OE) MRI as well as 19F oximetry15, 35–40. The required administration of a 19F tracer in 19F oximetry 
where the oxygen-level-dependent T1 relaxation time of the tracer can be converted to an oxygen concentration 
by a calibration curve, together with the often restricted 19F MR capabilities on clinical MR scanners, limits its 
clinical applicability, while being a useful preclinical research tool41. Easier accessible on clinical scanners are 
BOLD, TOLD, and OE MRI or combinations thereof which make use of preinstalled MR pulse sequences and 
do not require special hardware42, 43, such as e.g. a 19F channel for 19F MR oximetry. In BOLD MRI, the contrast 
is derived from the effective transverse relaxation rate R2* (1/T2*) measurements, which are sensitive to endog-
enous paramagnetic deoxyhemoglobin in the blood37, 38. In TOLD, the contrast is derived from longitudinal (or 
spin-lattice) relaxation rate R1 (1/T1) which is sensitive to the concentration of molecular oxygen in blood plasma 
and interstitial fluid37, while OE MRI measure ΔR1 in response to an oxygen breathing challenge35, 36. Recently, 
brain oxygenation was assessed in patients using a multiparametric quantitative BOLD (mqBOLD) approach43. 
In this study, arterial spin labeling (ASL), dynamic susceptibility contrast (DSC) perfusion-weighted MRI, and 
quantitative BOLD (acquisition of T2* and T2 maps) were combined to improve the determination of hemody-
namic and oxygenation parameters43. While the mpBOLD approach is promising to assess the oxygen saturation 
clinically, the required multiple measurements prolong acquisition time and may propagate errors43. Further, R2* 
is not only influenced by deoxygenated hemoglobin but also dependent on tissue iron deposition, calcifications, 
hematocrit level, extent and structure of the vasculature, and is impacted by tissue interface inhomogeneities of 
the B0 magnetic field44–47. Additionally, at higher magnetic fields, more prevalent B1 inhomogeneities and short-
ened T2* may degrade image quality and lower the spatial resolution48.

Using already widely applied DCE-MRI to evaluate vascular parameters and extract microenvironmental 
features by the proposed pattern recognitions approach would segue speedy clinical application.

Another application of the technique is to assess treatment response. The habitats identified in the pre-clinical 
brain tumor data and clinical sarcoma data indicate the possibility of evaluating the spatial response of tum-
ors following treatment. For instance, U87 showed two habitats following PDT, one of which is indicative of a 
well-perfused established tumor. The interpretation of the second habitat is hindered by the lack of pre-treatment 
DCE-MRI data or ex vivo data. The first would indicate vascular changes in response to treatment, while the 
latter would allow the ex vivo validation of the habitat interpretation. One possibility for the expanding outer 
rim (green areas) is a compromised blood brain barrier. Another possible interpretation is that as hypoxia is the 
balance between oxygen delivery and oxygen consumption, and DCE-MRI measure the delivery and washout of 
Gd-DPTA, though delivery of the CA is compromised as e.g. the result of infiltrating tumor into the surrounding 
brain, the tissue may or may not be severely hypoxic as of yet. On the other hand, having hypoxic areas on the 
outside of the tumor could also be the result of the delivery of effective treatment predominantly to the outside of 
the tumor. The more aggressively growing outer rim is more effective in the synthesis and retention of the PDT 
sensitizer PpIX from the administered precursor ALA49, 50. Finally, similarly to the sarcoma example, the green 
pixels in the outer rim can be a mixture of tumor and ‘healthy’ brain, resulting in “slowed down” well-perfused 
pattern. The RG2 tumor presents with a presumably avascular or necrotic core which may be due to the PDT 
treatment or due to the growth and development of the tumor. Similarly, in the sarcoma example, the (lack of) 
response to treatment can be identified, and neoadjuvant therapy modified accordingly.

Given the association between tumor hypoxia and cancer treatment outcome/response, approaches to iden-
tify tumor habitats have potentially a significant impact on the treatment of cancer patients. The present paper 
introduces an automatic procedure for delineation of tumor habitats that can be used in conjunction with unsu-
pervised PR techniques to automate the process of determination of tumor habitats from DCE-MRI datasets. By 
automating the process, the presence of hypoxic tumors potentially can be identified with greater accuracy and 
sensitivity, as well as higher throughput, allowing for the assignment of patients with hypoxic tumors to more 
suitable treatments.

Methods
Theory.  In ideal noise-free scenario let si(t) be the signal-versus-time curve in a voxel i, i = 1, …, N where N 
is the total number of voxels in VOI and t is time, t = 1, …, n. Assuming that si(t) is a mixture of signals from k 
habitats with characteristic signal-versus-time curve fj(t), j = 1, …, k, si(t) can be represented as the weighted sum 
of these shapes:

∑=
=

s A ft t( ) ( )
(1)

i
j

k

j j
1

where Aj is the amplitude of the jth signal-versus-time curve fj(t). Let s t( )i  be the acquired DCE-MRI signal:

s st t( ) ( ) (2)i i= +
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where  is Gaussian noise with mean 0 and standard deviation σ, i.e.  σ∈ N(0, )2 . A 3D DCE-MRI dataset can 
be organized in a two dimensional matrix S r t( , ) with r and t being the spatial and time domains, respectively. 
Assuming S(r, t) to be the corresponding ‘noiseless’ matrix with si(t) in its rows, than:

S Sr t r t( , ) ( , ) (3)= +

Determination of Number of Habitats.  The rank of the matrix S r t( , ) is k, the number of independent 
DCE components in the dataset, i.e. the number of habitats. Consequently, the number of significant PCs of the 
PCA decomposition of S r t( , ):

= ⋅S A Pr t r t t t( , ) ( , ) ( , ) (4)

is equal to k. A(r, t) is the matrix of PC scores (amplitudes) and P(t, t) is the PCs matrix.
In the case of k tumor habitats, resulting in k differential signal-versus-time curves, PCA of S r t( , ) will yield k 

signal-related PCs.

= ⋅ + − ⋅ −S A P A Pr t r k k t r t k t k t( , ) ( , ) ( , ) ( , ) ( , ) (5)

The rest of the PCs will be noise related and can be ignored. S r t( , ) can be represented by the first k PCs with-
out statistically significant loss of information, i.e.:

≈ ⋅S A Pr t r k k t( , ) ( , ) ( , ) (6)

Two tests are applied to determine k:

	 (i)	 In the signal-related PCs the distribution of the first m points (pre-contrast) will be different from the 
distribution of the remaining N-m points.

	(ii)	 The data in the noise-related PCs can be assumed to be normally distributed.

The first assumption is tested by subjecting each PC to an F-test for variance, performed between the m and 
N-m points with a p-value threshold of 0.05. The number k′ of consecutive PCs that satisfy the F-test is deter-
mined. The second assumption is evaluated through application of the Shapiro-Wilk test to each PC, supposing 
that the test will be significant for signal-related PCs (p < 0.05) and vice versa (p > 0.05) for noise-related PCs. The 
number k″ of consecutive PCs that failed the Shapiro-Wilk test is determined. Finally, k is estimated as k = min(k′, 
k″).

Pattern Recognition (PR).  Constrained Non-Negative Matrix Factorization (cNMF)23, an unsupervised 
PR algorithm, is applied to the data matrix S r t( , ), seeking k solutions of basic temporal curves F(k, t) and their 
weights W(r, k):

≈ ⋅S W Fr t r k k t( , ) ( , ) ( , ) (7)

The goal is to recover Aj and fj(t) [Eq. 1] and the rationale of the approach is that fj(t)’s are in the rows of F(k, 
t) and Aj’s are in the rows of W(r, k).

cNMF assumes that each image in the DCE-MRI series represents k tissue types with individually associated 
basic signal-versus-time curves. In other words, cNMF seeks a representation of S r t( , ) as the sum of the product 
of k basic contrast signatures F(k, t) and their weights W(r, k). Assuming that k = 3 and for a given voxel A1 is the 
weight of the well-perfused pattern f1(t), characterized by rapid contrast uptake followed by rapid washout; A2 is 
the weight of the ‘hypoxic’ pattern f2(t), characterized by delayed contrast build-up and washout; and A3 is the 
weight of the necrotic pattern f3(t), which exhibits slow or no contrast uptake and no discernible washout. The 
fraction of each component in this voxel can be calculated as a percentage of the sum of the three amplitudes (A1, 
A2 and A3). For display and quantitation purposes, however, a rule for assigning voxels to a given habitat may be 
required. This can be achieved by introducing a threshold β, describing how ‘pure’ a given pattern is in a voxel. For 
example, a voxel might be composed of 60% well-perfused, 30% hypoxic and 10% necrotic tissue. For β = 50%, 
this voxel will be assigned to the well-perfused habitat; for β = 30% - the voxel will be assigned to two habitats 
(well-perfused and hypoxic) and for β = 70% - the voxel will remain unassigned. Therefore, β represents a tradeoff 
between ‘purity’ and number of pixels assigned: the higher the ‘purity’ requirement, the smaller the number of 
pixels assigned to a given habitat. In the examples shown in the manuscript, β = 50% was used since on one hand, 
its is high enough to assure that the dominant pattern in the pixel is quite ‘pure’ and on the other hand the major-
ity of pixels will be assigned.

Implementation.  The analysis pipeline is implemented in MIM (MIM, Cleveland, Ohio). Upon uploading 
the imaging data, VOI (the tumor) is manually outlined. PCA and cNMF are implemented using Java plugins and 
applied to signal-versus-time curves for all pixels within the VOI21. PCs are displayed in separate windows along 
with the percentage of the variance, associated with each PC. The test for determination of k is then carried out. 
cNMF inputs include k, the number of pre-contrast series and β, the threshold for voxel assignment to a specific 
habitat. As a pre-processing step, each signal-versus-time curve is baseline corrected by subtraction of the average 
intensity from the pre-contrast sets. The resulting cNMF patterns are sorted in descending order based on the 
area under the curve (AUC) between 0 and 90 sec post contrast agent injection. The corresponding weights are 
sorted accordingly and mapped over the VOI, given that the % of the pattern is ≥β.
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Simulated Datasets.  A dataset was simulated to represent a 2D DCE-MRI acquired on a 100 × 100 grid. 
Three functional forms were used to simulate fj(t) corresponding to: (i) well-perfused tumor areas, characterized 
by rapid contrast uptake followed by rapid washout; (ii) hypoxic areas, which are regions of reduced vasculari-
zation, associated with delayed contrast build-up and washout; and (iii) necrotic areas, which exhibit slow or no 
contrast uptake and no discernible washout. The ‘extended’ Tofts model51, 52 was used to generate fj(t) using the 
following pharmacokinetic constants: Ktrans (related to perfusion and permeability per unit volume of tissue): 0.3, 
0.1, and 0.03 min−1 and kep (rate constant between Extracellular Extravascular Space (EEC) and plasma): 0.8, 0.2, 
and 0.01 min−1. A synthetic Parker fixed population average was used as the Arterial Input Function (AIF)53 in 
this model.

Three basic datasets D1(r, t), D2(r, t), and D3(r, t) were simulated, containing one, two and three of the 
signal-versus-time curves described above. To test the performance of the procedure, 4 sets of Gaussian-distributed 
noise with a mean of 0 and variable standard deviation was added to generate datasets with 2.5, 5, 7.5, and 10 
signal-to-noise ratio (SNR) (SNR 2 h=

σ
, where h is the max height of a signal-versus-time curve with standard 

deviation σ). The curves in the three datasets are shown in Fig. 1A.
A fourth set, Dmixed(r, t), with three signal-versus-time curves was simulated, in which individual voxels con-

tained weighted sums of the three signal-versus-time curves. Weights for each signal-versus-time curve at each 
voxel were dependent on the location of the voxel in the dataset. To approximate an idealized distribution of 
tumor habitats in a DCE-MRI dataset, voxels in the center of the dataset were designated as necrotic tumor areas, 
voxels in the periphery were designated as well-perfused tumor areas, and voxels in between the center and 
periphery were set as hypoxic tumor areas. Consequently, weights for the necrotic signal-versus-time curve were 
generated using a 2D Gaussian distribution, G(c, 10, 1), with a center at the midpoint of the image, c, standard 
deviation of 10 voxels, and peak value of 1; weights for the well-perfused signal-versus-time curve were generated 
through an “inverted” 2D Gaussian distribution,W(c, 45), where W(μ, σ) = 1 − G(μ, σ, 1), and µ and σ represent 
the center and standard deviation of the 2D Gaussian distribution described by G; and finally, weights for the 
hypoxic signal-versus-time curve were created using an “inverted” combination of the prior two distributions, 
H(c, 15, 25), where H(μ, σ1, σ2) = 1 − (G(μ, σ1, 1) + W(μ, σ2)). Weights for each voxel were then normalized such 
that the weights for all signal-versus-time curves patterns in a single voxel added to 1. Representative images at 
select time points and a depiction of Dmixed(r, t) are shown in Fig. 2A,B.

Experimental in vivo Data.  Preclinical Prostate Cancer Model.  Animal studies were conducted in compli-
ance with protocols approved by the Institutional Animal Care and Use Committee of Memorial Sloan-Kettering 
Cancer Center (MSKCC). The acquisition of DCE-MRI data and tumor micronenvironmental characteristics 
from a Dunning rat R3327-AT prostate cancer syngeneic tumor was described in detail previously18. Briefly, 
the tumor was implanted subcutaneously on the right hind leg of a Copenhagen rat. DCE-MRI was acquired at 
5.347 s temporal resolution for ~2 min prior to Gadolinium-Diethylene-Triamine-Pentaacetic Acid (Gd-DTPA) 
(Magnevist, Bayer AG, Leverkusen, DE) injection, followed by ~20-min dynamic acquisition, resulting in 256 
image sets (5 tumor slices each). The voxel size was 0.273 × 0.273 × 0.79 mm3 (0.059 mm3), 128 × 128 in-plane 
matrix, 35 × 35 mm2 field-of-view, repetition time (TR) = 41.775 ms, echo time (TE) = 3.1 ms, flip angle = 30°. 
The average SNR within the VOI was approximately 7.5. The excised tumor section was stained for pimonidazole, 
a hypoxia marker injected 1 h prior to tumor excision14, 18

Preclinical Brain Tumor Model.  Animal studies were conducted in compliance with protocols approved by 
the Animal Care Committee (ACC) of University Health Network, Toronto, Canada. Two preclinical models of 
brain tumors were analyzed: (i) a U8726 tumor, developed from a human Grade IV astrocytoma cell line present-
ing many of the classical molecular hallmarks of advanced human glioma disease, specifically increased EGFR 
expression. Tumors were grown in immunocompromised Rag2/SCID rats (SD-Rag2tm1sage, SageLabs, Boyertown, 
PA, USA) and develop with a highly vascular morphology. 250,000 U87 cells, suspended in Neurobasal-A (Life 
Technologies, Carlsbad, CA, USA), were injected 3 mm deep into the neocortex of 14–16 week old female 
rats; and (ii) a Rat Glioma 2 (RG2)27 tumor, developed from malignant, invasive murine glioma cell lines. 5000 
RG2 cells, suspended in Hank’s Balanced Salt Solution (HBSS, Life Technologies, Carlsbad, CA, USA), were 
injected 3 mm deep into the neocortex of 16–18 week old female Fischer (CDF) Rats (Charles River Laboratories, 
Wilmington, MA, USA). In both preclinical models, cells were injected 3 mm to the left of the midline and 3 mm 
above the bregma using a sterile Hamilton Neuros Syringe with a stereotactic frame. Tumors were allowed to grow 
for 4–5 weeks and 11–14 days post-implantation for U87 and RG2 tumors, respectively, resulting in similar-sized 
tumors, and at which time ALA-induced PpIX Photodynamic Therapy (PDT) was delivered to the tumors. The 
treatment parameters were; administration of 100 mg/kg−1 ALA injected i.p. followed 4 h later by delivery of 
12J of 635 nm light. The PDT-mediated cytotoxic dose follows a steep spatial gradient, governed by the local 
ALA uptake and thus PPIX synthesis is dominated by the light scattering and absorption in the brain. Hence, it 
results in spatially varying tissue responses potentially including necrosis, apoptosis, edema and inflammation. 
Post-PDT, DCE-MRI was performed 7 days post light exposure to permit resolution of the immediate inflam-
mation. The rat brain tumor MRI was performed on a 7 T Biospec USR 70/30 (Bruker Corporation, Ettlingen, 
Germany). The imaging protocol consisted of T2-weighted MRI, DCE-MRI with matched 25.6 × 25.6 mm 
fields-of-view and center slices. DCE-MRI involved a 2D-FLASH sequence (TR/TE: 40/2.5 ms, flip angle = 35°, 
100 × 100 matrix, 256 µm × 256 µm in-plane resolution, 5 slices, 1 mm slice thickness, 60 repetitions per slice, 4 s 
temporal resolution, 4 min acquisition time). Five DCE series were acquired prior to contrast agent (Gd-DTPA) 
injection. The average SNR within the VOI was approximately 12.

Clinical in vivo Data.  Sarcoma.  This retrospective study was conducted under the approval of the 
Institutional Review Board at the University of Miami; informed consent was exempted. Two sets of DCE-MRI 
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were obtained five months apart from a 38-year old patient with a grade 2 fibrosarcoma in the lower leg: one 
pre-chemotherapy and the second a month after completion of treatment. The first exam was carried out on 
a 3T Skyra MR Scanner (Siemens, Erlangen, Germany). DCE-MRI data were acquired using a T1 axial vibe 
fat-saturated sequence (4.1 ms TR, 1.87 ms TE) with a ~2 min acquisition prior to Gd-DTPA injection, followed 
by ~5 min dynamic acquisition at a temporal resolution of 25 s, resulting in 13 image sets with 52 slices each. The 
voxel size was 0.521 × 0.521 × 3.5 mm3 (0.950 mm3), 384 × 384 in-plane matrix, 207 × 207 mm2 field-of-view. 
The average SNR within the VOI was approximately 6. The second exam was carried out on a 1.5T Symphony 
MR Scanner (Siemens, Erlangen, Germany). DCE-MRI data were acquired using a T1 axial vibe fat-saturated 
sequence (5.3 ms TR, 2.75 ms TE) with a ~2 min acquisition prior to Gd-DTPA injection, followed by ~7 min 
dynamic acquisition, at a temporal resolution of 33 s, resulting in 14 image sets (30 slices each). The voxel size was 
0.605 × 0.605 × 3.5 mm3 (1.281 mm3), 256 × 256 in-plane matrix, 155 × 155 mm2 field-of-view. The average SNR 
within the VOI was approximately 3. The two exams were coregistered in MIM by rigid fusion.

Prostate Cancer.  Prostate MRI data was obtained from The Cancer Imaging Archive (TCIA)54. Imaging studies 
were performed on a 3T Achieva (Philips Medical Systems, Best, Netherlands). Details about coils and patient 
preparation are given elsewhere55. The imaging protocol included triplanar T2-weighted turbo spin-echo MR 
imaging, axial unenhanced T1-weighted MRI and axial 3D fast field-echo DCE-MRI. Axial DCE-MRI were 
obtained before, during, and after a single-dose injection of Gd-DTPA at a dose of 0.1 mmol/kg through a periph-
eral vein at a rate of 3 mL/s via a mechanical injector (Spectris MR Injection System; Medrad). DCE-MRI data 
were acquired using a 10-section 3D fast field-echo sequence, with a phase direction from left to right without 
fat saturation (TR/TE: 5.5/2.1 ms). Four unenhanced sets (13 s total acquisition time prior to Gd-DTPA injec-
tion) and approximately 96 contrast-enhanced image sets of images were acquired sequentially without a delay 
between acquisitions. A total of approximately 1000 images were obtained during DCE-MRI. The voxel size was 
0.86 × 1.18 × 6 mm3 (6.0888 mm3), 256 × 256 in-plane matrix, 260 mm2 field-of-view. The procedure was applied 
to VOI, automatically generated by thresholding the Apparent Diffusion Coefficient (ADC) map for values less 
than 1000 µm/s2 30–32. The average SNR within the VOI was approximately 3.

The patient underwent robotic-assisted radical prostatectomy. Following the prostatectomy procedure, the 
specimen was processed within an MRI-based, patient-specific specimen mold56. The specimen was evaluated as 
whole-mount step section with H&E staining, and the tumor outlined by an experienced genitourinary patholo-
gist with >25 years of experience.
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