
Automated mediastinal lymph node
detection from CT volumes based on
intensity targeted radial structure
tensor analysis

Hirohisa Oda
Kanwal K. Bhatia
Masahiro Oda
Takayuki Kitasaka
Shingo Iwano
Hirotoshi Homma
Hirotsugu Takabatake
Masaki Mori
Hiroshi Natori
Julia A. Schnabel
Kensaku Mori

Hirohisa Oda, Kanwal K. Bhatia, Masahiro Oda, Takayuki Kitasaka, Shingo Iwano, Hirotoshi Homma,
Hirotsugu Takabatake, Masaki Mori, Hiroshi Natori, Julia A. Schnabel, Kensaku Mori, “Automated
mediastinal lymph node detection from CT volumes based on intensity targeted radial structure
tensor analysis,” J. Med. Imag. 4(4), 044502 (2017), doi: 10.1117/1.JMI.4.4.044502.



Automated mediastinal lymph node detection from
CT volumes based on intensity targeted radial
structure tensor analysis

Hirohisa Oda,a,* Kanwal K. Bhatia,b Masahiro Oda,c Takayuki Kitasaka,d Shingo Iwano,e Hirotoshi Homma,f
Hirotsugu Takabatake,g Masaki Mori,f Hiroshi Natori,h Julia A. Schnabel,b and Kensaku Moric,*
aNagoya University, Graduate School of Information Science, Furo-cho, Chikusa-ku, Nagoya, Japan
bKing’s College London, Division of Imaging Sciences and Biomedical Engineering, St. Thomas’ Hospital, London, United Kingdom
cNagoya University, Graduate School of Informatics, Furo-cho, Chikusa-ku, Nagoya, Japan
dAichi Institute of Technology, School of Information Science, Yakusa-cho, Toyota, Japan
eNagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
fSapporo-Kosei General Hospital, Chuo-ku, Sapporo, Japan
gSapporo Minami-Sanjo Hospital, Chuo-ku, Sapporo, Japan
hKeiwakai Nishioka Hospital, Toyohira-ku, Sapporo, Japan

Abstract. This paper presents a local intensity structure analysis based on an intensity targeted radial structure
tensor (ITRST) and the blob-like structure enhancement filter based on it (ITRST filter) for the mediastinal lymph
node detection algorithm from chest computed tomography (CT) volumes. Although the filter based on radial
structure tensor analysis (RST filter) based on conventional RST analysis can be utilized to detect lymph nodes,
some lymph nodes adjacent to regions with extremely high or low intensities cannot be detected. Therefore, we
propose the ITRST filter, which integrates the prior knowledge on detection target intensity range into the RST
filter. Our lymph node detection algorithm consists of two steps: (1) obtaining candidate regions using the ITRST
filter and (2) removing false positives (FPs) using the support vector machine classifier. We evaluated lymph
node detection performance of the ITRST filter on 47 contrast-enhanced chest CT volumes and compared it with
the RST and Hessian filters. The detection rate of the ITRST filter was 84.2% with 9.1 FPs/volume for lymph
nodes whose short axis was at least 10 mm, which outperformed the RST and Hessian filters.©TheAuthors. Published
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1 Introduction
Lung cancer is the leading cause of cancer-related deaths in the
United States1 and China.2 It is also the leading cause of cancer-
related deaths among men worldwide.3 There are several meth-
ods of treatment: surgery, chemotherapy, and radiotherapy. To
choose the best treatment procedure, cancer staging based on
the TNM staging system4 is required. Three factors are focused
on in staging: T (tumor), N (lymph nodes), and distant M (meta-
stasis). In the preoperative diagnosis of lung cancer, radiologists
check mediastinal lymph nodes on computed tomography (CT)
volumes. However, because lymph nodes are small and their sil-
houettes are not clear, they might be overlooked. To prevent
medical doctors from overlooking them and to lighten their bur-
den, a computer-aided detection system for automated lymph
node detection is strongly desired.

There are various approaches for detecting lymph nodes from
CT volumes: random forest statistical classifier,5 local intensity
structure analyses based on Hessian matrix,6–8 or radial structure
tensor (RST).9 Three-dimensional (3-D) Haar-like features are
3-D feature point detection algorithms that can detect blob-
like structures in volumetric images. Barbu et al.10 introduced
3-D Haar-like features for axillary, pelvic, and abdominal

lymph nodes. Feulner et al.11 utilized them for mediastinal
lymph node detection. The random forest statistical classifier
is a supervised machine learning technique that can be utilized
for enhancing target objects in image volumes. Cherry et al.12

utilized random forest statistical classifiers for abdominal lym-
phadenopathy detection.

Local intensity structure analysis based on the Hessian
matrix has been widely used for many algorithms of automated
detection and segmentation of organs13–15 and lesions.16–19 The
Hessian matrix is computed for each location and describes the
local intensity structure as a blob, line, or sheet around the loca-
tion, and whether it is brighter or darker than surrounding regions.
The bright blob-like structure enhancement filter based on the
Hessian matrix (Hessian filter) responds with a high value at
the central part of the blob-like regions, which are brighter than
surrounding regions. Feuerstein et al.20 proposed a mediastinal
lymph node detection algorithm using this. Another algorithm
proposed by Liu et al.21 is also based on Hessian analysis.
Random forest5 and support vector machine (SVM)22 classifiers
were introduced to improve performance. Roth et al.23 introduced
deep convolutional neural networks24 for further improvement.

Another detection algorithm is through local intensity struc-
ture analysis based on RST.9 Nimura et al.25 introduced the bright
blob-like structure enhancement filter based on RST (RST filter)
for detecting the abdominal lymph nodes. Its benefit is that it can
enhance the entire region of the target object, in contrast to the
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Hessian filter, which enhances only the central part of the region.
The RST filter can capture the lymph node shape more properly
than the Hessian filter. The features extracted can be used to deter-
mine whether each candidate region is a true positive (TP) or a
false positive (FP) using machine learning techniques. However,
the RST filters have so far not performed well on mediastinal
lymph node detection. The current RST filter fails when tissues
have largely varying intensity distributions close to the target, for
instance, in the case of air and contrasting blood vessels.

Lymph nodes on CT volumes typically show the following
characteristics:

1. slightly higher intensity than surrounding regions,

2. spherical shape,

3. narrow intensity range similar to soft tissue.

To identify lymph nodes in CT images, the RST filter is
designed to detect the regions with characteristics (1) and
(2). However, mediastinal lymph node detection is a challenging
problem in medical imaging because mediastinal lymph nodes
are closely surrounded by many structures, such as contrast-
enhanced blood vessels or air, as shown in Fig. 1. Although
there are several works on lymph node detection on CT vol-
umes, they fail to detect such lymph nodes. To overcome this
problem, this paper proposes a new filter called the intensity
targeted radial structure tensor (ITRST) filter, that is able to
detect lymph nodes located around anatomical structures of
extremely higher or lower intensities. The idea of the ITRST
filter is to ignore extremely higher or lower intensity regions
in RST computation to meet the requirement of characteristic
(1). This allows us to detect lymph nodes neighboring regions
with extremely high or low intensities.

The contribution of this paper is (a) to propose a new lymph
node detection filter called the ITRST filter and (b) to evaluate
its performance using artificial and clinical CT volumes.

In Sec. 2, we propose the automated mediastinal lymph node
detection algorithm based on the ITRST filter and SVM classi-
fier. In Sec. 3, we present two experiments showing the efficacy
of the ITRST filter. The results are presented and discussed in
subsequent sections.

2 ITRST-Based Lymph Node Detection
Algorithm

2.1 ITRST Filter

This paper introduces a new blob-like structure enhancement
filter called the ITRST filter, which is a modified version of

the RST filter. Before explaining the ITRST filter, we will
give a brief overview of the RST filter. The RST is given as
the second-order tensor matrix (3 × 3 matrix) and is given by

EQ-TARGET;temp:intralink-;e001;326;564TðxÞ ¼
X
i

X
j

αi;jrigTi;j; (1)

where x ¼ ðx; y; zÞT is the location of a voxel where the RST is
computed, ri denotes an i’th search direction from x, and gi;j is a
local gradient vector of Iðxi;jÞ. αi;j is an opacity, given by

EQ-TARGET;temp:intralink-;e002;326;487αi;j ¼
8<
:

0 if jIðxÞ − Iðxi;jÞj < tmin;
jIðxÞ−Iðxi;jÞj
jtmax−tminj if tmin ≤ jIðxÞ − Iðxi;jÞj < tmax;
1 otherwise;

(2)

where i is the index of search directions, j is the index of search
steps of each search, xij is a voxel located in the j’th search step
on the i’th search direction, tmin and tmax (tmin < tmax) are param-
eters for controlling the sensitivity of the gradient. When an
accumulated opacity βi ¼

P
jαi;j ≃ 1 or a search length

becomes tlen or larger, a search for the i’th search direction
is terminated.

Eigenvalues λ0, λ1, λ2ðjλ0j ≥ jλ1j ≥ jλ2jÞ of TðxÞ þ TTðxÞ re-
present the magnitude of the gradient directing the correspond-
ing eigenvector around x. If all eigenvalues are negative, IðxÞ is
brighter than the surrounding region. The larger the magnitude
of the eigenvalue, the larger the gradient. The eigenvalues are
utilized to enhance the bright blob-like structure regions that
have the condition λ1 ≃ λ2 ≃ λ3 ≪ 0 using an evaluation for-
mula. For example, a simple evaluation formula

EQ-TARGET;temp:intralink-;e003;326;262fblobðλ0; λ1; λ2Þ ¼
�
jλ2j jλ2jjλ0j if λ2; λ1; λ0 < 0;
0 otherwise;

(3)

was proposed by Li et al.8 Such formulas produce high
responses in the bright blob-like regions.

However, if some of the radial searches incorporate regions
whose intensities are extremely high or low, huge intensity gra-
dients of some specified directions are summed into the RST
TðxÞ, according to Eq. (1). The eigenvalues calculated in such
regions may become λ0 ≪ λ1 ≤ λ2 ≤ 0 or λ1 ≤ λ2 ≤ 0 ≪ λ0,
and the responses of an evaluation formula such as Eq. (3)
become low.

To prevent the effect of the huge intensity gap explained
above, we propose the ITRST filter. A schematic illustration
showing the difference between the RST and the ITRST filters
is summarized in Fig. 2. The ITRST filter introduces the prior
knowledge of the target region to prevent summing huge intensity

Fig. 1 Intensity profile of lymph node. (a) Example of axial slice and its magnification of lymph node.
Yellow represents lymph nodes. (b) Intensity profile on line segment A–B shown in (a).
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gradients into the ITRST. Intensity gradients at the location of
higher or lower intensity than the thresholds are not summed
into the ITRST. The ITRST is defined by modifying Eq. (1) as

EQ-TARGET;temp:intralink-;e004;63;421T 0ðxÞ ¼
X
i

X
j

αi;jγi;jrigTi;j; (4)

where γi;j is a function that classifies whether all points utilized
for computing gi;j have the intensity within a predetermined
range or not, which is defined as

EQ-TARGET;temp:intralink-;e005;63;345γi;j ¼
�
1 if tdark ≤ Iðx 0Þ ≤ tbright for ∀x 0 ∈N ði; jÞ
0 otherwise;

; (5)

where N ði; jÞ is a set of six-neighborhood voxels around xi;j. In
Eq. (5), tdark and tbright are upper and lower limits of target inten-
sity range, respectively. The parameters tdark and tbright affect the
enhancement results as follows. If we lower tdark, this causes FPs
of lymph nodes neighboring air regions. If we set tbright higher,
this setting produces FPs of lymph nodes neighboring contrast-
enhanced blood vessels (intensities of 150 to 300 H.U.).
Choosing higher tdark or lower tbright makes the filter responses
lower because it reduces the intensity gradients summed into
the ITRST.When an accumulated opacity β0i¼maxðPjαi;j;γi;jÞ≃
1 or a search length becomes tlen or larger, a search for the i’th
search direction is terminated. Eigenvalues of T 0ðxÞ þ T 0TðxÞ, λ 0

0,
λ 0
1, λ

0
2ðjλ 0

0j ≥ jλ 0
1j ≥ jλ 0

2jÞ can be utilized in the same manner as
those of the RST filter.

2.2 Mediastinal Lymph Node Detection

2.2.1 Overview

This section explains a mediastinal lymph node detection algo-
rithm from CT volumes, which is based on the ITRST filter. In

this algorithm, we assume that the input of the algorithm is a
chest CT volume. The output is mediastinal lymph node detec-
tion results. Detection targets are the mediastinal lymph nodes
with the specified least short axis or above. This is because
enlarged lymph nodes have high possibility to be metastasized.
The entire process consists of (1) preprocessing, (2) obtaining
candidate regions by thresholding against the responses of the
ITRST filter, and (3) FP reduction using machine learning.

The input volume I is a chest CT volume. The ground-truth
binary volume Ig of mediastinal lymph nodes is required if I is
utilized for training only. The output is a binary volume Iout,
which has lymph node regions denoted by the value 1. We
describe the size of each lymph node using principal components
analysis. We focus on the detection of lymph nodes above a speci-
fied size, defined by a short axis length of at least rtarget (mm).

2.2.2 Preprocessing

First, we interpolate an input volume to generate an isotropic
resolution volume. We apply the cubic interpolation on I to obtain
a volume with isotropic resolution wreso ðmmÞ × wreso ðmmÞ ×
wreso ðmmÞ per voxel.26 Furthermore, we apply a Gaussian
smoothing filter with standard deviation σsmooth (mm) for reduc-
ing noise and making local gradients more stable. We denote the
preprocessed input volume as I 0.

2.2.3 Target region of detection

We restrict the target region for lymph node detection to inside
the mediastinal region, which we define as the area between the
lungs. A lung region Alung is segmented by an automatic seg-
mentation algorithm. We use a lung segmentation algorithm
similar to Hu et al.27

First, we obtain air regions Aair in I 0 as regions having lower
intensities than a given threshold tair and not touching the boun-
dary of the input CT volume. Then, we select the first and sec-
ond largest connected components from the air regions detected.
If the second largest component of the air regions is less than
20% of the largest one, we choose the largest component of the
air regions as Alung. Finally, the mediastinum region Amedia is
obtained by Alung using Procedure 1. The function maxðaÞ rep-
resents the maximum value of a in this procedure.

We assume that the x-axis of the input volume I corresponds
with the right-to-left direction of the body, the y-axis corre-
sponds with the front-to-back direction, and z-axis corresponds
with the head-to-foot direction. We scan the lung region Alung

from each pair of ðy; zÞ toward the right-to-left direction
(along the x-axis). For each scan, we check whether no fewer
than two components exist in the scan line. This means that there
are right and left lung regions in the scan line. If no fewer than
two components exist, we fill the gap between each component
with the value 1.

2.2.4 Initial lymph node detection using ITRST filter

We obtain the candidate regions using the ITRST filter. First, we
apply the ITRST filter with the evaluation Eq. (3) to I 0. Since
each point of I 0 has one response, we obtain the volume of filter
response F. Because responses of the ITRST filter sometimes
become zero in the blob-like regions such as an individual
hole, we apply a median filter of whole × whole × whole (voxels)
to F to normalize such points. Then, we perform thresholding on
the result of the median filter F 0 as

Fig. 2 Schematic illustration showing differences between (a) RST
and (b) ITRST filters. Point x is in sphere, and sphere is touching
region with very low intensities. Top row represents intensity gradients
that are summed into RST and ITRST, respectively. Bottom row rep-
resents magnitudes of eigenvalues λ0, λ1, λ2ðjλ0j ≥ jλ1j ≥ jλ2jÞ with
corresponding eigenvectors of RST and ITRST, respectively.
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EQ-TARGET;temp:intralink-;e006;63;282F 0
blobðxÞ ≥ tblob; (6)

with the threshold value tblob. Regions of connected components
whose volumes are less than that of the sphere with radius tsmall

(mm) and ones that are not touching the mediastinum region
Amedia are eliminated. The remaining are denoted as candidate
regions.

2.2.5 FP reduction

The ITRST filter detects many FP regions as initial lymph node
candidate regions. The SVM classifier is utilized to classify each
candidate region into TP or FP regions. ð10þ 7jDjÞ-dimen-
sional features are utilized for each candidate region, as
shown in Table 1. D is the permutation of radii utilized for com-
putation of features related to the intensity. The number of ele-
ments of D is jDj, index of D is pð1 ≤ p ≤ jDjÞ, and one of its
elements is written as d ∈ D. When d > 0 mm, the target region
for computing the intensity features is obtained by dilation of the
candidate region, by using a structure element of a sphere whose

radius is d mm. The target region represents a neighbor of the
candidate region, and larger values of d make the target region
thicker. When d ¼ 0 mm, the target region is the same as the
candidate region. Features are computed for both the training
step and the testing step, and utilized as follows.

• Training step
Feature vectors obtained from candidate regions of

all volumes in the training dataset are used for training
of the SVM.22 The set of lymph node regions whose
short axis is at least rtargetwtrain mm in the ground
truth Ig is written as G. rtarget is a parameter representing
the minimum length of the short axis of target lymph
nodes. wtrainð0 < wtrain < 1Þ is the parameter for setting
the smallest size of a lymph node that is utilized for
training. If the center of a candidate region is in one
of the lymph node regions of G, its feature vector is uti-
lized as a positive sample. If the center of a candidate
region is outside of the lymph node regions, its feature
vector is utilized as a negative sample.

• Testing step
A candidate region extracted from a test volume is

classified into TP or FP with its feature vector by
using an SVM trained as above. If a candidate region
is predicted as TP, the values of the output binary vol-
ume Iout are set to 1 in the candidate region.

Table 1 Features for FP reduction step.

Group Symbol Definition

u1 Volume (mm3)

u2 Surface area (mm2)

Geometry u3 Sphericity

u4 Maximum length from contour (mm)

u5 Length of long axis (mm)

u6 Length of short axis (mm)

u7 x -coordinate

Location u8 Normalized y -coordinate of Ck in
bounding box of lung

u9 z-coordinate

u10þ7ðp−1Þ Average

u11þ7ðp−1Þ Variance

u12þ7ðp−1Þ Median

Intensity u13þ7ðp−1Þ Maximum of I in the target region.
See Sec. 2.2.5 for details.

u14þ7ðp−1Þ Minimum

u15þ7ðp−1Þ Skewness

u16þ7ðp−1Þ Kurtosis

Procedure 1 Segmentation of mediastinum region Amedia

Input: lung region Alung

for z ¼ 0 to maxðzÞ do

for y ¼ 0 to maxðyÞ do

a1 ¼ 0

for x ¼ 0 to maxðxÞ − 1 do

if Alungðx; y; zÞ ¼ 1 ∩ Alungðx þ 1; y ; zÞ ¼ 0 then

a1←a1 þ 1

end if

end for

if a1 ≥ 2 then

a2 ¼ 0

for x ¼ 0 to maxðxÞ − 1 do

if 1 ≤ a2 < a1 ∩ Alungðx þ 1; y; zÞ ¼ 0 then

Amediaðx; y; zÞ←1

end if

if Alungðx; y; zÞ ¼ 1 ∩ Alungðx þ 1; y ; zÞ ¼ 0 then

a2←a2 þ 1

end if

end for

end if

end for

end for

Output: mediastinum region Amedia
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3 Materials and Methods

3.1 ITRST Filter

3.1.1 Materials

An artificially generated volumetric image is used for evaluation
of the ITRST filter. This volume includes seven objects imitat-
ing lymph nodes, three objects imitating contrast-enhanced
blood vessels, and three objects imitating air regions. Figures 3(a)
and 3(b) show the blueprint and one slice of the artificially gen-
erated volume containing the synthetic objects, respectively.
This volume contains one isolated sphere, three spheres overlap-
ping with 300 H.U. square poles, and three spheres overlapping
with −1000 H:U: square poles. The background of the volume
is 0 H.U. First, the spheres with a diameter of 15 mm are drawn
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C        D
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Fig. 3 Synthetic examples of solid objects. (a) Blueprint of artificially generated volume. Slice contains
centers of all spheres. (b) Slice containing one isolated sphere and six spheres touching bright (300 H.U.)
or dark (−1000 H:U:) square poles.

Table 2 Specification of CT volumes used in experiments on medi-
astinal lymph node detection.

Item Spec

Number of volumes 47

Dimension 3

Phase Arterial

Device Aquilion 64, Toshiba

Reconstruction function FC11

Size 512 × 512 × ð338–463Þ voxels
Resolution ð0.625 − 0.782Þ × ð0.625 − 0.782Þ ×

ð0.799 − 0.801Þ mm3
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as uniform of 50 H.U., and Gaussian smoothing of σ ¼ 1.0 mm

is applied to make the spheres similar to lymph nodes of real CT
volumes. After that square poles with thickness of 15 mm and
length of 50 mm are drawn.

3.1.2 Filter response evaluation

We apply the ITRST, RST, and Hessian filters to the artificially
generated volume explained above. First, we examine the filter
responses. In this experiment, we obtain the eigenvalue profile
on the two spheres shown in Fig. 3(b). The line A–B in Fig. 3(b)
crosses one of the spheres overlapping a dark region. The line
C–D is one of the spheres overlapping a bright region.

Parameters used in the experiments are shown in Table 4(a).
We set tbright ¼ 100 H:U: and tdark ¼ −100 H:U: since the
spheres have comparability with lymph nodes, which range
from −100 to 100 H.U. We also set tlen ¼ 15 mm as the upper
limit of the radius of lymph nodes to be detected in real CT
volumes.

3.2 Mediastinal Lymph Node Detection

3.2.1 Materials

Forty-seven chest CT volumes were prepared for the experi-
ments on mediastinal lymph node detection. These volumes

Fig. 4 Responses for artificially generated volume. (a) ITRST filter.
(b) RST filter. (c) Hessian filter. Color scheme is same as (a). Blue
represents low response (around 1), yellow represents medium
response (around 125), and red represents high response (around
250).

Table 4 Constant parameter values. (a) ITRST filter. (b) Mediastinal
lymph node detection: initial detection evaluation. (c) Mediastinal
lymph node detection: overall detection performance evaluation.
Note that r target, tblob, andwF are not shown here since they are varied
for evaluating the performance in different conditions.

Symbol Value Definition

(a) ITRST filter

tbright 100 H.U. Upper limit of intensity target range of
ITRST filter

tdark −100 H:U: Lower limit of intensity target range of
ITRST filter

t len 15 mm Maximum search length of ITRST filter

(b) Mediastinal lymph node detection: Initial detection evaluation

tbright 100 H.U. Upper limit of intensity target range of
ITRST filter

tdark −100 H:U: Lower limit of intensity target range of
ITRST filter

t len 15 mm Maximum search length of ITRST filter

tair −200 H:U: Threshold for dividing air and other regions

w reso 0.625 mm Isotropic resolution at which input
volume is interpolated

σsmooth 1 mm Standard deviation of Gaussian
smoothing filter

whole 3 voxels Size of median filter applied for output
of ITRST filter

(c) Mediastinal lymph node detection: Overall detection
performance evaluation

w train 0.5 Tolerance for using feature vectors
extracted from candidate regions of smaller
lymph nodes than r target for training SVM

D f0; 1;2g mm Width of regions for computing feature
values regarding intensity

Table 3 Number of lymph nodes categorized by short axes.

Size category Number of lymph nodes

[10 mm, ∞) 57

[7.5 mm, 10 mm) 62

[5 mm, 7.5 mm) 145

[3 mm, 5 mm) 284

Total 548
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were authorized by the ethics committee of Nagoya University
Hospital. The specifications of the volumes are shown in Table 2.
We evaluate the performance of lymph nodes for a range of mini-
mum sizes: the short axis is at least rtarget ∈ f10; 7.5; 5 mmg.
Ground-truth data are a set of mediastinal lymph node labels.
Two technical researchers who have sufficient knowledge of
lymph nodes first manually traced lymph node candidate regions
on the CT volumes. Then, an expert radiologist confirmed these
traced data including missing lymph nodes on CT slices. Table 3
shows the number of lymph nodes of each size category.

3.2.2 Initial detection performance evaluation

We compute FROC curves of initial detection results by chang-
ing the parameter tblob, for comparing the ITRST, RST, and
Hessian filters. The filter output is binarized at different thresh-
olds (tblob ¼ 20, 40, 80, and 160 for the ITRST filter, tblob ¼ 20,

40, 80, and 160 for the RST filter, and tblob ¼ 2000, 4000, 8000,
and 16,000 for the Hessian filter), as explained in Sec. 2.2.4.

Each point on FROC curves represents the averages of the
detection rate and the number of FPs/volume among all vol-
umes. The corresponding error bars represent the standard
deviation of the detection rate. Our detection targets are medi-
astinal lymph nodes whose short axes are at least rtarget (mm).
Each mediastinal lymph node is classified and counted as TP or
FN. If at least one region produced by the filter overlaps with a
mediastinal lymph node of the detection target, the lymph node
is counted as TP. The detection rate of each volume is defined as

EQ-TARGET;temp:intralink-;sec3.2.2;326;631ðDetection rate of each volumeÞ

¼ ðNumber of TPsÞ
ðNumber of detection targetsÞ :

Fig. 5 Eigenvalue profiles on lines A–B and C–D shown in Fig. 3(b). (a) ITRST filter. (b) RST filter.
(c) Hessian filter.
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The number of FPs in each volume is the count of regions
produced by the filter that do not overlap with any lymph nodes
or lung cancers.

The FROC curves are drawn for each value (5, 7.5, and
10 mm) of the least short axis parameter rtarget. Parameters of
tbright, tdark, and tlen are the same as the experiment of Sec. 3.1.
Other parameters are set empirically [Table 4(b)]. The air region
segmentation threshold tair is set as −200 H:U: This threshold is
set to be sufficiently lower than lymph nodes or surrounding soft
tissues, which have around −100 H:U: or above. Isotropic res-
olution parameter wreso is set as 0.625 mm. This equals the
smallest pixel size of axial slices of the CT volumes
(Table 2). Standard deviation of Gaussian smoothing filter
σsmooth is set as 1 mm. This setting is good for reducing noise
on chest CT volumes without severely blurring edges. The
parameter whole, the size of median filter applied to the output
of the ITRST filter, is set as three voxels. This is the smallest size
of median filter.

3.2.3 Overall detection performance evaluation

We compute the FROC curves as the overall performance. This
performance includes FP reduction by SVM. An FROC curve is
obtained by changing the weighting parameter wF of negative
samples for the SVM classifier22 utilized in the FP reduction
step (explained in Sec. 2.2.5). Leave-one-out cross validation
is conducted to evaluate the performance of FP reduction for
each volume. The SVM classifier is tested with the data not
used in the training process.

We also conduct a statistical test (Fisher’s exact test) of the
detection rate obtained by the ITRST filter and the others. For
fair comparison of detection rate between the filters, we draw the
FROC curve with various values of wF and estimate the detec-
tion rate at the point of 10.0 FPs/volume on the FROC curve.

The threshold for the filter output is chosen as tblob ¼ 20 for
the ITRST and RST filters, and tblob ¼ 2000 for the Hessian fil-
ter, since these settings of tblob gave the highest initial detection
rate with each filter. To compute the FROC curves, the weight-
ing parameter wF is changed as 0.025, 0.05, 0.075, 0.10, 0.125,
0.15, 0.20, 0.25, 0.30, 0.40, and 0.50. Other parameters utilized
for the FP reduction step are set empirically [Table 4(c)]. The
parameter wtrain for tolerance of using feature vectors extracted
from candidate regions of lymph nodes smaller than the target
for training SVM is set as 0.5 for preventing false negatives of
lymph nodes whose short axis is almost the same as rtarget.
Permutation D representing the width of regions for computing
feature values regarding intensity is set as f0; 1; 2gmm for
focusing on the inside and neighboring regions of each candi-
date region. The LIBSVM 3.1728 library is utilized as an SVM
implementation.

4 Results

4.1 ITRST Filter

The responses of the ITRST, RST, and Hessian filters for the
artificially generated volume are shown in Figs. 4(a)–4(c),
respectively. The responses were higher in most of the sphere
regions than those of the RST and Hessian filters, despite the
overlapping of square poles.

The eigenvalue profiles obtained by the ITRST, RST, and
Hessian filters are shown in Figs. 5(a)–5(c), respectively. By
using the ITRST filter, all eigenvalues were negative, and

their magnitudes do not differ much in the entire part of both
spheres. By using the RST filter, λ1 became far smaller or larger
than other eigenvalues in the spheres touching the bright and
dark square poles, respectively. Eigenvalues of the Hessian filter
also became positive in the parts near the square poles.

4.2 Mediastinal Lymph Node Detection

4.2.1 Initial detection evaluation

The FROC curves of initial detection are shown in Fig. 6. As
shown in Table 5, a higher detection rate was achieved by

Fig. 6 FROC curves obtained after initial detection (tblob for 20.0,
40.0, 80.0, and 160.0 for ITRST and RST filters, and tblob for 2000,
4000, 8000, and 16,000 for Hessian filter). (a) r target ¼ 5 mm.
(b) r target ¼ 7.5 mm. (c) r target ¼ 10 mm.
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the proposed algorithm (ITRST filter) than by the RST filter. For
instance, when rtarget ¼ 10 mm and tblob ¼ 20, 97.1% of lymph
nodes were detected with 692.1 FPs/volume by the proposed
algorithm (ITRST filter). Using the RST (tblob ¼ 20) or
Hessian filters (tblob ¼ 2000), 75.4% or 91.1% were detected
with 377.8 or 683.2 FPs/volume, respectively. Examples of
the detection results are shown in Fig. 8.

4.2.2 Overall detection performance evaluation

Table 5 and Fig. 7 show the overall performance calculated from
the output of the mediastinal lymph node detection algorithm,
with parameters tblob ¼ 20 (tblob ¼ 2000 for Hessian filters) and
wF ¼ 0.075. For example, when rtarget ¼ 10 mm, 84.2% of
lymph nodes were detected with 9.1 FPs/volume by the pro-
posed algorithm (ITRST filter). Table 6 displays the results
of Fisher’s exact test at 10.0 FPs/volume. Performance of the
proposed algorithm was not always significantly better. It
was shown that detection rates of ITRST and RST filters
were significantly different (p < 0.05) with all settings (5,
7.5, and 10 mm) of the least short axis. On the other hand, detec-
tion rates of the ITRST and Hessian filters were significantly
different when the least short axis was 5 mm.

5 Discussion

5.1 ITRST Filter

It is clear that responses of the ITRST filter were higher in most
of the sphere regions than those of the RST filter, even if the
square poles were overlapping, as shown in Fig. 4. It suppressed
the negative effect of the regions with much higher or lower
intensity than the detection target. The Hessian filter yielded
positive values only on some parts of the spheres.

The magnitude of λ1 computed from the ITRST filter was
similar to λ2 and λ3, and it was negative on almost all of A–
B or C–D, as shown in Fig. 5(a). Huge intensity gradients
were not summed into the ITRST, and the eigenvalues followed
the condition of the bright blob-like structure. In contrast, as
shown in Fig. 5(b), the magnitude of λ1 computed from the
RST filter was far larger than λ2 and λ3 in the sphere. This is
because huge intensity gradients directed from the sphere to
the square pole were accumulated into the RST. Figure 5(c)
shows the magnitude of λ1 computed from the Hessian filter,
which becomes large in the part near the square poles in the
Hessian filter. The eigenvalues did not follow the condition
of the bright blob-like structure (λ1 ≃ λ2 ≃ λ3 ≪ 0) in the
part with large magnitude of λ1, and the responses became
low according to Eq. (3).

By comparing the FROC curves of initial detection shown
in Fig. 6, it is clear that the ITRST filter had a higher detection
rate for both large and small lymph nodes than the RST filter.
Results after FP reduction of the proposed algorithm (ITRST
filter) were also better than those of the RST filter. The
ITRST filter is more useful than the RST filter for mediastinal
lymph node detection.

5.2 Mediastinal Lymph Node Detection

5.2.1 Efficacy of ITRST filter

The lymph node shown in Fig. 8(a) was properly detected
by the proposed algorithm (ITRST filter) and the Hessian
filter, while the RST filter was not able to detect it. This
was likely due to the presence of contrast-enhanced blood
vessels and the air region adjacent to the lymph node. In
contrast to the RST filter, the ITRST filter reduced the impact
of the large intensity gradients around the lymph node so

Table 5 Comparison of lymph node detection performances. Note that symbol * represents performance shown in publication. Their experiments
were performed using different datasets or criteria from ours.

Algorithm Least short axis (mm)

Initial detection After FP reduction

Detection rate (%) FPs/volume Detection rate (%) FPs/volume

Proposed algorithm 5 94.0� 13.4 679.6� 83.6 68.4� 25.7 10.0� 5.2

RST filter 5 56.0� 26.7 373.5� 80.7 44.0� 24.6 6.6� 4.2

Hessian filter 5 75.8� 21.4 675.8� 117.0 54.9� 25.6 11.9� 5.3

Proposed algorithm 7.5 97.4� 9.9 686.8� 84.3 72.8� 29.6 10.1� 5.3

RST filter 7.5 68.7� 32.0 373.7� 80.4 55.8� 33.4 6.6� 4.3

Hessian filter 7.5 85.5� 21.1 675.6� 118.1 68.6� 33.5 11.7� 5.3

Proposed algorithm 10 97.1� 17.1 692.1� 82.6 84.2� 31.0 9.1� 5.1

RST filter 10 75.4� 37.6 377.8� 77.2 63.9� 41.4 6.3� 4.2

Hessian filter 10 91.1� 22.2 683.2� 121.7 78.2� 35.3 11.1� 5.1

*Roth et al.23 10 — — 84 6

*Liu et al.29 10 — — 80 8

*Feulner et al.11 10 — — 60.9 6.1
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that the eigenvalues still followed the condition of the bright
blob-like structure. This lymph node was not surrounded
entirely by extremely high or low intensity regions, so some
intensity gradients derived from soft tissue could still be uti-
lized to descibe the bright blob-like structure.

The lymph node shown in Fig. 8(b) was detected initially
by all algorithms. The candidate region obtained by the RST
filter was poorly segmented because of the negative effect
of the contrast-enhanced blood vessels and the air, and it
was removed by SVM. However, the candidate region

obtained by the ITRST filter covered most of the lymph
node region, and it was classified as a lymph node. The
ITRST filter prevented the negative effect of surrounding
regions and contributed to accurate classification. Although
the candidate region obtained by the Hessian filter was a little
smaller than that of the ITRST filter, it was also properly
classified.

5.2.2 False negatives still produced

Some lymph nodes were still missed by the ITRST filter, as
shown in the FROC curves in Fig. 6. This is because they
tend to be sandwiched by extremely high or low intensity
regions. For instance, the lymph node shown in Fig. 8(c)
could not be detected by the ITRST or the RST filters. It
was sandwiched by the contrast-enhanced blood vessels and
the air region, and a very small amount of soft tissue was touch-
ing the lymph node. Most gradient vectors around it were not
summed into the ITRST, so the magnitude of eigenvectors did
not follow the condition of the bright blob-like structure. In
contrast to the ITRST or RST filters, the Hessian filter did
not strongly suffer from intensity differences between lymph
nodes and neighboring regions. The small candidate region
detected by the Hessian filter was finally classified into
lymph node class after the FP reduction process. It remains
as future work to improve the ITRST filter such that it can seg-
ment lymph nodes surrounded by extremely high or low inten-
sity regions.

The lymph node shown in Fig. 8(d) was initially detected by
the ITRST filter, but it was removed by the SVM classifier. To
prevent generating such false negatives, we will improve the
classification accuracy by introducing deep learning tech-
niques in future work. Note that the candidate region of the
ITRST filter was properly classified as a lymph node with
wF ¼ 0.025.

5.2.3 Promise for application to segmentation

As shown in Fig. 8(e), some lymph nodes are detected by all
filters (ITRST, RST, and Hessian). However, the ITRST filter
produced more proper segmentation results of lymph nodes
than other filters. In the future, the ITRST filter can be improved
for application to segmentation of lymph nodes, not only for
detection. This will assist radiologists in measuring the size
and shape of each lymph node.

Fig. 7 FROC curves obtained after FP reduction (wF for 0.025, 0.05,
0.075, 0.10, 0.125, 0.15, 0.20, 0.25, 0.30, 0.40, and 0.50) with tblob ¼
20 for ITRST and RST filters, and tblob ¼ 2000 for Hessian filter.
(a) r target ¼ 5 mm. (b) r target ¼ 7.5 mm. (c) r target ¼ 10 mm.

Table 6 Fisher’s exact test among detection rate at 10.0 FPs/
volume.

Least short
axis (mm)

Detection rate (%) p-value

ITRST RST Hessian
ITRST-
RST

ITRST-
Hessian

5 68.3 46.4 53.0 0.003 0.043

7.5 72.5 57.5 65.6 0.037 0.357

10 85.1 66.4 76.8 0.003 0.207
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5.3 Lung Area Segmentation

We have extracted mediastinum regions from CT volumes by
extracting lung regions. There is some possibility to fail in
lung region segmentation in a pathological lung with cancer,
as shown in Fig. 9. However, that does not affect the subsequent
processes since lung segmentation is only for obtaining the
mediastinum region sandwiched between the lungs. The lung
cancer region is merged into the target region.

6 Conclusions
In this paper, we proposed a mediastinal lymph node algorithm
based on the ITRST filter. The conventional RST filter cannot
detect some lymph nodes because of neighboring regions of
lymph nodes, which have extremely high or low intensities.
We proposed the ITRST filter by modifying the RST filter to
prevent such negative effects by introducing knowledge about
the intensity range of the detection target. It allows us to exclude

neighboring regions for computing the filter response and
increase the detection rate of lymph nodes.

We evaluated the efficacy of the ITRST filter by applying it
to both an artificially generated volume and chest CT volumes.
In an experiment on synthetic data, the ITRST filter produced
high responses in the spheres neighboring bright or dark square
poles, while responses of the RST filter were very low or zero.
These results showed that the ITRST filter can prevent the neg-
ative effect caused by such neighboring regions, in contrast to
the RST filter.

Furthermore, experimentation with real clinical images for
mediastinal lymph node detection showed that the ITRST filter
outperformed the RST filter. This is because most of the medi-
astinal lymph nodes adjacent to air or contrast-enhanced blood
vessels in the chest CT volumes can be detected using the
ITRST filter. The detection performance after FP reduction is
also better than the RST filter. The proposed ITRST filter
could potentially be used for detection of other organs or tissues
of interest in medical imaging.

Fig. 8 Examples of detection results (a)–(e) with parameters tblob ¼ 20 and r target ¼ 10 mm. Yellow
denotes ground truth. Cyan denotes TP detection. Red denotes FP detection. Green represents detec-
tion of small or hilar lymph nodes. First two rows represent candidate regions and after FP reduction using
ITRST filter. Third and fourth rows represent results of RST filter. Fifth and sixth rows are of Hessian filter.
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