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Abstract

School-aged children erroneously think that 1.45 is larger 1.5 because 45 is larger than 5.

Using a negative priming paradigm, we investigated whether the ability to compare the mag-

nitude of decimal numbers in the context in which the smallest number has the greatest

number of digits after the decimal point (1.45 vs. 1.5) is rooted in part on the ability to inhibit

the “greater the number of digits the greater its magnitude” misconception derived from a

property of whole numbers. In Experiment 1, we found a typical negative priming effect with

7th graders requiring more time to compare decimal numbers in which the largest number

has the greatest number of digits after the decimal point (1.65 vs. 1.5) after comparing deci-

mal numbers in which the smallest number has the greatest number of digits after the deci-

mal point (1.45 vs. 1.5) than after comparing decimal numbers with the same number of

digits after the decimal point (1.5 vs. 1.6). In Experiment 2, we found a negative priming

effect when decimal numbers preceded items in which 7th graders had to compare the

length of two lines. Taken together our results suggest that the ability to compare decimal

numbers in which the smallest number has the greatest number of digits is rooted in part on

the ability to inhibit the “greater the number of digits the greater its magnitude” misconcep-

tion and in part on the ability to inhibit the length of the decimal number per se.

Introduction

Understanding of decimal numbers is crucial for subsequent academic and occupational suc-

cess [1]. However, according to a nationally representative sample of 1,000 US mathematics

teachers, poor knowledge of “rational numbers and operations involving fractions and deci-

mals” is one of the two greatest obstacles preventing their students from learning algebra [2].

Indeed, although students learn about decimals in primary schools, secondary students use

decimals without an adequate knowledge of the concepts involved [3,4,5]. Understanding of

decimal numbers remains weak even in students of countries that are top performers on inter-

national comparison of mathematical achievement such as China [6]. Notably, students lack

the sufficient understanding of the comparative size of decimal numbers [7]. Difficulty in deci-

mal comparison has been documented not only in children throughout schooling [8,9,10] but

also in adults [11,12].
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Decimal comparison appears to be particularly difficult when the decimal numbers to

compare do not have the same number of decimal places [13]. In this context, children tend

to erroneously think that 1.45 is larger than 1.5 because 45 is larger than 5. These errors are

likely the result of a “whole number” bias in this specific case, using a property of whole

numbers such as “the greater the number of digits the greater its magnitude” to compare dec-

imal numbers in which the smallest one has the greatest number of digits after the decimal

point [12,14,15, 16].

Indeed, while a competent understanding of whole numbers is crucial to the development

of mathematical understanding, it may also interfere in mathematical reasoning when rational

numbers are involved [15]. Learners may assume implicitly or explicitly that the features of

whole numbers continue to apply to rational numbers, inducing systematic errors when ratio-

nal numbers behave differently from whole numbers [4,16,17]. According to Vosniadou and

colleagues [16,18,19], during the preschool years, children form an initial concept of numbers.

This concept, based on whole numbers, encompasses assumptions, beliefs, and expectations of

what counts as a number and how it is supposed to behave. As rational number information

violates basic principle of the whole number concept, children must restructure the whole

number concept and construct a new representation of rational numbers. This new represen-

tation does not however replace the initial representation of whole numbers but rather co-

exists with it [20]. For instance, individuals commit more errors and require more time to

compare decimal numbers in items in which the whole number properties interfere with the

decimal number properties (i.e., incongruent items such as 1.45 vs. 1.5) than in items in which

the whole number properties are congruent with the decimal number properties (i.e., congru-

ent items such as 1.45 vs 1.4) [21].

Van Hoof and colleagues [22,23] also provided evidence for a whole number bias in sec-

ondary students processing algebraic expressions (“multiplication and addition always lead to

larger outcomes” and “division and subtraction always lead to smaller outcomes”) and com-

paring fractions (considering that fractions are two (natural) numbers rather than a single

number) as suggested by higher accuracy levels on congruent (e.g., x�5< x; 3< 3/x) than

incongruent (e.g., x< x�4; x/5 < x) items when processing algebraic expressions as well as lon-

ger reaction times when comparing fractions in incongruent items (e.g., x/a vs. x/b) than on

congruent ones (e.g., a/x vs. b/x).

Finally, Durkin and Rittle-Johnson [24], in a longitudinal study assessing knowledge and

diagnosing misconceptions about decimals in 4th and 5th graders, found that the “greater the

number of digits the greater its magnitude” misconception was one of the most common mis-

conceptions when comparing decimal numbers, and that this misconception decreased over

time. Studies so far have focused on defining the context in which decimal comparison errors

occur and the misconceptions that might be at the root of these errors. However, the mecha-

nisms allowing children to overcome such errors remain largely unknown.

In light of the fact that executive functions and inhibitory control in particular (i.e., the

ability to resist habits, automatisms and misconceptions [25]) is one of the core mechanisms

of cognitive development [26,27,28,29,30,31] and mathematical development in particular

[21,32,33,34,35,36,37,38], we hypothesized that inhibitory control may be one of the mecha-

nisms allowing children to overcome systematic errors when comparing decimal numbers

such as 1.45 and 1.5. Indeed, Bull and Lee [39] in their narrative review highlight different

ways in which inhibition may influence math achievement: inhibition may suppress the use

of information from a word problem that is irrelevant to the solution (e.g., “add if more or

subtract if less” [40]), it may supress inappropriate strategies (e.g., addition when subtraction

is needed) or proponent number representation (e.g., whole number biases).

Decimal number and inhibition
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This assumption is consistent with the dual-process theory of human reasoning according

to which systematic reasoning errors (or reasoning biases such as the whole number bias) in

different domains may be in part related to our tendency to rely on heuristics (i.e. fast auto-

matic and holistic strategies such as the “greater the number of digits the greater its magni-

tude” strategy) in contexts in which we should we should rely on algorithmic strategies (i.e.

slow cognitively demanding and analytical strategies) [41,42]. To correctly respond to situa-

tions where algorithmic strategies are in conflict with heuristic strategies, studies have pro-

vided convergent evidence that inhibitory control is necessary to avoid using a misleading

heuristic strategy [43,44,45].

Thus, in the present study, we investigated in Experiment 1 whether children’s ability to

compare the magnitude of a pair of decimal numbers whereby the smallest one has the greatest

number of digits after the decimal point (e.g., 1.45 vs. 1.5) is rooted in the ability to inhibit the

“greater the number of digits the greater its magnitude” misconception. In Experiment 2, we

aimed to determine whether in this context, the length of the decimal number (i.e. the spatial

extent of the number in a spatial continuous magnitude sense) per se would also need to be

inhibited too.

In both experiments, we used a negative priming paradigm to determine whether inhibition

may be required. The negative priming paradigm rests on the logic that if a strategy (or a mis-

conception) is inhibited on a given item, then the activation of that strategy (or misconception)

on the next item should be more difficult as revealed by poorer performance [46, 47]. Using a

negative priming approach, studies have provided evidence for the role of inhibitory control in

overcoming systematic errors in the resolution of arithmetic word problems in children, adults

and experts [37,40], in quantitative reasoning in geometry [26], in logical reasoning about

class inclusion [48,49] and number conservation [50], as well as in the understanding of the

physical principle governing the flotation of objects [51]. Note that the negative priming

approach requires that participants can perform above chance level for the prime items. Since

pre-tests revealed that children before grade 7 were at chance level of performance when com-

paring the magnitude of decimal numbers in which the smallest decimal number has the great-

est number of digits after the decimal point (e.g., 4.5 vs 4.233), we included 7th graders in our

study.

Experiment 1

We used a negative priming paradigm to determine whether the “greater the number of digits

the greater its magnitude” misconception must be inhibited to compare the magnitude of deci-

mal numbers in which the smallest number has the greatest number of digits after the decimal

point. We designed a negative priming paradigm in which for both prime and probe items,

children were to compare decimal numbers and identify the largest. In the test condition, con-

gruent probe items, in which the largest number had the greatest number of digits after the

decimal point (e.g., 7.899 vs. 7.4, a context that automatically triggers the “greater the number

of digits the greater its magnitude” misconception, thus helping to determine the largest deci-

mal number) were preceded by incongruent prime items (i.e., the prime) in which the smallest

decimal number had the greatest number of digits after the decimal point (e.g., 4.5 vs. 4.233, a

context that supposedly requires to inhibit the “greater the number of digits the greater its

magnitude” misconception). In the control condition, the same congruent probe items, were

preceded by neutral prime items, for which the “greater the number of digits the greater its

magnitude” strategy was irrelevant since both decimal numbers had the same number of deci-

mal places (e.g., 8.1 vs 8.5).

Decimal number and inhibition
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We reasoned that if the “greater the number of digits the greater its magnitude” misconcep-

tion must be inhibited to compare incongruent items, decimal numbers in which the smallest

number has the greatest number of digits after the decimal point, then a negative priming

effect should be observed: children should be less efficient to determine which of two decimal

numbers is the largest in congruent items (e.g., 7.899 vs 7.4) after having compared the magni-

tude of decimal numbers in an incongruent item (e.g., 4.5 vs 4.233) than after having com-

pared two decimal numbers in a neutral item (e.g., 8.1 vs 8.5).

Method

Participants. We recruited 26 children with an average of 12.4 ± 0.52 years with normal

or corrected-to-normal vision from a public high-school serving a diverse population (Paris,

France). We excluded two children that scored at chance levels, leading to a group of 24 children

(9 males) with an average of 12.35 ± 0.51 years. We obtained informed written consent from

parents as well as oral consent from all children. Children were tested in accordance with

national and international norms governing the use of human research participants. The Faculty

of Psychology (Paris Descartes University) granted the ethical permission to conduct this study.

Materials. Stimuli were presented on a laptop computer (resolution of 1366 × 768 pixels

and a refresh rate of 60 Hz), using E-Prime 2.0. Prime items consisted of pairs of decimals writ-

ten in 24-point Courier New font, each located on the left or right side of the screen at a 0.5˚

visual angle from the centre. In the test condition, prime items were pairs of decimal numbers

in which the smallest decimal had the greatest number of digits after the decimal point (e.g.,

3.453 vs. 3.6). In the control condition, prime items consisted in pairs of decimal number with

the same number of digits after the decimal point (e.g., 7.3 vs. 7.6). In both conditions, probe

items consisted of pairs of decimal numbers in which the largest decimal had the greatest num-

ber of digits after the decimal point (e.g., 5.644 vs. 5.4). Decimal numbers had either one, two

or three digits after the decimal point. Decimals in the pairs had either both the same number

of decimal points or a different number of digits after the decimal point. The difficulty of the

comparison was systematically varied by manipulating the numerical distance between the

first digits after the decimal point of each decimal number in the pair (distance ranged between

1 and 6).

Procedure. Children were tested individually, seating approximately 75cm from the lap-

top computer. For each pair of decimal numbers presented, children were instructed to deter-

mine which of the two decimal numbers was the largest. Children pressed the left button on

the mouse to indicate that the decimal number on the left of the screen was the largest and the

right button to indicate that the decimal number on the right was the largest. As shown in Fig

1, each trial started with the presentation of a fixation cross (500 ms), then a pair of decimal

numbers was displayed (until the children answered with a time limit of 2500 ms). As soon as

the children provided an answer the fixation point reappeared (500 ms), followed by another

pair of decimal numbers that persisted until children provided an answer (with a time limit of

2500 ms). A visual mask was presented between each trial to avoid the transfer of processes

from the probe of one trial to the prime of the next trial (1000 ms). Children first performed a

block of 6 practice trials in which they were first presented with 2 congruent items, then 2 neu-

tral items and finally 2 incongruent items with pairs of decimal numbers different from the

ones used in the experimental trials. Children received simple feedback (correct/incorrect) on

their accuracy during the practice trials. Then, they performed a blocks of 48 trials (24 in the

test and 24 in the control condition). All sequences of motor responses between the prime and

the probe appeared equally often. The order of the trial was randomized, except no more than

three tests or control trials could occur in a row.

Decimal number and inhibition
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Results

Prime or probe responses times (RTs) less or greater than 2 SD from the individual mean for a

given condition were deleted (M = 7 ± 5%). For each child, we averaged the RTs and accuracies

separately for control and test primes and probes. Note that in accordance with the logic of the

NP paradigm, we only analysed accuracies, RTs and IES on the probe items preceded by prime

items performed correctly. We then computed, for each child, the inverse efficiency score (i.e.,

RTs divided by the proportion of correct answers [52,53]) for the primes and the probes of the

control and the test conditions. Note that our data complied with the recommendations of

Bruyer and Brysbaert [52] for the use of inverse efficiency score (IES): accuracy was high (i.e.,

greater than 85%), accuracies and RTs went in the same direction and we observed no speed-

accuracy trade-off (rs< .26, ps> .21). The IES enables us to simplify our analysis by integrat-

ing accuracy scores and RTs in one variable and by appropriately weighing the impact of speed

and accuracy. For each of the analyses, we report the effect size in terms of the difference of the

means (Cohen’s d). Two-sided Bayesian paired t-test (with a default Cauchy prior width of

r = 0.707) were used to quantify the evidence for (BF01) or against (BF10) the null hypothesis.

Bayesian Analyses were performed using the JASP software (Version 0.8.3.1).

A paired bilateral t-test on the prime accuracies, RTs and IES revealed that children were

less efficient to compare the magnitude of two decimal numbers in the incongruent items

(e.g., 1.45 vs. 1.5) than in the neutral items (e.g., 7.45 vs. 7.55), t(23) = 4.47, p< .001, d = .91,

BF10 = 165 for accuracies, t(23) = 6.34, p< .001, d = 1.29, BF10 = 10575 for RTs and t(23) =

5.30, p< .001, d = 1.08, BF10 = 1050 for IES (see Table 1 and S1 Table).

A paired bilateral t-test on the probe RTs and IES revealed a negative priming effect: chil-

dren were less efficient to compare the magnitude of two decimal numbers in congruent

items (5.456 vs 5.4) after comparing a pair of decimal numbers in incongruent items

Fig 1. Example of prime and probe items presented in the test and the control conditions. Prime items (i.e.,

incongruent and neutral items) differed between the two conditions but the probe items (i.e., congruent items) were similar.

https://doi.org/10.1371/journal.pone.0188276.g001
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(e.g., 1.45 vs. 1.5) than after comparing a pair of decimal numbers in neutral items (e.g.,

7.45 vs. 7.55), t(23) = 3.74, p< .001, d = 0.79, BF10 = 33 for RTs and t(23) = 3.18, p = .004,

d = 0.64, BF10 = 10 for IES. A paired bilateral t-test on the probe accuracies revealed no dif-

ference in accuracy between congruent items preceded by incongruent items and congruent

items preceded by neutral items, t < 1, BF01 = 4, probably due to a ceiling effect (accuracy

above 98%) (see Table 1).

Discussion

Consistent with previous studies [3,12,14,15,16,24] we found that children were less efficient

to compare the magnitude of two decimal numbers in incongruent items, when the smallest

one had the greatest number of digits after the decimal point (1.5 vs. 1.45) than in neutral

items, when the two decimal numbers had the same number of decimal place (1.5 vs. 1.4).

Importantly, children were less efficient to determine which of two decimal numbers was the

largest in congruent items, when the largest one had the greatest number of digits after the dec-

imal point (1.545 vs. 1.4, i.e., a context in which the “greater the number of digits the greater

its magnitude” misconception leads to the correct answer) when preceded by an incongruent

item than when preceded by a neutral item. Taken together, our results suggest that children’s

ability to compare the magnitude of decimal numbers in a context in which the smallest num-

ber has the greatest number of digits after the decimal point is rooted in part in the ability to

inhibit the “greater the number of digits the greater its magnitude” misconception. Our find-

ing is in agreement with and complements findings from previous studies showing that execu-

tive functions and inhibitory control in particular play an important role in the development

of mathematical abilities [21,32,33,34,35,36,37,38].

A limitation of Experiment 1 is the limited number of participants that might have

affected the power to detect significant effect between the conditions of interest. Note, how-

ever that we did observed significant difference between these conditions (a) with high effect

size, ds>.64 and (b) Bayes factors in favour of the alternative hypothesis to the null hypothe-

sis, all BF10 > 10.

The “greater the number of digits the greater its magnitude” misconception is generally

thought to be a consequence of an overgeneralization of children’s knowledge of whole num-

bers to decimal numbers [4,20]. In particular, children tend to consider all numbers as discrete

quantities and that numbers with more digits are larger [54]. Children presumably generate

the “greater the number of digits the greater its magnitude” misconception when they integrate

rational numbers to their conception of numbers originally based on whole numbers. In

Experiment 2 we investigated whether the difficulty in comparing decimal numbers for which

the smallest number has more digits after the decimal place (1.45 vs 1.5) could be also due to

the fact that the smallest number (1.45) is longer than the largest one (1.5).

Table 1. Accuracies, RTs and IES in the two types of prime items (incongruent and neutral items) and the two types of congruent probe items (pre-

ceded by incongruent or neutral prime items) in Experiment 1. Standard deviations appear in parentheses. Negative priming reflects the difference in

performance between the two types of congruent probe items.

Prime Probe

Incongruent item Neutral item Preceded by an incongruent prime

item

Preceded by a neutral prime

item

Negative Priming

Accuracy (%) 88.8 (9.4) 97.7 (4.0) 98.0 (3.0) 98.0 (2.45) 0 (4.5)

Reaction Time

(ms)

1159 (280.9) 1004 (217.6) 1146 (290.3) 1067 (234.7) 79 (104.1)

IES 1322 (384.0) 1026 (215.9) 1170 (300.3) 1087 (235.4) 83 (127.8)

https://doi.org/10.1371/journal.pone.0188276.t001
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Experiment 2

Studies on the development of mathematical cognition have provided evidence for the exis-

tence of preverbal numerical capacities prior to mathematic education [55]. For instance,

new-borns already possess the capacity to estimate approximately the number of objects in a

collection (i.e. its numerosity [56,57]). The representation of numerosity is associated with

the activation of a population of neurons within the intra-parietal sulcus (IPS) in humans [58]

independently of their culture of origin [59,60] and in primates [59].

However, neurons in the IPS are not exclusively activated in response to numerosity pro-

cessing but also in response to non-symbolic dimensions of magnitude such as length, density

and size [61]. Importantly, because of the overlap between the neuronal population coding for

numerosity and the one coding for non-symbolic dimensions of magnitude, these non-sym-

bolic dimensions of magnitude tend to interfere with numerical judgment [62,63]. A seminal

example of this type of interference can be observed in Piaget’s number-conservation task in

which children up to 7 years of age commit systematic errors in judging the relative numeros-

ity of two rows of tokens when they differ in length but not in numerosity [50,64,65]. Because

symbolic numerical processing activates similar region of the IPS as the ones activated in

response to numerosity processing [66], non-symbolic dimensions of magnitude such as

length could potentially interfere with symbolic numerical processing as well. In the case of

decimal number processing, the difficulty in comparing decimal numbers for which the small-

est number has more digits after the decimal place (1.45 vs 1.5) could thus be due in part to the

fact that the smallest number (1.45) is longer than the largest one (1.5).

In Experiment 2, we designed a negative priming paradigm to test the following hypothesis:

Seventh graders were asked to compare, on the prime, the magnitude of a pair of decimal

numbers and then, on the probe, the length of a pair of lines. In the test condition, an incon-

gruent item, a pair of decimal numbers in which the smallest number has the greatest number

of digits (e.g., 7.299 vs 7.4, a context that requires supposedly to inhibit the length of the deci-

mal numbers to process their magnitude), preceded a pair of lines (a context in which magni-

tude comparison is based on the length of the stimuli). In the control condition, a pair of lines

was preceded by a neutral items, a pair of decimal numbers with the same number of decimal

places (e.g., 8.1 vs. 8.5, a context in which the two numbers have the same length).

We reasoned that if comparing decimal numbers for which the smallest number has the

greatest number of digits requires to inhibit the lengths of the numbers (i.e., the spatial extent

of the numbers in a spatial continuous magnitude sense) to process their magnitude, then chil-

dren should be less efficient to compare the length of two lines when preceded by a pair of dec-

imal numbers in which the smallest number has the greatest number of digits than a pair of

decimal numbers with the same number of decimal places.

Method

Participants. We recruited 37 children (M = 12.82 ± 0.92 years, 21 males) with normal

or corrected-to-normal vision from the same public high-school as the children recruited in

Experiment 1. None of the children participated in Experiment 1. We obtained informed writ-

ten consent from all institution and parents as well as oral consent from all children. Children

were tested in accordance with national and international norms governing the use of human

research participants. The Faculty of Psychology (Paris Descartes University) granted the ethi-

cal permission to conduct this study.

Materials and procedure. The materials and procedure were identical to the ones used in

Experiment 1 except that probes consisted of pairs of lines: one line appears on the right and

one on the left of the centre of the screen at random location. The ratio of lengths between the
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two lines in a pair was chosen so that the difference in length was easily perceivable. Four dif-

ferent length ratios were used (1.10, 1.2, 1.25, and 1.37) with three levels of lengths (10, 12 and

15 cm), leading to a total of 12 different pairs. Lengths ranged from 7.29 to 18.75 across all 12

pairs. For each trial, children performed two comparison tasks: first on a pair of decimals (i.e.,

the prime) and then on a pair of lines (i.e., the probe), see Fig 2. On the prime, children judged

which of the two decimals was the largest and, on the probe, which of the two lines was the lon-

gest by pressing the left or right button of the mouse to indicate that the stimulus presented

on the left or the right side of the screen was the largest (for decimal numbers) or longest (for

lines). Incongruent items, pairs of decimal numbers in which the smallest decimal had the

greatest number of digits after the decimal point (e.g., 3.453 vs. 3.6) served as the prime in the

test condition and neutral items, pairs of decimal numbers with the same number of digits

after the decimal point (e.g., 7.3 vs. 7.6) served as the prime in the control condition. In both

the test and the control conditions, the probe was a pair of lines of different lengths. We also

included filler primes consisting of congruent items, decimal pairs where the largest decimal

had the greatest number of digits after the decimal point (e.g., 5.644 vs. 5.4) to prevent children

from choosing systematically the smallest decimal when the length of the two decimal num-

bers differed.

Children first performed a block of 5 practice trials with pairs of decimal numbers (1 con-

gruent item, then 2 neutral items and finally 2 incongruent items) and 5 pairs of lines different

from the ones used in the experimental trials. Children received simple feedback (correct/

incorrect) regarding the correctness of their answers. Then, children performed a block of

60 trials: 24 control trials, 24 test trials and 12 filer trials. All sequences of motor responses

between the prime and the probe appeared equally often. The order of the trial was random-

ized, except no more than three tests or control trials could occur in a row.

Fig 2. Example of prime and probe items presented in the test and the control conditions. Prime items (i.e.,

incongruent and neutral items) differed between the two conditions but the probe items were similar.

https://doi.org/10.1371/journal.pone.0188276.g002
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Results. After deleting outliers defined as in Experiment 1 (M = 10 ± 9%), we averaged

the RTs and accuracies separately for control and test primes and probes. As in Experiment 1,

we then computed for each child their IES for the primes and the probes of the control and the

test conditions. Note that in accordance with the logic of the NP paradigm, we only analysed

accuracies, RTs and IES on the probe items preceded by prime items performed correctly. As

in Experiment 1, our data complied with the recommendations of Bruyer and Brysbaert [52]

for the use of IES: accuracy rate was high (i.e., greater than 95%), accuracies and RTs went in

the same direction and we observed no speed-accuracy trade-off (rs> .12, ps> .45) The IES

enables us to simplify our analysis by integrating accuracy scores and RTs in one variable and

appropriately weighing the impact of speed and accuracy. For each of the analyses, we report

the effect size either in the ANOVA (partial eta squared) or in terms of the difference of the

means (Cohen’s d). A Bayesian repeated measure ANOVA and a two-sided Bayesian paired t-

test (with a default Cauchy prior width of r = 0.707) were used to quantify the evidence for

(BF01) or against (BF10) the null hypothesis. Bayesian Analyses were performed using the JASP

software (Version 0.8.3.1).

A repeated measures Analysis of Variance (ANOVA) on the prime RTs, IES, and accuracies

revealed a significant main effect of the type of prime (congruent vs. neutral vs. incongruent

items) for RTs, F(2, 72) = 12.81, p< .001, ηp
2 = .26, BF10 = 1082 and for IES, F(2, 72) = 13.20,

p< .001, ηp
2 = .26, BF10 = 1418, but not for accuracies probably due to a ceiling effect, F< 1,

BF01 = 9 (see Table 2). Post-hoc paired bilateral t-test using a Bonferroni correction on the

prime RTs and IES revealed that children were less efficient to compare the magnitude of two

decimal numbers in the incongruent items (e.g., 1.45 vs. 1.5) than in the neutral items (e.g.,

7.45 vs. 7.55), t(36) = 3.94, p< .001, d = 0.64, BF10 = 78 for RTs and t(36) = 4.01, p< .001,

d = 0.66, BF10 = 94 for IES. Children were also less efficient to compare the magnitude of two

decimal numbers in the incongruent items (e.g., 1.45 vs. 1.5) than in the congruent trials (e.g.,

5.644 vs. 5.4), t(36) = 3.57, p = .003, d = 0.58, BF10 = 30 for RTs and t(36) = 3.60, p< .001,

d = 0.59, BF10 = 33 for IES. However, we found no difference in RTs and IES between congru-

ent (e.g., 5.644 vs. 5.4) and neutral (e.g., 7.45 vs. 7.55) items, respectively, t(36) = 1.28, p = .62,

BF01 = 2, for RTs and t(36) = 1.31, p = .59, BF01 = 2, for IES (See Table 2 and S2 Table).

A repeated measures ANOVA on the probe accuracies, RTs and IES revealed a main effect

of the type of probes (i.e., probes preceded by congruent vs. neutral vs. incongruent prime

items), F (2, 72) = 10.16, p< .001, ηp
2 = .22, BF10 = 467 for accuracies, F(2, 72) = 10.24, p<

.001, ηp
2 = .22, BF10 = 186 for RTs and F(2, 72) = 15.13, p< .001, ηp

2 = .22, BF10 = 4825 for

IES. Post-hoc paired bilateral t-test using a Bonferroni correction on the probe accuracies, RTs

and IES revealed that children were less efficient to compare the length of two lines after hav-

ing compared correctly the magnitude of two decimal numbers in the incongruent items

(e.g., 1.45 vs. 1.5) than in the neutral items (e.g., 7.45 vs. 7.55), t(36) = 3.92, p< .001, d = .64,

Table 2. Accuracies (%), RTs (ms) and IES in the three types of prime items (incongruent, neutral and congruent items) and the three types of

probe items (preceded by an incongruent, neutral or congruent prime item) in Experiment 2. Standard deviations appear in parentheses. Negative

priming reflects the difference in performance between incongruent and neutral probe items.

Prime Probe

Incongruent

item

Neutral

item

Congruent

item

Preceded by an

Incongruent prime item

Preceded by a

Neutral prime item

Preceded by a

Congruent prime item

Negative

Priming

Accuracy (%) 98.7 (2.5) 98.7 (3.2) 98.4 (3.8) 92.6 (9.2) 98.3 (3.3) 97.3 (4.4) 5.7 (8.9)

Reaction

Time (ms)

1047 (330.7) 886

(275.3)

912 (285.7) 1423 (569.0) 1230 (363.5) 1333 (510.4) 192 (248.7)

IES 1061 (334.6) 898

(334.6)

924.5 (279.0) 1563 (668.4) 1248 (355.6) 1371 (530.9) 314 (362.7)

https://doi.org/10.1371/journal.pone.0188276.t002
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BF10 = 74 for accuracies, t(36) = 4.70, p< .001, d = .77, BF10 = 615 for RTs and t(36) = 5.28,

p< .001, d = .86, BF10 = 3106 for IES (see Table 2). Similarly, children were less efficient to

compare the length of two lines after having compared correctly the magnitude of two decimal

numbers in the incongruent items (e.g., 1.45 vs. 1.5) than in the congruent items (e.g., 5.644 vs.

5.4), t(36) = 2.93, p = .018, d = 0.33, BF10 = 6 for IES and t(36) = 2.85, p = .02 d = 0.47, BF10 = 5

for accuracies. However, no significant differences was found for RTs, t(36) = 2.04, p = .14,

BF01 = 0.8 (see Table 2). Finally, we found no differences on children’s performance between

probes preceded by congruent items (e.g., 5.644 vs. 5.4) and probes preceded by neutral items

(e.g., 7.45 vs. 7.55), t(36) = 1.24, p = .66, BF01 = 2, for accuracies and t(36) = 2.39, p = .39, BF01

= 0.4, for RTs, except for IES, t(36) = 2.64, p = .03, d = 0.43, BF10 = 3 (see Table 2).

Discussion

As in Experiment 1 and consistent with previous studies [3,12,14,15,16,24], we found that chil-

dren were less efficient to compare the magnitude of two decimal numbers in incongruent

items, when the smallest decimal had the greatest number of digits after the decimal point

(e.g., 1.45 vs. 1.5), than in neutral items, when two decimal numbers with the same decimal

place (e.g., 7.45 vs. 7.55). Additionally, children were also found to be less efficient to compare

two decimal numbers in incongruent items (e.g. 1.45 vs. 1.5) than in congruent items, decimal

pairs where the largest decimal had the greatest number of digits after the decimal point (e.g.,

5.644 vs. 5.4). Importantly, children were less efficient in comparing the length of two lines

after having compared the magnitude of two decimal numbers in incongruent items (e.g., 1.45

vs. 1.5, a context that requires to inhibit the length of the numbers to compare their magni-

tude) than after having compared the magnitude of two decimal in neutral items, (e.g., 7.45 vs.

7.55, a context in which length does not interferes or facilitate the magnitude comparison).

Moreover, children were less efficient in comparing the length of two lines after having com-

pared the magnitude of two decimal numbers in incongruent items (e.g., 1.45 vs. 1.5) than

after having compared the magnitude of two decimal in congruent items (e.g., 5.644 vs. 5.4).

Taken together the results of Experiment 2 suggest that the difficulty in comparing the magni-

tude of decimal numbers may be in part due to the difficulty to inhibit the length of the num-

ber when it interferes with its magnitude such as in a context in which the smallest decimal

number has the largest number of digits (e.g., 1.45 vs. 1.5). We suspect that the overlap of

the network of neurons in the IPS involved in the processing of symbolic numbers and numer-

osity and the neurons coding for nonsymbolic continuous magnitude such as size and length

[61,62,63,67] might be at the root of the difficulty to compare the magnitude of decimal num-

bers when their length interferes with their magnitude.

Note that we found no difference in children’s response to congruent and neutral items or

to probe items preceded by congruent and neutral prime items. The lack of difference found

between neutral and congruent items—which one would expect if individuals spontaneously

focus on the length of the number per se to compare the magnitude of decimal numbers—may

be due to the fact that congruent items were used as fillers and thus presented less often than

other items (congruent items were presented half as often as neutral and incongruent items: 12

times vs. 24 times) leading to a potential oddball effect [68].

General discussion

The current study aimed to determine (a) whether 7th grade children must inhibit the “greater

the number of digits the greater its magnitude” strategy to correctly compare the magnitude of

decimal numbers in which the smallest decimal number has the largest number of digits (1.45

vs. 1.5) and (b) whether the difficulty in comparing decimal numbers in that context could be
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also due to the fact that the smallest number (1.45) is longer (in regards to its length in a spatial

continuous magnitude sense) than the largest one (1.5).

Consistent with previous studies [3,12,14,15,16,24], we found in Experiment 1 and 2 that

7th graders were less efficient to compare the magnitude of two decimal numbers when the

smallest one has the greatest number of digits (1.45 vs. 1.5) than when the two decimal num-

bers have the same number of decimal place (1.8 vs.1.9).

In Experiment 1, children were less efficient to compare the magnitude of two decimal

numbers in which the largest one had the greatest number of digits (e.g., 1.345 vs. 1.2) after

comparing the magnitude of two digits in which the smallest one had the greatest number of

digits (1.45 vs. 1.5) than after comparing two decimal numbers with the same number of deci-

mal place (1.8 vs.1.9). This typical negative priming effect suggests that children must inhibit

the “greater the number of digits the greater its magnitude” misconception when comparing

the magnitude of decimal numbers in which the smallest decimal number has the greatest

number of digits (1.45 vs. 1.5). This misconception is probably a consequence of an overgener-

alization of children’s knowledge of whole numbers to decimal numbers [4,20,69] and in par-

ticular children’s knowledge that numbers with more digits are larger [54]. Our finding fits

well with conceptual change theories arguing that a correct understanding of rational decimal

numbers may coexist with an earlier intuitive understanding of whole numbers [15]. Previous

studies have actually demonstrated that educated adults and mathematical experts still show

signs of whole number bias on a variety of rational number tasks [12, 70,71].

In Experiment 2, we found that 7th graders were less efficient to compare the length of two

lines after comparing the magnitude of decimal numbers in which the smallest decimal num-

ber has the greatest number of digits (1.45 vs. 1.5) than after comparing the magnitude of two

decimal numbers with the same number of decimal place (1.8 vs.1.9). The negative priming

effect reported in Experiment 2 suggests that comparing the magnitude of decimal numbers

in which the smallest decimal number has the greatest number of digits (1.45 vs. 1.5) might

require to inhibit the length of the decimal number per se in addition to inhibit the “greater

the number of digits the greater its magnitude” misconception.

We suspect that inhibiting the length of the decimal number to process its magnitude in

this context might be needed because neurons in the IPS involved in the processing of sym-

bolic numbers and numerosity overlap with the neurons coding for non-symbolic continuous

magnitude such as length [61,62,63].

The overlap of the functional networks involved in symbolic dimension of magnitude and

non-symbolic dimensions of magnitude such as length could be a consequence of the neuronal

recycling induced by learning mathematics. According to the neuronal recycling theory, cul-

tural tools such as reading and mathematics are too recent to have had an impact on the

human genome and thus these cultural tools rely on a process of neuronal recycling according

to which pre-existing brain circuitry are recycled to carry-out these new functions [72]. Mathe-

matical learning in particular would induce recycling neurons of the IPS, originally dedicated

to the processing of continuous non-symbolic dimensions of magnitude to process symbolic

and non-symbolic discrete dimension of magnitude [59]. Pre-existing properties of the neu-

rons being recycled could induce errors such as those observed in decimal comparison, and

inhibitory control might be a core mechanism allowing correcting errors induced by the neu-

ronal recycling process. This assumption is coherent with findings that overcoming systematic

errors in reading and mirror error in particular (confusing ‘b’ for ‘d’) depended upon the

capacity to inhibit the original function (here the mirror generalization process) of the neurons

recycled [41,73].

Note that while both experiments demonstrate that one needs to inhibit the whole number

bias to compare the magnitude of decimal numbers in which the smallest decimal number has
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the largest number of digits (i.e., incongruent items), they allowed us to determine the nature

of the cognitive constructs that were inhibited. Thus, the two experiments provide evidence

that the whole number bias is rooted in part on the number of digits after the decimal points

(i.e., the “greater the number of digits the greater its magnitude”, see Experiment 1) and in

part on the length of the decimal number per se (i.e., see Experiment 2).

One could argue that the negative priming effect observed on the congruent probe items

between the control and test conditions might be essentially driven by the difference in the dif-

ficulty between the incongruent items and the neutral items presented on the primes respec-

tively in the test and control conditions. However, previous studies have provided evidence

that the negative priming effect is not a by-product of performing easier vs. more difficult

items on the prime [74,75,76]. For instance, negative priming effects are classically reported in

the Stroop task in which incongruent items are presented on the prime in both the test and the

control conditions. In these paradigms, a negative priming effect is observed when participants

require more time to identify the ink color (i.e., the task-relevant information) in an incongru-

ent Stroop item (e.g., BLUE printed in red) when the ink color is the color denoted by the

word (i.e., the task-irrelevant information to inhibit) in the preceding incongruent Stroop

item (e.g., RED printed in green) than when the ink color is not the color denoted by the word

in the preceding incongruent Stroop item (e.g., YELLOW printed in green).

Moreover, one could argue that a conflict adaptation paradigm might have provided better

evidence that inhibitory control is needed to compare the magnitude of decimal numbers in

which the smallest decimal number has the greatest number of digits after the decimal point.

However, conflict adaptation does not provide evidence per se that inhibitory control is

required in a given task, it allows to investigate that cognitive control can be sustained from

one item to the next [77,78]. In addition, conflict adaptation tasks are dependent on the ability

to engage proactive control, which is still developing between 8 and 10 years old [79] and

might interact with conflict adaptation effects [80]. Finally, as opposed to the conflict adapta-

tion paradigm, the negative priming paradigm allows to determine the nature of the strategy,

bias, or misconception that must be inhibited which is one of the goals of the present study

[37,41,46,64,73].

Despite being obtained in laboratory experiments, our findings have important educational

implications. First, in light of the lack of awareness of teachers about the role played by inhibi-

tory control in fundamental academic learning [81], it seems critical to raise their awareness of

the importance of inhibition in decimal magnitude comparison. A consequence of this lack of

awareness in the context of decimal magnitude comparison is that teachers might interpret

students’ errors as revealing a misunderstanding of the mathematical principles governing the

comparison of decimal numbers, whilst these errors might actually reveal a difficulty to inhibit

the “greater the number of digits the greater its magnitude” misconception, as suggested by

the present study.

Second, considering that failure to inhibit the “greater the number of digits the greater its

magnitude” misconception might be at the root of systematic errors when comparing decimal

numbers in which the smallest decimal number has the largest number of digits (1.45 vs. 1.5),

pedagogical interventions based solely on learning the mathematical principles governing the

comparison of decimal numbers might not be sufficient to overcome these systematic errors.

Therefore, pedagogical interventions based on metacognitive executive (inhibitory control)

learning could provide a more effective way to help children overcome systematic difficulties

when comparing decimal numbers in which the smallest decimal number has the largest num-

ber of digits (1.45 vs. 1.5). Metacognitive inhibitory control intervention typically consists in

emphasizing both the logico-mathematical principles to use and the misconception to inhibit

to avoid systematic errors when solving a problem. Several studies provided converging
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evidence that this type of intervention is more effective in overcoming systematic logico-math-

ematical reasoning errors than more classical interventions emphasizing only the logico-math-

ematical principles to use [28,82,83]. In the context of learning to compare decimal numbers, a

metacognitive inhibitory control intervention would typically emphasise the need to inhibit

the “greater the number of digits the greater its magnitude” misconception and the need to

activate the mathematical principles governing the comparison of decimal numbers (i.e., com-

paring the decimal numbers by comparing the magnitude of the different place values starting

from the first one after the decimal point).

Although no study to date has tested the effectiveness of such metacognitive inhibitory con-

trol intervention in the context of decimal number comparison, findings from one previous

study suggest that raising children’s awareness of the “greater the number of digits the greater

its magnitude” misconception (by presenting correct and incorrect examples) can already

improve their understanding of the mathematical principles governing decimal number mag-

nitude [24] see also [84] for similar evidence in other domains. Thus, it is likely that raising

children’s awareness of this misconception and explicitly teaching them to inhibit this miscon-

ception when comparing decimal numbers in which the smallest decimal number has the

largest number of digits (1.45 vs. 1.5) could be effective to overcome systematic errors in this

context.

In conclusion, our results further suggest that inhibitory control is one of the core mecha-

nisms at the root of mathematical development [21,32,33,34,35,36,37,38,85] and more gener-

ally of cognitive development [26,27,28,29,30,31].
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