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In situ polymerized ionic liquids
in polyester fiber composite membranes
for detection of trace oil

Ruying Wang,1,2 Yajing Zheng,1,2 Xuejiao Liu,1 Tongwang Chen,1 Nan Li,1 Jing Lin,1 and Jin-Ming Lin1,3,*

SUMMARY

In situ trace detection on ultra-clean surfaces is an important technology. The
polyester fiber (PF) was introduced to serve as the template, to which the ionic
liquids were bonded by hydrogen bonding. Polymerized ionic liquids (PIL) in PF
were formed by in situ polymerization with the azodiisobutyronitrile (AIBN)
and IL. The trace oil on metal surfaces was enriched by the composite membrane
based on similar compatibility principle. The absolute recovery of the trace oil
ranged from 91%–99% using this composite membrane. In the extraction sam-
ples, desirable linear correlations were obtained for trace oil in the range of
1.25–20 mg/mL. It has been proven that a 1 cm2 PIL-PF composite membrane
can effectively extract as little as 1 mg of lubricating oil on an ultra-clean metal
surface of 0.1 m2 with the LOD of 0.9 mg/mL, making it a promising material
for in situ detection of trace oil on metal surfaces.

INTRODUCTION

Trace residue lubricant oil can be common in crafts such as electroplating and lacquer tinting, requiring the

cleanliness of metal surfaces strictly. It is left on metal surfaces after procedures embracing metal cutting,

stretching, forming, etc. The lubricant oil is insoluble in water and retains high viscosity making it tough to

wipe thoroughly. Incomplete oil residue cleaning is regarded as the direct cause of poor-quality products

since there is no electricity where the oil adheres and the substrate is not firmly bonded consequently.1

Subsequently, the plate peels off and rust occurs through the action of oxygen and moisture. Hence, de-

tecting and eliminating trace lubricant oil without residue has been extensively explored in industries with

abundant ultra-clean surfaces existing.

During these years, many strategies have been proposed for oil/water separation, including physical meth-

odology,2 chemical methodology,3 and some materials, for example, ion-imprinted chitosan-base aero-

gel,4 melamine sponge,5 etc. The methods that can be accessed to detect trace oils are generally using

fluorescence spectroscopy to detect trace oils in seawater6 or using visible light LEDs andmetal waveguide

capillaries to analyze trace oils in water.7 Not many research studies have been conducted for in situ extrac-

tion of trace oils on ultra-clean surfaces.

Several of these processes employ environmentally hazardous solvents, such as HCFCs, to extract the oil.

Moreover, those approaches employing chemical reactions could induce some impairment to metal plates

and had residues left stained on ultra-clean plates. Ionic liquids (ILs) were known as green solvents and

widely applied in various fields, e.g., used for functional sequences,8 enhance solid-state phase microex-

traction SPME,9 compliance ion adhesion electrode with ultra-low bio-electron impedance,10 extraction11

and separation of oil from oil sands and sludge,12,13 electrochemistry,14 graphene materials process-

ing,15,16 organic synthesis,17 metal battery,18–20 desalination,21,22 etc.23 ILs own excellent solubility24 are

capable of dissolving diverse organic and inorganic substances. Hence, ILs can be utilized to eliminate

lubricant oil, as an alternative to organic solvents. Meanwhile, poly-ionic liquids (PILs) can produce porous

films in the form of honeycomb coal,25 and cellulose happens to be an excellent reaction template.26 Bac-

terial cellulose (BC) is a programmable and sustainable environmental material with a three-dimensional

mesh structure.27–29 It is composed of nanofibers crossed internally30 and can be used as amatrix material31

to composite with PILs32,33 to obtain composites with excellent properties. In addition, polyester fiber (PF)

is another three-dimensional network material and has numerous hydroxyl groups, which can be well
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modified. Hence, developing an IL-carrier material composite membrane via copolymerization has the po-

tential to detect and eliminate trace oil residues sensitively (Figure 1A).

In this work, the IL 1-vinyl-3-ethyliMidazoliuM broMide (VEIM-Br) was adopted as a reactive monomer, and

the BC and PF were selected as two kinds of carrier materials, respectively. The carrier material’s surface

was flooded with innumerable hydroxyl groups, which served as active sites. VEIM-Br monomer was

bonded to the sites by hydrogen bonding, interacting with the N and H atoms of the imidazole ring and

absorbed on carrier materials, consequently. Subsequently, the initiator azobisisobutyronitrile (AIBN)

was added to the reaction system. The experiments were carried out in a nitrogen atmosphere. The initiator

AIBN undergoes homolytic cleavage and forms a pair of primary radicals. The free radical undergoes the

addition reaction with a monomer molecule, forming a chain-initiated monomer free radical. After chain

growth, VIEM-Br monomers located in and out of carrier materials polymerized into PVIEM-Br. PVIEM-Br

and carrier material formed a composite membrane owning a three-dimensional network interpenetrating

structure (Figure 1B). It was a new material for eliminating trace lubricant oil according to the similarity

compatibility principle. The similarity compatibility principle means that ‘‘those with similar structures

are easily soluble in each other, and the more similar the structures, the better they dissolve’’. In addition,

extraction and FT-IR characterization were employed to detect trace lubricant oil and evaluate the extrac-

tion efficiency. As a result, the kind of ionic liquid-polyester fiber (IL-PF) composed membrane was proved

to be capable of eliminating trace lubricant oil and causing no damage to metal plates or the environment.

RESULTS AND DISCUSSION

Synthesis and characterization of IL-BC composite membranes and IL-PF composite

membranes

IL-BC composite membranes and IL-PF compositemembranes can be obtained by in situ polymerization of

IL and carrier materials (Figures S1 and S2). These polymerization reactions were all conducted in a nitrogen

atmosphere. The initial success of the composite membranes’ preparation was assessed using electron mi-

croscope imaging. After amounts of experimental comparison (Figure S3), it was summarized as follows: a

higher volume of IL led to more uniform mixing, and a lower concentration of IL was required to avoid

generating agglomeration. The reason was the concentration of IL monomer was high, so the free radical

polymerization reaction was intense. The PIL with a low polymerization degree at the initial reaction was

coated on the fiber surface, the bare hydroxyl on the fiber surface decreased, and the cellulose lost the tem-

plate effect, resulting in agglomeration. With the decrease of the IL monomer concentration, the degree of

aggregation decreased, and the morphology of carrier material could be gradually seen. The optimal IL

concentration for a 1 cm2 square composite membrane (Figure S4) was 0.2 mol/L, while the optimum IL vol-

ume was 4 mL.

As the result, in general, BC itself was a soft, wrinkly sheet. After being modified with IL, the thin sheet was

coated with uniform, thin slurry to harvest IL-BC composite membranes (Figure 2A). PF seemed to be a

three-dimensional network of fibers of uniform thickness intertwining. In contrast, IL-PF composite mem-

branes resembled a leaf specimen with visible veins due to the thin and homogeneous PILs coating (Fig-

ure 2B). The PILs were securely adhered between the two fibers, bridging the gap among carrier materials,

and creating a robust composite membrane.

To further verify the synthesis of composite membranes, the characteristic peaks of PILs and carrier mate-

rials could be detected by FT-IR (Figure 2C). Around 2922 cm�1 was the stretching vibration peak of the C-H

bond, and the peak at about 1028 cm�1 was caused by the C-O and C-C stretching vibrations of the sugar

ring. These groups correspond to the molecular structure formula of bacterial cellulose. Around 3409 cm�1

was the stretching vibration peak of the -OH bond. 1162 cm�1 was the in-plane deformation vibration peak

of the imidazole ring C-H bond, and 1570 cm�1 was the in-plane stretching vibration peak of the imidazole

ring C=C and C=N bonds. The existence of these two peaks proved that the polymer has bipolar charac-

teristics. 750 cm�1 is the out-of-plane bending vibration peak of the C-H bond of the imidazole ring. The

peak at 1451 cm�1 was also the characteristic peak of the imidazole ring. It can be seen from Figure 2C

that the absorption peaks of composite membranes at 1630 cm�1 and 960 cm�1 almost disappeared, indi-

cating that the polymerization reaction was successful and that combining the twomaterials in the compos-

ite membranes did not alter the structures of either component. Therefore, based on Fourier transform

infrared spectrometer characterization, we draw the following conclusions: First, the IL was combined
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Figure 1. Reaction mechanism of in situ polymerization and schematic diagram of oil extraction based on similarity compatibility principle

See also Figure S1 and Figure S2.

(A) Illustration for ionic liquids polymerizing with bacterial cellulose or polyester fiber to form a composite membrane, and extraction of oil molecules by

composite membranes.

(B) Chemical reaction mechanism of in situ polymerizations of ionic liquids and carrier materials.
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with the carrier material. Moreover, the IL underwent a polymerization reaction to become PILs. Meanwhile,

the characteristic peaks of the IL were unaltered, preserving its original function.

Routine detection procedures include checking the film’s mechanical characteristics using universal mate-

rial testing equipment, as seen in Figure 2D. The four samples were BC membrane, PF membrane, IL-BC

composite membrane, and IL-PF composite membrane. The size of the samples was 30 mm3 10 mm, and

the stretching rate was 5 mm/min. Using BC and PF as carrier materials resulted in IL-BC and IL-PF compos-

ite membranes with improved fracture strength and elongation. This is due to the PIL entering the network

structure of the carrier material and coating the nanofibers, enhancing the mechanical properties of the

original film. At the same time, the PIL could play a plasticizing role in the polymer, which was reflected

in the increased elongation at the break of the composite film.

Evaluation of oil extraction effect of the composite membranes

IL-BC composite membranes and IL-PF composite membranes were used to wipe the trace oil. As certified

in Figure 3A, there was yellow fluorescence on the surface and inside of the IL-BC composite membrane.

Yellow fluorescence also existed in the IL-PF composite membrane as exhibited in Figure 3B, indicating

that the PIL was on the surface and inside of the composite membranes, and the oil was successfully

extracted.

Furthermore, the two carbon tetrachloride samples (IL-BC composite membranes and IL-PF composite

membranes mentioned above) were tested by matrix-assisted laser desorption/ionization-time of flight

mass spectrometry (MALDI-TOF).34 As a comparison, the experiment of using completely unmodified

gauze to extract trace oil was done. This gauze was also immersed in carbon tetrachloride as a sample

to be tested. Four additional reference samples were prepared, clean IL-BC composite membranes, clean

Figure 2. Characterization of composite membranes properties

See also Figure S3 and Figure S4.

(A) Bright-field images comparison of unmodified BC membrane and polymerized IL-BC CMs.

(B) Bright-field images comparison of unmodified PF membrane and polymerized IL-PF CMs.

(C) Infrared spectroscopic characterization of successful polymerization of IL-BC composite membranes and IL-PF composite membranes.

(D) Stress and strain curves of BC membrane, PF membrane, IL-BC composite membrane, and IL-PF composite membrane.
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IL-PF composite membranes, gauze, and lubricating oil soaked in 800 mL of carbon tetrachloride, respec-

tively. The mass spectra showed identical peaks betweenm/z 1700 to 1900 for the three extraction samples

and the lubricant reference sample (Figure 3C). Compared with the extraction samples, the reference sam-

ples showed no peak in this range. The molecular weight of carbon tetrachloride is 153.84, which also ruled

out this being a peak for carbon tetrachloride. Therefore, it can thus be proved that the composite mem-

branes successfully extracted the trace lubricant from the metal plate.

In addition, the Fourier transform infrared spectrum of the lubricant oil (Figure 3D) showed two distinct ab-

sorption peaks at 2853 cm�1 and 2922 cm�1, which were selected as the basis for determining the presence

of lubricant components.

Quantification of oil extraction of the composite membranes

Absorption peaks of the same mass of trace oil extracted by IL-BC composite membranes and IL-PF com-

posite membranes showed apparent differences (Figures 4A and 4B), indicating that IL-PF composite

membranes had a high oil extraction efficiency compared to IL-BC composite membranes.

After this, the oil extraction efficiency of the two composite membranes was further quantified by FT-IR

detection. According to Lambert Beer’s law, the absorbance (peak area) is proportional to the concentra-

tion. The recovery rate was calculated as Oil recovery rate = peak area (Extraction Sample)/peak area (Standard).

According to the above-mentioned formula, the recovery rates of oil in IL-PF composite membranes were

calculated by the absorbance peak areas and are shown in Figure 4C. The suggested approach proved

accurate and trustworthy for evaluating the trace oil on ultra-clean surfaces, with a complete recovery of

91%–99%. However, IL-BC composite membranes have an oil recovery rate between 55% and 64% (Fig-

ure 4D). Two statistical bar charts show that the IL-PF composite membranes weremore effective in extract-

ing trace oil than the IL-BC composite membranes, confirming their ability.

A B

C D

Figure 3. Characterization of the effectiveness of composite membrane extraction of oil by Fluorescence, MALDI-TOF-MASS, and FT-IR

Comparison of photographs of (A) IL-BC composite membrane subjected to oil extraction experiments (right) and original IL-BC composite membrane (left).

(B) IL-PF composite membrane subjected to oil extraction experiments (right) and original IL-PF composite membrane (left).

(C) The MALDI-TOF-MS mass spectrum showed that the standard sample, the composite membranes extraction samples, and the gauze extraction sample

all have characteristic peaks.

(D) The infrared spectrum of the oil sample.
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The quantitation of the trace oil was carried out using external standard calibration.35 The working solution was

prepared by extracting oil (0.5 mg, 1 mg, 2 mg, 4 mg, and 8 mg lubricating oil) by IL-PF composite membranes

and then immersing membranes into 400 mL carbon tetrachloride (99.5%), yielding concentrations ranging from

1.25 mg/mL to 20 mg/mL. The standard curve of the oil solution was constructed by the mean value of five

different concentrations. Each solution has been detected 3 times by scanning continually. The standard curve

was obtained as follows: the peak area (Y) of the oil solution increased linearly with the corresponding concen-

tration (X), and the fitting formula is written as follows: Y = (0.011) X + (0.0891). The regression coefficient (R2) in

the calibration curve was higher than 0.99, as shown in Figure 4E, LOD is 0.9 mg/mL calculated based on three

times signal-to-noise ratio (S/N=3). Upon result showed that a desirable linear correlationwas obtained for trace

oil in the range of 1.25 mg/mL to 20 mg/mL. The standard curve is shown in Figure 4F: Y = (0.0059) X + (0.1134).
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Figure 4. The infrared spectrum of standard samples (0.5 mg, 1 mg, 2 mg, 4 mg, and 8 mg oil were directly mixed with 400 mL of carbon

tetrachloride) and extraction samples (0.5 mg, 1 mg, 2 mg, 4 mg, and 8 mg of oil were extracted by

(A) IL-PF composite membranes and (B) IL-BC composite membranes.

(C) FT-IR absorption peak area of standard samples of each concentration and samples extracted by IL-PF composite membranes.

(D) FT-IR absorption peak area of standard samples of each concentration and samples extracted by IL-BC composite membranes.

(E) Standard curve of oil extracted by IL-PF composite membranes.

(F) Standard curve of oil extracted by IL-BC composite membranes.

Data were represented as means G SEM.
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The regression coefficient (R2) in the calibration curve was 0.9819. IL-PF composite membranes were chosen for

further extraction of trace oil because they were more sensitive than IL-BC composite membranes concerning

regression coefficient value and extraction rate (Table 1).

A smear test for the practical use of the IL-PF composite membranes’ ability to extract trace

oils

A realistic smear test was conducted to evaluate the capability of IL-PF composite membranes to remove

trace oil. 1 mg, 2 mg, and 4 mg of lubricating oil were dissolved (respectively) in 3 mL of carbon tetrachlo-

ride and then uniformly dusted over (respectively) a 0.1 m2 of ultra-clean metal plate to mimic the condi-

tions of actual use. After carbon tetrachloride volatilization, oil stains on the ultra-clean metal plate were

removed using IL-PF composite membranes. Finally, 800 mL of carbon tetrachloride was used to remove

the oil from the composite film, and the resulting IR spectrum was analyzed using FT-IR spectroscopy.

Figure 5A displays the absorption peak spectra of three reference samples and three extraction samples,

whereby the area of the absorption peak increases as the concentration of the oil solution rises. The FT-IR

absorption peak area was less when the trace oil was diluted and evenly coated on a plate of 0.1 m2

compared to when the oil was extracted in its whole. The peak area was determined by selecting the ab-

sorption peaks from 2900 cm�1 to 2980 cm�1. Each sample was tested three times to obtain a histogram as

shown in Figure 5B. According to Lambert Beer’s law, it can be calculated that the oil extraction rate be-

tween 1.25 and 5 mg/mL was between 65% and 70%.

Membranes made from IL-PF composites have a stable composite structure and high oil affinity and are

suitable for mass manufacturing. The price of PF was low, and the quantity of initiator and IL monomer

needed to prepare the composite membrane was small. This composite membrane can bemass-produced

because of its inexpensive cost. IL-PF composite membranes increased the method’s feasibility, economy,

and operability by using a minimal quantity of adsorbent and a rapid extraction period.

Conclusion

In conclusion, we examined two composite membranes with various carrier materials. We created a com-

posite membrane made of IL and polyester fibers to extract and detect trace oils. The extraction rate was

increased, and the potential harm from organic solvent was addressed using IL-PF composite membrane

rather than more traditional material.

As a bonus, the use of IL-PF composite membranes simplified real-time extraction and in situ detection.

Using the in situ polymerization approach of the IL-carrier material, we developed a stable and susceptible

composite material for trace oil extraction, paving the way for accurate and reliable detection of trace oils.

This material may be fused with a small infrared detector or oil-sensitive fluorescent material to develop a

field device for detecting trace oil. This method helps detect and trace oil pollution on the products’ sur-

face and serves as a technical reference for verifying the quality of industrial instruments.

Limitations of the study

In this work, only two carrier materials and one ILwere experimented.More carriermaterials andmore ILs can be

experimented in further research to improve the extraction sensitivity and optimize the material stability.

Table 1. Comparison of some performance parameters of IL-PF and IL-BC, related to Figure 4

Material IL-PF IL-BC

Recovery rate 91%–99% 55%–64%

Liner range 1.25–20 mg/mL 1.25–20 mg/mL

Extraction time 10 min 20 min

Usage count 1 time/piece 1 time/piece

Cost $0.30/piece $0.37/piece

The morphology of poly-ionic liquids on carrier

materials

Thin and homogeneous Few and easy to fall off
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Chemicals and materials

2-methylpropionitrile was provided by J&K Scientific Ltd. (Beijing, China). 1-vinyl-3-ethyliMidazoliuM bro-

Mide was purchased from Beijing Huawei Ruike Chemical Co. Ltd. (Beijing, China). Trichloromethane was

obtained from Beijing Tongguang Fine Chemical Company (Beijing, China). Carbon tetrachloride (99.5%)

was supplied by Shanghai Titan Technology Co. Ltd. (Shanghai, Beijing). Bacterial cellulose film and PF film

were acquired from Shanghai PZ Bio-Tech Co. Ltd (Shanghai, China). Fluorescent Yellow 131SC Liquid Dye
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Other
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was provided by Dow Chemical (Shanghai, China) Co. Lubricant oil (Mobil 5W-40) was bought from

ExxonMobil (China) Investment Co. Ltd. (Shanghai, China). Ethyl alcohol was obtained from Beijing Century

Better Technology Development Co. Ltd. (Beijing, China).

Characterization

Scanning electron microscope (SEM) characterization

The instrument used to observe and characterize the synthesis of composite membranes was an environ-

mental scanning electron microscope. All electron micrographs in this work were made using a Quanta 200

environmental scanning electron microscope from the Netherlands with resolutions of 10 nm (high vacuum

mode, 30 kV), 20 nm (low vacuum mode, 30 kV), 200 nm (ESEM environmental vacuum mode, 30 kV), 50nm

(low vacuum mode, 3 kV). Magnification: 7-1000,000 3. Maximum pixel: 3584 3 3094.

Stress and strain characterization

The 20 KN WDW3020 universal testing machine produced by Changchun Kexin Experimental Instrument

Company was used in this experiment. The maximum experimental stress was 20 KN, the speed range

of moving beam was 0.005�500 mm/min, the displacement resolution of moving beam was 0.001 mm,

and the maximum travel of moving beam was 1100 mm.

Preparation of composite membranes

Since polymerization of double bonds can lengthenmolecular chains, and since the increased carbon chain

structure is assumed to have a high extracting capacity based on similarity compatibility, an IL with a double

bond and a long carbon chain was selected as a further step. Bacterial cellulose and polyester fibers were

selected as the carrier material. The next step is to add monomers of IL, which cling to the surface of bac-

terial cellulose and polyester fibers due to hydrogen bonding. The polymerization process was carried out

at 60 �C after applying the initiator. The IL monomer was polymerized into long chains on the carrier ma-

terial, and finally, a stable three-dimensional network interpenetration structure was obtained (Figure S5).

Cropping the bacterial cellulose membranes and polyester fibers membranes to 1 cm 3 1 cm, which was

the size required for this experiment. To activate the bacterial cellulose membranes and polyester fibers

membranes, they were first soaked in ethyl alcohol for 10 min and then transferred into chloroform in a

10 mL reaction flask and stored at room temperature. After several minutes, the bacterial cellulose mem-

branes and polyester fibers membranes swelled, allowing the VEIM-Br monomer to diffuse into the three-

dimensional porous network structure of bacterial cellulose and polyester fibers through soaking. Ionic liq-

uids were synthesized according to the reported literature.36

1-Ethenyl-3-ethylimidazole bromide salt was selected as the reactive monomer. In a 10 mL reaction flask,

0.4 g of bromide salt of 1-ethenyl-3-ethyl imidazole was dissolved in 10 mL of chloroform with continuous

shaking for full dissolution. After placing the IL (4 mL) in the reaction flask (10 mL), 2 pieces of bacterial cel-

lulosemembranes or PFmembranes were added. Themonomer can use hydroxyl as the active site, interact

with the N and H atoms in the imidazole ring through hydrogen bonds, and adsorb on the surface of the

bacterial cellulose nanofibers or polyester fibers. After that, 12 mg of initiator AIBN was added and shaken

uniformly at 60 �C for 2 h. Nitrogen provided assured safety for the reaction system. After gently washing

three times with the chloroform and drying in a fume hood, the solid white product was harvested by free

radical polymerization.

In the polymerization reaction, different sizes of bacterial cellulose membranes and polyester fibers mem-

branes required different IL concentrations, volumes, and initiator concentrations. Herein, it is necessary to

seek out the optimal polymerization conditions for different sizes and different materials of composite

membranes. To prepare IL-BC composite membranes and IL-PF composite membranes with different

ILs, a series of 0.4 g, 0.6 g, and 0.8 g IL monomers were weighed and then ultrasonically mixed with

10 mL of chloroform, respectively (0.2 mol/L, 0.3 mol/L, and 0.4 mol/L of ILs were configured respectively).

To make a 1 cm 3 1 cm IL-BC composite membrane or IL-PF composite membrane, first, a 1 cm 3 1 cm

piece of bacterial cellulose membrane or polyester fibers membrane was cut as a template. After that,

2 mL, 3 mL, and 4 mL of ILs of different concentrations were dispensed, and two 1 cm 3 1 cm bacterial cel-

lulose membranes or two IL-PF composite membranes were placed in each reaction bottle which was

shaken continuously for more than 12 hours at room temperature. After the IL and the carrier materials

were completely combined, the initiator AIBN was added at a concentration of 3 mg/mL. The reaction
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was continued in a constant temperature shaker for 2 h at 60 �C. After the reaction was completed, the

IL-BC composite membranes and IL-PF composite membranes were taken out, and after waiting for cool-

ing to room temperature, the IL that did not undergo reaction on the surface of the composite membranes

was washed out gently with chloroform.

The IL-BC compositemembranes and IL-PF compositemembranes were harvested by placing the compos-

ite membranes in a fume hood to completely evaporate the chloroform. Observation of the samples with a

Quanta 200 environmental scanning electron microscope revealed that the composite membranes pre-

pared with different concentrations of ILs performed diversely.

FT-IR characterization

The infrared spectra of the samples were characterized using Fourier Transform Infrared Spectroscopy (FT-

IR). In this experiment, the Bruker infrared spectrometer, manufactured by Horiba, Germany, was used for

the infrared characterization, with a spectral range of 8,000-350 cm-1; the resolution was better than

0.16 cm-1; and the number of scans was 64, the scan rate was 4 cm-1 /s, and the scan mode was MIR-

ATR.XPM.; FT-IR was used to analyze the vibrations of individual functional groups of composite mem-

branes to characterize the polymerization of ILs with bacterial cellulose membranes and polyester fibers.

Prior to analysis, the composite membrane is tested to see if PIL is firmly bound to the carrier material. The

ultra-clean metal plate was wiped with the composite membranes strenuously and immersed in 400 mL of

carbon tetrachloride for 15 min. Typically, the sample was oscillated sufficiently to dissolve the residue on

the metal plate in carbon tetrachloride. Finally, the sample was infused into the FT-IR to detect whether IL

components remained (Figure S6).

Fluorescence characterization

Based on the used concentration (300 mg/L) of fluorescent tracer (Fluorescent Yellow 131SC Liquid Dye),

and the density r=0.85, it can be calculated that to configure 10 g of fluorescent oil, 25.8 mL of fluorescent

tracer needs to be added to 11 mL of lubricating oil. An amount of 10 g of lubricating oil was mixed with

25.8 mL of fluorescent liquid dye before being shaken well so that the fluorescent tracer was completely dis-

solved in the lubricant. The configured fluorescent oil is light orange.

Dropped 0.5 mg of fluorescent oil on the metal plate, and gently wiped the fluorescence on the metal sur-

face by pressing a piece of 1 cm3 1 cm composite membrane with a medical small tweezer. The composite

membranes were arranged in sequence under a 365 nmUV lamp, and photographs of the composite mem-

branes were recorded.

MALDI-TOF-MS characterization

The mass spectral data of the composite membrane extracted lubricant were obtained on a MALDI-TOF

mass spectrometer. The AXIMA-Performance MA mass spectrometer used in this experiment was pro-

duced by Shimadzu, Japan. The ionization source was a matrix-assisted laser desorption ionization source

with two detectionmodes, linear and reflection, and the laser wavelength was 337 nm. Linear detection was

used for the sample testing, and the mass range was selected as 1400-2400 m/z. MALDI-TOF was mainly

used to examine the effect of membranes extraction of lubricating oil in this experiment. A 10 ml vial con-

taining IL and bacterial cellulosemembrane and polyester fibers was placed in a thermostatic shaker for the

reaction at a temperature of 60 �C and a speed of 120 rpm.

Semi-quantitative of oil extracted experiment

A series of 0.5 mg, 1 mg, 2 mg, 4 mg, and 8 mg lubricating oil spots were extracted by IL-BC composite

membranes and IL-PF composite membranes, respectively. These extracted samples were further

immersed in 400 mL of carbon tetrachloride to dissolve oil in carbon tetrachloride. For comparison,

0.5 mg, 1 mg, 2 mg, 4 mg, and 8 mg lubricating oil were directly mixed with 400 mL of carbon tetrachloride,

as the standard samples.

Finally, 20 mL samples were taken for IR spectroscopy analysis. FT-IR signals between 600 cm�1 and

4000 cm�1 were collected in the transmittance mode. For analyzing the efficiency of extracting trace lubri-

cant oil, signals between 2800 cm�1 to 3200 cm�1 were collected in the absorbance mode to calculate the
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peak areas of each group. According to Lambert Beer’s Law, the absorbance (peak area) is proportional to

the concentration. Therefore, we were able to obtain the extraction rate by calculating the ratio of the peak

areas (Se/So, where Se is the extraction sample’s peak area and So is the oil sample’s peak area).

Test the performance of this material in practical applications. Firstly, the prepared oil dilution solution

(1 mg, 2 mg, and 4 mg of oil diluted with 3 mL of carbon tetrachloride) was applied evenly on a 0.1 m2 metal

plate with a pipette gun until the whole metal plate was covered by the oil solution. After the carbon tet-

rachloride has completely evaporated, wiped the oil spot that remained on the metal surface gently (use

two pieces of 1 cm 3 1 cm IL-PF composite membranes in sequence). When the extraction of trace oil

was completed, two composite membranes were immersed in 800 mL of carbon tetrachloride and placed

on an oscillator for 5 h with constant oscillation for extraction.

QUANTIFICATION AND STATISTICAL ANALYSIS

This study use Excel and Origin for statistical analysis or quantification. The statistical details of experi-

ments is available from the lead contact upon request.

ADDITIONAL RESOURCES

This study has not generated or contributed to a new website/forum and it is not part of a clinical trial.
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