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Sequential analysis of transcript expression
patterns improves survival prediction in
multiple cancers
Jordan Mandel1*, Raghunandan Avula1 and Edward V. Prochownik1,2,3,4*

Abstract

Background: Long-term survival in numerous cancers often correlates with specific whole transcriptome profiles or
the expression patterns of smaller numbers of transcripts. In some instances, these are better predictors of survival
than are standard classification methods such as clinical stage or hormone receptor status in breast cancer. Here,
we have used the method of “t-distributed stochastic neighbor embedding” (t-SNE) to show that, collectively, the
expression patterns of small numbers of functionally-related transcripts from fifteen cancer pathways correlate with
long-term survival in the vast majority of tumor types from The Cancer Genome Atlas (TCGA). We then ask whether
the sequential application of t-SNE using the transcripts from a second pathway improves predictive capability or
whether t-SNE can be used to refine the initial predictive power of whole transcriptome profiling.

Methods: RNAseq data from 10,227 tumors in TCGA were previously analyzed using t-SNE-based clustering of 362
transcripts comprising 15 distinct cancer-related pathways. After showing that certain clusters were associated with
differential survival, each relevant cluster was re-analyzed by t-SNE with a second pathway’s transcripts. Alternatively,
groups with differential survival identified by whole transcriptome profiling were subject to a second, t-SNE-based
analysis.

Results: Sequential analyses employing either t-SNE➔t-SNE or whole transcriptome profiling➔t-SNE analyses were
in many cases superior to either individual method at predicting long-term survival. We developed a dynamic and
intuitive R Shiny web application to explore the t-SNE based transcriptome clustering and survival analysis across all
TCGA cancers and all 15 cancer-related pathways in this analysis. This application provides a simple interface to
select specific t-SNE clusters and analyze survival predictability using both individual or sequential approaches. The
user can recreate the relationships described in this analysis and further explore many different cancer, pathway,
and cluster combinations. Non-R users can access the application on the web at https://chpupsom19.shinyapps.io/
Survival_Analysis_tsne_umap_TCGA. The application, R scripts performing survival analysis, and t-SNE clustering
results of TCGA expression data can be accessed on GitHub enabling users to download and run the application
locally with ease (https://github.com/RavulaPitt/Sequential-t-SNE/).

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: JAM526@pitt.edu; procev@chp.edu
1The Division of Hematology/Oncology, Children’s Hospital of Pittsburgh of
UPMC, Rangos Research Center, Room, 5124, 4401 Penn Ave, Pittsburgh, PA
15224, USA
Full list of author information is available at the end of the article

Mandel et al. BMC Cancer          (2020) 20:297 
https://doi.org/10.1186/s12885-020-06756-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-020-06756-x&domain=pdf
https://chpupsom19.shinyapps.io/Survival_Analysis_tsne_umap_TCGA
https://chpupsom19.shinyapps.io/Survival_Analysis_tsne_umap_TCGA
https://github.com/RavulaPitt/Sequential-t-SNE/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:JAM526@pitt.edu
mailto:procev@chp.edu
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Conclusions: The long-term survival of patients correlated with expression patterns of 362 transcripts from 15
cancer-related pathways. In numerous cases, however, survival could be further improved when the cohorts were
re-analyzed using iterative t-SNE clustering or when t-SNE clustering was applied to cohorts initially segregated by
whole transcriptome-based hierarchical clustering.
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Background
Tumor-associated DNA copy number variations, gene fu-
sions and gene expression differences have long been used
to diagnose certain types of cancers, to forecast survival
and to determine the necessity for or response to adjuvant
chemotherapy, with some of these tests now being rou-
tinely employed as standard of care [1–6]. For example,
the analysis of tumors from women with Stage I or II
breast cancer using a 70 gene expression signature has
permitted a highly accurate determination of whether
these individuals are likely to benefit from post-surgical
adjuvant chemotherapy [6–8]. A shortcoming of such
tests however is their applicability to only certain cancer
types or even certain stages [4, 6]. Tests that rely on the
expression of a common set of genes with predictive value
across multiple cancer types have yet to be developed or
implemented even though they could potentially reduce
test complexity and cost.
In murine models of hepatoblastoma and hepatocellular

carcinoma (HCC), we have previously observed that most
transcripts encoding the 80 proteins comprising the 40S
and 60S ribosomal subunits were significantly increased
relative to those in normal livers [9, 10]. Because these in-
creases were not uniform, the overall transcript expression
patterns were altered as well. To determine whether this
latter feature might be of prognostic value in human can-
cers, we used t-SNE [11] to profile the ribosomal protein
transcript (RPT) expression patterns of 377 human HCC
patients and 55 matched liver tissues whose transcrip-
tomes had been deposited in The Cancer Genome Atlas
(TCGA). This approach identified three distinct RPT “t-
SNE clusters” in HCCs that were associated with signifi-
cantly different long-term survival differences. RPT t-SNE
pattern differences were also associated with survival dif-
ferences in six other cancer types [9]. We subsequently
used this same approach to classify the expression pat-
terns of 25 transcripts encoding cholesterol biosynthesis
enzymes and 37 mitochondrial fatty acid β-oxidation
(FAO) enzyme transcripts into small numbers of t-SNE
clusters [12]. Cholesterol biosynthesis-associated tran-
script clusters correlated with survival in eight cancer
types and those for FAO correlated with survival in seven
cancer types. The patterns of transcripts and the number
of t-SNE clusters for each pathway and for ribosomal pro-
teins were distinct for each cancer type. Collectively, these

three pathways’ 142 component transcripts, predicted sur-
vival in 17 of the 34 different cancer types in TCGA, com-
prising 70.2% of all tumors. In six cancers, two pathways
were predictive of survival.
Following this, we performed a more comprehensive

TCGA-wide study on 220 transcripts from an additional
twelve pathways, each comprised of 6–30 mRNAs [13].
While neither unique to cancer nor comprehensive in
their scope, these pathways were selected because of
their unequivocal roles in tumor cell growth, signaling
and metabolism and included, among others, those com-
prising the cell cycle, Hippo, TGF-β and PI3 kinase sig-
naling and several metabolic pathways [14]. As a group,
t-SNE clusters of these transcripts were predictive of
survival in 30 of 34 cancer types comprising 91.4% of all
tumors. They were not predictive of survival in diffuse
large B-cell lymphoma, lung squamous cell carcinoma
cancer, pheochromocytoma+paraganglioneuroma and
testicular germ cell tumor even when combined with the
previously tested RPT, cholesterol biosynthesis and FAO
pathway transcripts. Excluding the above four cancers,
long-term survival in the remaining 30 were associated
with an average of 3.6 pathways/tumor type (range one-
nine). In some cases, t-SNE analysis could be used to
further refine survival prediction among patients who
had been previously well-stratified by such classical cri-
teria as hormone receptor status in the case of breast
cancer or by clinical staging in bladder cancer and head
and neck cancer.
The above findings raised the question of whether the

sequential analysis of tumors with transcripts from two
different pathways might afford a more accurate and/or
sensitive means of evaluating survival than is attainable
with only a single such analysis. A related question is
whether t-SNE analysis could also be applied to patient
cohorts with distinct survival differences initially identi-
fied based on whole transcriptome profiling [13].
In the current work, we have utilized the above ap-

proaches, which we term “sequential t-SNE profiling”
and “sequential hierarchical clustering/t-SNE profiling”
to further improve long-term survival prediction of indi-
vidual patient cohorts. Those tumors initially segregating
into favorable or unfavorable long-term survival groups
based on an initial assessment by t-SNE or whole tran-
scriptome profiling are shown to be further divisible into
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groups that differ significantly in their long-term survival
when a second round of analysis is performed using t-
SNE profiling. These sequential approaches afford fur-
ther refinements in long-term survival stratification.

Methods
Tumor selection
RNAseq data were obtained from the 10,227 newly diag-
nosed and previously untreated cancers of all stages,
comprising 34 distinct types, currently maintained in
TCGA along with pertinent clinical and demographic
data. FPKM-UQ were obtained from the TCGA GDC
PANCAN dataset and through the University of Califor-
nia Santa Cruz UCSC Xenabrowser as previously de-
scribed [9, 12, 13]. Expression values were initially
stored as the log2 of the incremented-by-one FPKM-UQ
value. The inverse of this transformation was applied to
the values to obtain the true FPKM-UQ values.

Transcript analyses
Transcript selection, normalization and t-SNE dimension-
ality reduction were conducted as described previously
[13]. Briefly, clinical data and transcript abundances nor-
malized to FPKM-UQ were downloaded from the GDC
PANCAN dataset and accessed via the UCSC Xenabrow-
ser (https://sxena.ucsc.edu). For each pathway, transcript
abundances were normalized to 1 across each sample, and
projected onto a unit hypersphere. t-SNE dimensionality
reduction was performed using Tensorboard v. 1.0 [15]
and clustering was performed using Gaussian mixture
models in MATLAB. Hierarchically clustered heatmaps
were obtained from tcga.ngchm.net. Survival analyses
were performed using the MatSurv (Anders) package for
MATLAB (The Mathworks Corp. Nattick MA). Tests for
non-random associations of membership between clusters
were Fisher’s Exact Tests conducted in Graphad Prism 7
(GraphPad Software, San Diego CA). Interactive applica-
tion was developed using R, a language and environment
for statistical computing and the package “shiny” (R Foun-
dation for Statistical Computing, Vienna, Austria).

Application implementation
The application was developed using R Shiny and employs
a combination of pre-generated data and dynamically
created survival plots. t-SNE profiling was preformed pre-
viously as described previously for each cancer + pathway
combination [9, 12, 13]. The R package plotly was used to
generate 3D plots of t-SNE clustering, survminer and sur-
vival were used to generate survival curves using this t-
SNE profiling, and complexHeatmap was used to pre-
generate heatmap objects with annotations using TCGA
expression data. Pre-generating these heatmap objects en-
ables quick loading of large expression data and improved
usability. Shiny reactive elements and conditional input

panels were used to create an intuitive application that re-
veals input buttons as users make subsequent selections
and provides instructions as the user navigates through
the application (R Foundation for Statistical Computing,
Vienna, Austria).

Application design
The user is first asked to select the cancer transcriptome
data from TCGA requiring analysis. They then choose a
pathway for analysis, can explore the t-SNE clustering of
the previously chosen cancer in the interactive 3D plots
in Tab. 1 and can view the survival differences among
these clusters in Tab. 2. The user may then select a sec-
ond pathway, which displays the clustering and survival
differences among the previously analyzed t-SNE clus-
ters in Tabs 1 and 2 respectively. Using the individual
pathway survival curves in Tab. 2, the user can then se-
lect which cluster or clusters they wish to analyze using
the “sequential t-SNE profiling approach”. Tab. 3 dis-
plays the survival curves generated dynamically using
this approach from the selected clusters and shows a p-
value of the significance survival differences. Tab. 5
shows a whole transcriptome profiling heatmap for the
selected cancer that is annotated with clusters from t-
SNE profiling using the first selected pathway and den-
drogram groups from hierarchical clustering on TCGA
expression data obtained from tcga.ngchm.net. The heat-
map for this cancer can also be viewed directly on the
NC-GHM viewer using the button at the bottom of Tab.
5. From this heatmap, one can select a dendrogram
group or groups upon which to perform “sequential
hierarchical clustering t-SNE profiling” and view the
resulting survival curve in Tab. 4. This application reacts
dynamically to changes in cluster selection such that
choosing a new cancer or pathway resets the application
to an earlier step in the sequence of steps described
above. This interface provides a simple, user-directed ex-
ploration of the numerous combinations of pathways,
clusters, and approaches of sequential analysis.

Results
Sequential t-SNE profiling
Supplemental Fig. 1 summarizes our previous work [13]
regarding the extent to which t-SNE-aided clustering of
transcripts from 15 pathways with established roles in
cancer [14, 16–18] can be used to predict long-term sur-
vival differences across all 34 cancer types representing
10,227 individual tumors from TCGA [9, 12, 13]. As an
example, the analysis of 514 kidney clear cell carcinomas
(KIRC) with the 23 transcripts comprising the Pyrimi-
dine Biosynthesis Pathway generated two distinct t-SNE
clusters containing nearly identical tumor numbers and
associated with highly significant median survival differ-
ences (2090 days vs. > 4500 days, P = 5.6 × 10− 7, Fig. 1a
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and b and ref. [13]. A similar analysis performed on the
same tumors with the 30 transcripts comprising the
Notch Pathway also generated two distinct t-SNE clus-
ters associated with significant survival differences (1912
days vs. 3554 days, P = 7.0 × 10− 4, Fig. 1c and d).
The fact that the above groups remained heteroge-

neous following t-SNE-based evaluation suggested that
sequential analysis with transcripts from second pathway
might further delineate the groups. We therefore re-
analyzed tumors from the two Notch Pathway t-SNE
clusters shown in Fig. 1c and d with transcripts from the
Pyrimidine Biosynthesis Pathway. These results (Fig. 1e

and f) showed that each Notch Pathway t-SNE cluster
could be further divided into distinct Pyrimidine Biosyn-
thesis Pathway t-SNE clusters. Specifically, the original
favorable survival Notch Pathway Cluster 1 (median =
3554 days, Fig. 1d) was now shown to be comprised of
an even more favorable group with median survival >
4500 days and a significantly more unfavorable group
(median survival = 2386 days, P = 5.9 × 10− 5, Fig. 1e).
This latter group was comparable in its survival to each
of the short-term survival groups initially delineated with
a single t-SNE analysis (P > 0.05 in each case). Similarly,
analysis of the original unfavorable survival Notch

Fig. 1 Sequential t-SNE analysis of KIRC and LGG. a. t-SNE-generated patterns of KIRC tumor Pyrimidine Biosynthesis Pathway transcripts showing
two distinct clusters. n = number of tumors in each group b. Kaplan-Meier survival curves of the patient groups corresponding to the tumor
clusters in A. M =median survival (in days) of each of the groups. c. t-SNE patterns of Notch Pathway transcripts. d. Kaplan-Meier survival curves
of the patient groups corresponding to the tumor clusters in C. e. Kaplan-Meier survival of the favorable survival Notch Pathway cluster from D
after t-SNE analysis using transcripts from the Pyrimidine Biosynthesis Pathway. Two t-SNE clusters similar to those depicted in A were observed
(not shown). f. Kaplan-Meier survival of the unfavorable survival Notch Pathway cluster from D. g. t-SNE-generated patterns of LGG Notch
Pathway transcripts showing two distinct clusters. h. Kaplan-Meier survival curves of each of the patient groups corresponding to the tumor
clusters in (G). i. t-SNE-generated patterns of LGG Wnt Pathway transcripts showing four distinct clusters. j. Kaplan-Meier survival curves of each of
the patient groups corresponding to the tumor clusters in (I). k. Sequential t-SNE Clustering. The favorable survival t-SNE Wnt Cluster 1 tumors
from Fig. 1i were re-analyzed using Notch Pathway transcripts, which generated the expected two t-SNE clusters (not show) with significant
survival differences. (l). The unfavorable survival Cluster 2 tumors from Fig. 1i were similarly re-analyzed using Notch Pathway transcripts and were
shown to be comprised of two sub-clusters with significant differences in long-term survival
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Pathway Cluster 2 (median = 1912 days, Fig. 1d) also
identified two clusters with significant survival
differences (median = 3615 days vs. 1661 days, P = 0.023,
Fig. 1f).
We next analyzed 511 low-grade gliomas using a simi-

lar sequential approach. Initial t-SNE profiling with tran-
scripts from the Notch pathway identified two distinct
Clusters with significant median long-term survival dif-
ferences (3978 days vs. 1891 days, Fig. 1g and h, P =
3.0 × 10− 4). Analysis of the same tumors using the 25
transcripts from the Wnt Pathway produced four dis-
tinct t-SNE clusters (Fig. 1i). Of these, Cluster 1 individ-
uals survived longer relative to Clusters 2 and 3 (median
survival = 3200 days vs. 1915 days and 2433 days, respect-
ively, P = 2.0 × 10− 4 in each case.
Clusters 1 and 2 each contained a sufficiently large

tumor population to allow a meaningful second analysis
to be performed with transcripts from the Notch Path-
way. In the case of Wnt Cluster 1, this produced the ex-
pected two t-SNE Clusters similar to those seen in
Fig. 1g (not shown) with significant differences in their
median long-term survival (4695 days vs. 1933 days, P =
4.1 × 10− 5, Fig. 1k). A similar sequential analysis of the
unfavorable Wnt Pathway Cluster 2 survival from Fig. 1i
also produced two Notch Pathway t-SNE clusters with
significantly different long-term survival of 4084 days
and 1547 days (Fig. 1l, P = 0.01). A comparison of each
of the favorable and unfavorable populations from Fig.
1k and l indicated significant differences in median sur-
vival (4695 days vs. 4084 days, P = 0.0034 and 1933 days
vs. 1547 days, P = 0.008) as well as significant differences
in survival when compared to most and least favorable
survival obtained using only single t-SNE analyses (ex.
4695 days vs. 3978 days [Fig. 1h], P = 0.01 and 1547 days
vs. 1891 days [Fig. 1h, P = 0.04]). Thus, unlike KIRCs,
where a second t-SNE analysis was able to further sub-
divide groups into additional favorable or unfavorable
long-term survival cohorts, neither of which survived
significantly longer or shorter than those analyzed by
only a single t-SNE analysis, the sequential t-SNE profil-
ing of LGGs did identify patient subsets with particularly
favorable or unfavorable survival that was well in excess
of that predicted from the individual t-SNE analysis.
To generalize these findings, we performed similar se-

quential t-SNE profiling on sarcomas (SARC) and kidney
renal papillary cell carcinoma (KIRP) (Fig. 2). In the first
case, 259 sarcomas were analyzed by t-SNE for differen-
tial expression patterns of transcripts comprising the
Myc and TGF-β Pathways. Profiling of the Myc Pathway
identified two t-SNE clusters with highly significant dif-
ferences in median survival (1536 days [Cluster 1] vs.
2599 days [Cluster 2], P = 0.0038, Fig. 2a and b). Profiling
of the TGF-β Pathway also identified two clusters with
median survival of 1649 days (Cluster 1) and > 4500 days

(Cluster 2), P = 0.047, Fig. 2c and d). Sequential t-SNE
profiling of the TGF-β Pathway’s inferior survival cluster
with Myc Pathway transcripts allowed it to be subdi-
vided into two groups with median survival of 1262 days
and 2464 days, P = 0.005, Fig. 2e). Similarly, the TGF-β
Pathway t-SNE Cluster 2, comprising 83 individuals with
superior median survival (> 4250 days, Fig. 2d), could
also be divided into two groups. However, most likely
because this group lacked a sufficiently large number of
tumors, the two survival curves were not determined to
be significantly different despite a clear trend in that dir-
ection (median survival 2324 days vs > 4500 days).
Analogously, t-SNE profiling of the 288 KIRPs using

the 15 transcripts comprising the Cell Cycle Pathway
[13] also generated two major clusters comprised of
nearly identical numbers of tumors. A third t-SNE clus-
ter comprised of only seven tumors was not analyzed
further (Fig. 2g). Highly significant survival differences
were observed between the first two groups (median sur-
vival> 3900 days [Cluster 1] vs. 2624 days [Cluster 2],
P = 3.39 × 10− 5). t-SNE profiling of this same tumor
population using the 11 transcripts comprising the Pen-
tose Phosphate Pathway [13] also generated two distinct
clusters (Fig. 2i) with borderline long-term survival dif-
ferences (each > 3900 days, P = 0.048, Fig. 2j).
As before, significant improvements in survival predic-

tion were achieved when the above tumor samples were
subjected to sequential t-SNE analysis. Thus, when the
inferior survival Pentose Phosphate Pathway Cluster 1
(Fig. 2i and j) was analyzed for the expression patterns
of Cell Cycle Pathway transcripts, two t-SNE clusters
with significantly different long-term median survival
differences were obtained (1498 days vs. > 3000 days, P =
2.2 × 10− 5, Fig. 2k). The less favorable group’s 1498 day
median survival time was significantly shorter than that
of either of the less favorable groups from Cell Cycle
Pathway and Pentose Phosphate Pathway t-SNE clusters
[1498 days vs. 2624 days, P = 0.05 (Fig. 2h) and > 5900
days, P = 0.01 (Fig. 2j)]. Sequential t-SNE profiling on
the favorable survival Pentose Phosphate Pathway Clus-
ter 2 (Fig. 2i and j) with Cell Cycle Pathway transcripts
did not demonstrate significant differences in the me-
dian survival times between the two resulting groups
due most likely to sample number limitations and/or
survival time constraints. Nevertheless, a clear trend was
observed with 87% of the “favorable group” individuals
(n = 88) remaining alive at ~ 3000 days versus only 55%
of the “unfavorable group” individuals (n = 70) (Fig. 2l).
Finally, we undertook a third analysis of ovarian (OV)

and uterine corpus endometrial cancers (UCEC) whose
t-SNE profiles were somewhat more complex and
showed less pronounced inter-Cluster survival differ-
ences when interrogated with the transcripts of single
pathways. For example, ovarian cancers generated four
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t-SNE clusters with Pyrimidine Biosynthesis Pathway
transcripts (Fig. 3a). Of these, only Clusters 1 and 4
showed even borderline significant differences in their
median long-term survival (1492 days vs. 1336 days, P =
0.05, Fig. 3b). Analysis of the same tumors using Cell
Cycle Pathway transcripts also generated four distinct t-
SNE clusters (Fig. 3c), with only Clusters 2 and 4 dem-
onstrating modestly significant differences in median
survival (1484 days vs. 1187 days, P = 0.034).
We sequentially profiled Cell Cycle Pathway Cluster 3

(median survival 1341 days, Fig. 3c) with Pyrimidine Bio-
synthesis Pathway transcripts. Due to the small size of

the original Cell Cycle Pathway Cluster 3 (37 tumors)
and the fact that its secondary analysis yielded four Pyr-
imidine Biosynthesis Pathway clusters, it was difficult to
achieve a high degree of statistical significance among
the four groups. Nevertheless, Clusters 2 and 4 showed
significant differences in median survival (1946 days vs.
1341 days, respectively, P = 0.02, Fig. 3e). The much lar-
ger, 161 member Cell Cycle Cluster 2 (median survival
1484 days, Fig. 3d) could also be further sub-divided into
four Pyrimidine Biosynthesis Pathway Clusters with sig-
nificant median survival differences between some
groups (Fig. 3f). For example, Cluster 1 (median survival

Fig. 2 Sequential t-SNE analysis of SARC and KIRP. a. t-SNE-generated patterns of SARC Myc Pathway transcripts showing two distinct clusters. b.
Kaplan-Meier survival curves of each of the tSNE clusters depicted in A. c. t-SNE analysis of SARC TGF-β Pathway transcripts. d. Kaplan-Meier
survival curves of patients from each of the clusters shown in C. e. Kaplan-Meier curves of patients from the unfavorable survival TGF-β Pathway
cluster from C after t-SNE analysis with Myc Pathway transcripts. Two t-SNE clusters similar to those depicted in A were generated (not shown). F.
Kaplan-Meier survival of patients from the favorable survival TGF-β Pathway cluster shown in C after t-SNE analysis with Myc Pathway transcripts.
Two t-SNE groups similar to those shown in A were generated (not shown). g. t-SNE analysis of KIRP Cell Cycle Pathway transcripts showing two
major tumor clusters and a third comprised of only seven tumors. h. Kaplan-Meier survival curves of patients from Clusters 1 and 2 depicted in G.
i. t-SNE-generated patterns of KIRP Pentose Phosphate Pathway transcripts showing two major clusters. j Kaplan-Meier survival curves of each of
patients from the tumor clusters depicted in I. k. Kaplan-Meier curves of individuals from the unfavorable survival Pentose Phosphate Pathway
cluster from I after t-SNE analysis using transcripts from the Cell Cycle Pathway. Two t-SNE clusters similar to those depicted in A were generated
(not shown). l. Kaplan-Meier curves of individuals from the favorable survival Pentose Phosphate Pathway cluster from K after t-SNE analysis using
transcripts from the Myc Pathway. Two t-SNE clusters similar to those depicted in A were generated (not shown)
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1736 days) showed significantly longer survival relative
to both Cluster 3 (1336 days, P = 0.017) and Cluster 4
(1213 days, P = 0.004).
t-SNE profiling of Myc Pathway transcripts applied to

547 UCECs generated three distinct clusters (Fig. 3G)
with Cluster 3 demonstrating a clear inferior median
survival (3112 days) relative to the other two Clusters
[each > 4000 days, P = 9.0 × 10− 4 (Cluster 1) and 1.0 ×
10− 4 (Cluster 2), respectively]. Profiling with Wnt Path-
way transcripts generated four clusters (Fig. 3i), with
Cluster 1 having inferior median survival (3423 days)
relative to Clusters 2 and 3 (> 3000 and > 3900 days, P =

0.043 and P = 0.008, respectively, Fig. 3j) and Cluster 3
showing a longer survival relative to Cluster 4 (P = 0.04).
Despite the favorable 82% long-term survival of Wnt

Pathway Cluster 2 individuals (Fig. 3j), they could be fur-
ther stratified into the expected three clusters following
sequential analysis with Myc Pathway transcripts (not
shown). Although the median survival of these clusters
could not be determined, Cluster 3, which contained ap-
proximately one-firth of the individuals, showed signifi-
cantly inferior survival relative to the other two Clusters
(P = 0.007, Fig. 3k). Similarly, the subdivision of poor
survival Wnt t-SNE Cluster 1 (Fig. 3j) using Myc

Fig. 3 Sequential t-SNE analysis of OV and UCEC. a. t-SNE-generated patterns of Pyrimidine Biosynthesis Pathway transcripts showing four OV
tumor clusters. b. Kaplan-Meier survival curves of patients from each of the Clusters depicted in A. c. t-SNE-generated patterns of OV Cell Cycle
Pathway transcripts. d. Kaplan-Meier survival curves of patients from each of the Clusters shown in C. e. Kaplan-Meier survival curves of patients
from unfavorable survival Cell Cycle Pathway Cluster 3 from C after t-SNE re-analysis using transcripts from the Pyrimidine Biosynthesis Pathway.
Four t-SNE clusters similar to those depicted in A were generated (not shown) with two of these (Clusters 2 and 4) showing significant survival
differences. f. Favorable survival Cell Cycle Pathway t-SNE Cluster 2 from (D) was analyzed with Pyrimidine Biosynthesis Pathway transcripts. Of
these, Cluster 1 (median survival 1736 days) had a more favorable long-term survival than either Cluster 3 (1336 days) or Cluster 4 (1213 days) (P =
0.017 and P = 0.004, respectively. g. t-SNE-generated patterns of UCEC Myc Pathway transcripts. h. Kaplan-Meier survival of patients from the
groups depicted in G. (I). t-SNE-generated patterns of UCEC Wnt Pathway transcripts. j. Kaplan-Meier survival curves of patients from each of the
groups depicted in I. k. Kaplan-Meier survival curves of individuals from favorable survival Wnt Pathway t-SNE Cluster 2 following subsequent t-
SNE profiling with Myc Pathway transcripts. l. Kaplan-Meier survival curves of patients from the unfavorable survival Wnt Pathway Cluster 1 cohort
in K following repeat t-SNE profiling with Myc Pathway transcripts
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Pathway transcripts identified one subgroup (Cluster 3,
Fig. 3l) with particularly poor median survival (3112
days) relative to the other two Clusters (P = 0.034 and
P = 0.037, respectively,).
Thus, in summary, the serial use of t-SNE to sub-

classify expression patterns of transcripts from select
cancer-related pathways made it possible to analyze mul-
tiple tumor types so as to achieve a higher degree of sur-
vival stratification than could be achieved with only a
single t-SNE analysis. Thus, even after initial single Path-
way analyses, tumor cohorts remained heterogeneous
with regard to their cumulative long-term survival.

Sequential hierarchical clustering/t-SNE profiling
Numerous studies have indicated that otherwise histo-
logically similar tumors may nonetheless display distinct
differences in their transcriptomes that correlate with
survival and/or other behaviors [19–24]. We recently
showed for some cancers that the ability to predict sur-
vival using this approach could be improved when com-
bined with t-SNE profiling [13]. We decided to extend
these findings by including a more comprehensive evalu-
ation of all cancers in TCGA for which whole transcrip-
tome profiling was available.
Hierarchical clustering of the previously described

LGG transcriptomes allowed the tumors to be divided
into four groups [19], termed “Dendros 1–4” or “D1-D4”
(Fig. 4a), with individuals in D2 having a particularly
poor long-term survival relative to the others. (P < 3.1 ×
10− 8) None of the remaining three Dendros showed any
significant differences in survival (Fig. 4b).
Profiling the entire LGG group with 93 transcripts from

four cancer-related pathways (Pyrimidine Biosynthesis,
Hippo, PI3-kinase signaling and Wnt signaling) produced
four t-SNE clusters in each case (not shown but see ref.
[13]. When these Clusters were matched to the individual
tumors in each of the Dendros, several non-random asso-
ciations were seen. For example, t-SNE Cluster 1 of the
Hippo Pathway contributed disproportionately to the
Dendro 3 subset (P = 1.03 × 10− 15), whereas t-SNE Cluster
3 of the Hippo Pathway and t-SNE Cluster 3 of the PI3
kinase family of transcripts contributed disproportionately
to the Dendro 2 group (P = 1.4 × 10− 10 and P = 2.95 × 10−
7, respectively) (Fig. 4a).
We next compared the survival of individuals in each

t-SNE Cluster, either collectively or within the context
of individual Dendro groups. In the first case, we found
all tumors associated with Pyrimidine Biosynthesis Path-
way t-SNE Cluster 1 to be associated with significantly
shorter survival relative to the other t-SNE Clusters (P =
9.14 × 10− 6-6.25 × 10− 9, Fig. 4c). This was consistent
with the disproportionate representation of these Cluster
1 tumors within Dendro 2 (P = 3.16 × 10− 22). Indeed, the
only remaining Cluster 1 tumors were associated with

Dendro 4 and while few in number (n = 7), the individ-
uals in this group had a particularly short survival rela-
tive to those with tumors in the other t-SNE Clusters
comprising this Dendro (P = 0.0012–4.3 × 10− 7, Fig. 4d).
Hippo Pathway Cluster 4 tumors also contributed dis-

proportionately to Dendro 2 (P = 1.44 × 10− 12). Consist-
ent with this, Cluster 4, both overall and in its Dendro 2
context, was associated with the shortest survival relative
to the other t-SNE Clusters (P = 0.023–6.8 × 10− 11, Fig.
2e&f). The only remaining Hippo Pathway Cluster 4 tu-
mors were associated with Dendro 4. While associated
with extremely short survival, they were too few in num-
ber (n = 2) to make a reliable statement concerning the
significance of this. However, individuals with tumors in
Dendro 4 (median survival = 2433 d) could be further
distinguished by a long-term survival t-SNE 1 Cluster
(median survival = 3470 d) and a shorter-term survival t-
SNE 3 Cluster (median survival = 1547 d) (Fig. 4g).
Similar associations could be made in the case of PI3-

kinase Pathway transcripts where, across all tumors t-
SNE Cluster 2 individuals had longer survival than either
Cluster 1 or Cluster 3 individuals (P = 7.0 × 10− 4 and.
7.1 × 10− 6, respectively, Fig. 4h). Additionally, t-SNE

Clusters 1 and 2 clearly could be used to further delin-
eate survival within the Dendro 4 cohort (median sur-
vival =1891 d vs. 3200 d, respectively, P = 0.03, Fig. 4i).
Finally, the four t-SNE Clusters generated from Wnt Sig-

naling Pathway transcripts were associated with significant
differences in survival across all tumors (Fig. 4j). Among
the most significant of these were the inferior survival of
individuals with tumors in Cluster 1 vs. Cluster 2 and Clus-
ter 1 vs. Cluster 3 (P = 2.0 × 10− 4 in each case). Further-
more, the survival difference between Clusters 1 and 3
could be utilized in an analysis of the Dendro 4 cohort to
improve overall survival prediction within this group (me-
dian survival 3200 d vs. 2235 d, P = 0.05, Fig. 4k).
Another example in which the tandem sequential hier-

archical clustering/t-SNE approach was found to be par-
ticularly useful in allowing more refined stratification of
patient survival was seen in the case of 374 hepatocellu-
lar carcinomas (HCCs). For these tumors, hierarchical
clustering generated six Dendros which showed only
relatively modest survival differences (Dendro 1 vs. Den-
dro 4, P = 0.021, Fig. 5a and b). t-SNE profiling with four
pathways (Purine Biosynthesis, Pyrimidine Biosynthesis,
PI3-kinase signaling and TGF-β signaling), performed ei-
ther alone or sequentially on each Dendro was far more
useful in identifying subsets of patients with particularly
favorable or unfavorable long-term survival. For ex-
ample, t-SNE profiling alone of all tumors with Purine
Biosynthesis Pathway transcripts identified three Clus-
ters with significant differences between Clusters 1 and
2 (median survival = 1229 d vs. 2116 d, respectively (P =
0.01 and ref. [13] and Clusters 2 and 3 (median
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survival = 2116 days vs. 1694 days, respectively, P = 0.035)
(Fig. 5c). When t-SNE profiling with Purine Biosynthesis
Pathway transcripts was applied to Dendro 3 however,
much more substantive differences in survival were

observed, with Clusters 1 and 2 showing median sur-
vivals of 643 days and > 3500 days (P = 0.007) and Clus-
ters 2 and 3 demonstrating median survivals of > 3500
days and 837 days (P = 0.01) (Fig. 5d).

Fig. 4 Sequential hierarchical clustering/t-SNE profiling of LGG. a. Hierarchical clustering of 534 LGG transcriptomes from TCGA showing four
distinct groups (“Dendros’). At the bottom of the panel, the rows of colored bars represent the clusters into which each tumor was grouped
following t-SNE analysis with that pathway’s transcripts. b. Kaplan-Meier survival of each Dendro (D1-D4) and the P values for each pair-wise
comparison. c. Kaplan-Meier survival of all 534 LGGs based on the t-SNE Clusters to which they were assigned after profiling with Pyrimidine
Biosynthesis Pathway transcripts. The number of tumors in each Cluster and the median survival are indicated as are the P values for significant
pair-wise comparisons. d. Kaplan-Meier survival of patients from the 149 member Dendro 4 group based on their Pyrimidine Biosynthesis
Pathway t-SNE Cluster identities. e. Kaplan-Meier survival for all LGG patients based on the t-SNE Clusters to which they were assigned after
profiling with Hippo Pathway transcripts f. Kaplan-Meier survival of patients from the 115 Dendro 2 group based on their Hippo Pathway t-SNE
Cluster identities. g. Kaplan-Meier survival of patients from the Dendro 4 group based on their Hippo Pathway t-SNE Cluster identities. h. Kaplan-
Meier survival of all LGG patients based on the t-SNE Clusters to which they were assigned after profiling with PI3-kinase Pathway transcripts. i.
Kaplan-Meier survival of patients from Dendro 4 based on their PI3-kinase Pathway t-SNE Cluster identities. j. Kaplan-Meier survival of all LGG
based on the t-SNE Clusters to which they were assigned after profiling with Wnt Pathway Pathway transcripts. k. Kaplan-Meier survival of
patients from Dendro 4 based on their Wnt Pathway t-SNE Cluster identities
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Fig. 5 Sequential hierarchical clustering/t-SNE profiling of HCC. a. Hierarchical clustering of 374 HCC transcriptomes from TCGA showing six
Dendros. At the bottom of the panel, the colored bars represent the results of t-SNE profiling performed with the four indicated transcript
pathways. Each HCC was assigned a t-SNE Cluster identity within the indicated family as described in the legend to Fig. 4. b. Kaplan-Meier
survival of patients from each Dendro (D1-D6). The only significant difference among the six groups was D1 vs. D4 (P = 0.021). c. Kaplan-Meier
survival of all 374 HCC patients based on the three Clusters generated by t-SNE profiling of tumors with Purine Biosynthesis Pathway transcripts.
The number of tumors in each Cluster and the median survival are indicated as are the P values for significant pair-wise comparisons. d. Kaplan-
Meier survival of the 58 patients from Dendro 3 based on the Purine Biosynthesis Pathway t-SNE Cluster identities of their tumors. e. Kaplan-Meier
survival for all patients based on the two Clusters generated by t-SNE profiling of tumors with Pyrimidine Biosynthesis Pathway transcripts. f.
Kaplan-Meier survival of patients from Dendro 6 based on the two Pyrimidine Biosynthesis Pathway t-SNE Cluster identities of their tumors. g.
Kaplan-Meier survival of all patients based on the three t-SNE Clusters to which their tumors were assigned after profiling with PI-3 Kinase
Pathway transcripts. h. Kaplan-Meier survival of patients from the Dendro 2 group based on the three PI3-Kinase Pathway t-SNE Clusters to which
their tumors were assigned. i. Kaplan-Meier survival of patients from the Dendro 3 group based on the three PI3-Kinase Pathway t-SNE Clusters to
which their tumors were assigned. j. Kaplan-Meier survival for all patients based on the three TGF-β Pathway transcript t-SNE Clusters to which
their tumors were assigned. k. Kaplan-Meier survival of patients from Dendro 4 based on the three TGF-β Pathway t-SNE Clusters to which their
tumors were assigned. Small discrepancies in numbers of patients are due to slight differences in which patients were hierarchically clustered,
and/or to missing or incomplete survival data
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t-SNE profiling of all HCCs with transcripts from the
Pyrimidine Biosynthesis Pathway generated two Clusters
with significant survival differences (2131 days vs. 1397
days, P = 0.04, Fig. 5e). However, the 734 day difference
in these median survivals was significantly extended to
1283 days when the Dendro 6 cohort of patients was di-
vided according to t-SNE cluster, where median sur-
vivals of 2131 days and 848 days were obtained (P =
0.008) (Fig. 5f).
Additional t-SNE profiling of PI3-kinase Pathway signal-

ing transcripts was also found to be useful when used to
evaluate all HCCs. Three clusters were identified with sig-
nificant survival differences between Clusters 1 and 3
(1397 days vs. 2456 days, P = 0.014) and between Clusters
2 and 3 (1490 days vs. 2456 days, P = 0.011) being ob-
served (Fig. 5g). As before, increased survival stratification
was achieved when t-SNE profiling was applied against
Dendro 2 where Clusters 1 and 3 showed median survival
differences of 425 days vs. > 3500 days (P = 0.034) (Fig.
5h). When applied against Dendro 3, Clusters 1 and 3
showed similarly large disparities in median survival (802
days vs. > 3500 days, respectively, P = 0.034) (Fig. 5i).
Lastly, the three t-SNE Clusters of TGF-β Pathway

transcripts were associated with differential survival
among all individuals with HCC (Fig. J and ref. [13]).
Significant differences in median survival were observed
for Clusters 1 vs 2 (1397 days and 2131 days, respect-
ively, P = 0.016) and for Clusters 2 and 3 (2131 days vs.
1423 days, P = 0.025). However, when applied only to the
Dendro 4 group, t-SNE profiling of TGF-β Pathway
transcripts was able to discern highly significant survival
differences between Clusters 1 and 2 (median survival =
1271 days vs. > 3500 days, P = 0.009 (Fig. 5k).

A comprehensive, interactive collection of human cancers
amenable to sequential analysis
Given the ability of sequential profiling to improve sur-
vival stratification, we constructed an interactive website
(https://chpupsom19.shinyapps.io/Survival_Analysis_
tsne_umap_TCGA and https://github.com/RavulaPitt/
Sequential-t-SNE/). that allows the transcriptional pro-
files of > 10,000 specimens from 34 different human
cancers in TCGA to be queried using either of the ap-
proaches described above. In addition to the limited
number of examples shown here (Figs. 1, 2, and 3), this
website allows for the sequential t-SNE analysis of all
tumor groups in TCGA using any of the pathways that
revealed survival differences among t-SNE clusters
(Suppl. Fig. 1 and ref. [13]). An additional section of the
website permits tumors whose whole transcriptome pro-
files correlate with survival differences to be secondarily
analyzed by t-SNE (Figs. 4 and 5). This is particularly
useful for some of the larger TCGA cancer cohorts such
as KIRC, breast cancer and non-small cell lung cancer,

where well over 500 well-curated samples in each group
are available. Factors other than the total sample size,
which that can limit the robustness of these types of
analyses, include the number of Dendros and t-SNE
Clusters.

Discussion
Biological and clinical heterogeneity among otherwise his-
tologically indistinguishable tumors explains the vast
majority of therapeutic failures and provides the major ra-
tionale for individualizing, or “personalizing”, cancer treat-
ment. Thus far, the means of attaining such precision
medicine-based goals has involved a combination of im-
proved clinical staging; high-resolution imaging techniques;
immuno-histochemical-based tumor sub-classification and,
increasingly, molecular and pharmacogenomic evaluation
to stratify individuals according to inherent risk and likeli-
hood of response to chemotherapeutic regimens [5, 25–
38]. The deployment of newer techniques such as liquid bi-
opsies, which quantify circulating tumor DNA, promise to
provide additional benefits by allowing serial assessments of
response to therapy or the detection of impending recur-
rence in cases where the tumor has been previously
resected or otherwise rendered undetectable by standard
methods [39–42]. Recently a robust dynamic model that al-
lows for the integration of a variety of diverse outcome pre-
dictors acquired over time into a single profile and dubbed
“Continuous Individualized Risk Index” (CIRI) has been de-
scribed for patients with breast cancer, chronic lymphocytic
leukemia and diffuse large B cell lymphoma. This makes
possible ongoing evaluation using a combination of pre-
treatment risk factors, interim risk factors obtained shortly
after the initiation of therapy and end of treatment risk fac-
tors [43]. It seems reasonable to presume that this type of
combinatorial evaluation might provide most advantageous
in those patients whose initial pre-treatment molecular
profiles such as those described here are best able to first
classify them into high or low risk groups.
Collectively, the findings of this report confirm and sig-

nificantly expand upon our previous results in a small
number of cancer types, which demonstrated that the sur-
vival heterogeneity that remains after sub-classification of
tumors using either a single round of t-SNE or whole
transcriptome profiling can be further minimized by a sec-
ond t-SNE-based analysis. In some cases, this allows for
significant improvements in survival stratification beyond
those achievable using only a single analysis [13]. Such in-
formation, obtained at the time of diagnosis offers the po-
tential for better patient stratification into various risk
groups thereby allowing for more precise and appropriate
therapeutic choices and decisions regarding the nature of
long-term follow up in much the same way as is now used
for more standard, molecular-based assessments [1, 3–8].
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One limitation of this sequential method is the inabil-
ity to apply t-SNE profiling in four of the tumor types
contained within the TCGA data base [13]. These in-
clude diffuse large B-cell lymphomas, squamous cell
lung cancers, phenochromocytomas/ paraganglioneuro-
mas and testicular germ cell tumors (Supplemental
Fig. 1). However, we have thus far applied t-SNE analysis
to only 15 pathways comprised of 362 transcripts. It
seems likely that, as other pathways are added, they will
prove useful for the evaluation of tumors whose analyses
by this method have remained elusive.
A second and more important limitation of our ap-

proach arises as a result of relatively small numbers of tu-
mors in the TCGA population, making it difficult to
maintain statistically robust survival differences among
groups as they are progressively subdivided during the
course of sequential analysis. An example of this was en-
countered in the case of HCCs where, despite an initial
group of 377 samples, relatively small subsets, each com-
prised of 42–85 tumors, were obtained after hierarchical
clustering into six Dendros (Fig. 5A). Subsequent subdiv-
ision of these individual groups into as many as four t-
SNE clusters (Fig. 5G and H) further reduced the number
of evaluable samples and in some cases, made statistically
valid survival distinctions among groups more uncertain if
not impossible despite clear trends indicating otherwise.
In contrast, instances in which both initial and sequential
evaluation identified only small numbers of cohorts and/
or contained more tumor samples, often provided more
robust survival outcomes. Thus, the initial t-SNE-based
evaluation of 514 KIRCs with transcripts from the Pyrimi-
dine Biosynthesis identified only two clusters for subse-
quent analysis with Notch Pathway transcripts which also
yielded only two t-SNE clusters for a total of four groups
for which survival differences could be computed (Fig. 1a-
f). The ability to obtain such high-quality survival informa-
tion from currently available data sets, such as those from
TCGA, is likely to increase as RNAseq is more routinely
utilized and the content of existing data bases expands.
The fact that many tumors can be evaluated by t-SNE
with transcripts from multiple pathways can also be uti-
lized advantageously by empirically evaluating those cases
in which the number of t-SNE clusters or hierarchically
clustered Dendros is minimized and/or which identify the
most significant differences in long-term survival. In this
regard, it is notable that 19 of the 34 cancer types in
TCGA can be stratified for survival based the t-SNE pro-
files of transcripts from at least three of the 15 pathways
(Supplementary Fig. 1). This, combined with the increas-
ingly large number of samples available for analysis, may
also eventually allow for more than two sequential analysis
to be employed.
It is important to reiterate why the relative expression

levels (i.e. the patterns) of small groups of functionally

related transcripts likely serve as powerful predictors of
long-term survival in much the same manner, and in
some cases better, as whole transcriptome profiling [19–
21, 44, 45]. The steady-state gene expression levels of
these various groups represent the integration of the dif-
ferential activities, sequence-specific and epigenetically
determined binding affinities of various transcription
factors that regulate these genes; the composition and
activities of multi-component proximal promoter- and
enhancer-binding general transcription complexes such
as RNA polymerase II and Mediator and the overall
chromatin landscape that restricts the access of these
factors to their target DNA regions [46–52]. Collectively,
RNA steady state levels are additionally influenced by
various post-transcriptional modifications such as the ef-
ficiency of mRNA splicing, secondary structure and base
modification [53–55]. These patterns therefore represent
surrogate reporters for the unique transcriptional envi-
ronments that distinguish the various molecular sub-
classes of most cancers and their attendant behaviors.
The likelihood that the regulation of transcripts repre-
senting a specific, functionally-related family differs from
that other families and from the more general regulation
of the entire transcriptome may explain why the sequen-
tial approach described can be utilized with success.

Conclusions
The stratification of cancer patients into favorable or un-
favorable prognostic groups at the time of diagnosis is
essential to choosing the most appropriate therapeutic
options and long-term monitoring protocols. Molecular
analysis, generally based on whole transcriptome expres-
sion profiles of tumors, has played an increasingly im-
portant role in informing these clinical decisions.
However, even when classified in this manner, signifi-
cant heterogeneity often remains within the individual
tumor subsets. The work presented here indicates that
our previously described t-SNE-based method of long-
term survival prediction that relies on the patterns of ex-
pression of small numbers of transcripts derived from 15
cancer cell signaling, proliferation and metabolic path-
ways [9, 12, 13] can be significantly enhanced when two
pathways’ transcripts are analyzed sequentially by t-SNE
or when t-SNE profiling is applied to tumors that have
first been stratified by whole transcriptome profiling.
This tandem approach holds the promise of becoming
more robust and reliable as both tumor data bases and
the number of pathways employed expand. Most im-
portantly, the identification of distinct patterns of ex-
pression in the cancer-related pathways described here
at the time of diagnosis that are associated with distinct
differences in long-term survival offers the potential to
assist clinicians with therapeutic and long-term follow-
up decisions.
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-020-06756-x.

Additional file 1: Supplemental Fig. S1 Summary of the predictive
value of t-SNE-assisted clustering of functionally-related transcripts. Each
column indicates the pathway whose component transcripts were used
to generate t-SNE profiles of the 34 TCGA cancers indicated along the left
border. The number of transcripts comprising each pathway are indicated
in parentheses at the tope of each column. See refs. [9, 12, 13], and for
the identities of the individual transcripts comprising these pathways.
Colored boxes show the tumor groups for which the indicated pathway’s
transcripts generated multiple t-SNE cluster, at least two of which
showed significant differences in long-term survival based on Kaplan-
Meier analysis. The color of each box indicates the P value for the most
disparate survival differences as shown by the key at the right. At the bot-
tom of each column is shown the number of tumor types, the total num-
ber of tumors and the per cent of all tumors for which the indicated
pathway was informative for long-term survival. The total number of col-
ored boxes across each row indicates the number of pathways that were
capable of identifying t-SNE clusters with significant survival differences
for that tumor type. Grey boxes indicate those groups in which inter-
cluster survival differences were not significant or in which only a single
cluster was generated by t-SNE profiling.
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