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Haematopoiesis, or the process of formation of mature blood cells from commit-
ted progenitors, represents an accessible and well-studied paradigm of cell differ-
entiation and lineage specification. Genetic association studies provide a
powerful approach to discover new genes, biological pathways and mechanisms
underlying haematopoietic development. Here, we highlight recent findings of
genomewide association studies (GWAS) linking 145 genomic loci to traits affect-
ing the formation of red and white cells and platelets in European and other
ancestries. We present strategies to address the main challenges in GWAS discov-
eries, particularly to find functional and regulatory effects of genetic variants,
and to identify genes through which these genetic variants affect haematological
phenotypes. We argue that studies of haematological trait variation provide an
ideal paradigm for understanding the function of GWAS-associated variants
owing to the accessible nature of cells, simple cellular phenotype and focused
efforts to characterize the genetic and epigenetic factors influencing the regula-
tory landscape in highly pure mature cell populations.
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Introduction

Haematopoiesis is the process whereby self-renewing

haematopoietic stem cells (HSC) in the bone marrow differ-

entiate to lineage-committed erythroid, myeloid and lym-

phoid progenitor cells [1]. These progenitor cells will

undergo successive differentiation steps to produce mature

blood products such as thrombocytes (platelets), erythro-

cytes (red cells) and white cells. Blood is among the most

accessible organs in the human body, from which pure indi-

vidual cell populations can be isolated with relative ease

compared to other human organs. In addition, the evolu-

tionary conservation of hematopoietic processes facilitates

the study of these mechanisms in model organisms [1].

Measurements of full blood counts (FBC), obtained

through automated haematology analysers, including the

size, physical characteristics or number of blood cells,

have medical importance. Deviation from normal parame-

ter ranges can be diagnostic for human diseases, indicat-

ing the presence of infection, anaemia, thrombotic

diseases or haematological disorders [2, 3]. Variation in

blood cell traits has also been shown to be heritable,

associated with genetic polymorphisms in human popula-

tions, and correlated to increased risk of certain diseases

such as obesity, stroke and cardiovascular events such as

coronary heart disease [4–10].
Genomewide association studies (GWAS) assess the sta-

tistical association of genetic variants with a given dis-

ease or trait of interest. GWAS in the last decade has

successfully discovered thousands of genetic variants,

mostly single nucleotide polymorphisms (SNPs), associ-

ated with the many common human diseases and traits

[11]. While this approach has been extremely fruitful in

discovering novel loci, several challenges exist in the

interpretation of GWAS findings. Studies have shown that

a large proportion of identified SNPs map to non-coding

regions of the genome, where it is not straightforward to

assign a functional mechanism to genetic variants [12].
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Furthermore, owing to linkage disequilibrium (LD), many

genetic variants are typically associated with the pheno-

type at any given genomic locus, hindering efforts to

identify the exact variant responsible for the effect (cau-

sal variant) [13].

Developing and implementing approaches to aid the

interpretation of causal SNPs, and assigning a functional

mechanism for how each variant alters a phenotype or dis-

ease state, represent an important present challenge to the

field. Demonstrating potential functionality to trait-associ-

ated variants is a necessary condition for definitive assign-

ment of causality. Therefore, to reflect the difficulty in

identifying causal variants, we refer to putative causal can-

didates as functional variants for the rest of this review.

Here, we highlight recent breakthroughs in understand-

ing the genetic factors determining blood cell formation.

We discuss strategies and challenges in prioritizing most

likely affected genes and functional genetic variants.

Finally, we discuss future opportunities in association

studies involving blood traits.

Findings from genomewide association
studies of haematological traits

Here, we have surveyed the findings of 24 published

GWAS studies in European (EUR) [3, 14–25], Asian (ASN;

Chinese, Japanese, Korean, South Asians) [26–28] and

African (AFR) or African American (AA) [16, 29–32]
ancestries, isolate founder populations (Sardinia [33] and

Iceland [34]) and disease cohorts with sickle cell and

beta-thalassaemia anaemia [33, 35] (summarized in

Table S1). Overall, there are approximately 145 genomic

loci that are reported to be significantly associated with

15 different haematological indices (see Table 1). Most

SNPs reported to date identify common genetic variants,

defined as having minor allele frequency of 5% or above

in the discovery population. They have been predomi-

nantly reported in populations of European ancestry (227

SNPs discovered, more than 62 000 study participants)

compared to Asian (48 SNPs, 16 000 individuals) and

African American (36 SNPs, 14 000 individuals) cohorts.

Owing to the high correlation observed between different

blood indices, GWAS variants are often reported as asso-

ciated with multiple traits. Such variants may have an

indirect effect, or act independently on each correlated

trait (pleiotropy). Differentiating between direct and indi-

rect effects will require the application of ad hoc statisti-

cal approaches for instance multivariate modelling [36].

As for other complex traits, we found that GWAS find-

ings for haematological indices predominantly map to

non-coding regions of the genome (Table S1). Genes clos-

est to the association peaks were enriched for genes regu-

lating haematological functions [14, 15], and for genes

causative for Mendelian blood disorders (Tables S1–S2)
such as haemolytic anaemia (HK1, G6PD), sickle cell dis-

ease (BCL11A, HBB, HBSx1L-MYB), thrombocytopenia

(MPL), leukaemia (PTPN11) and bone marrow failure

(TERT). Furthermore, genes in nearby regions are enriched

for relevant Gene Ontology biological processes such as

haematopoiesis (FDR ≤ 1E-3; genes involved in the process

are RUNX1, TAL1), immune system development (2E-3;

IFl16, PTPRC) and oxygen transport (8E-2; HBQ1, HBA1).

Follow-up of early genetic association studies has revealed

novel regulators of haematopoiesis [14, 15, 33, 37]. For

instance, the largest GWAS to date in red cells and platelets

[14, 15] have led to the discovery of 66 novel genes with

validated haematopoietic phenotypes in model organisms.

Despite successful gene discoveries, blood GWAS only

explain a fraction (4–10%) of baseline differences of mea-

sured blood traits in the population [14, 15]. In addition,

study of parameters for myeloid and lymphoid white

blood cell subtypes encompassing important functions in

host defence, immunity and inflammation has been ham-

pered by a lack of suitable data in highly powered

cohorts (Table S1 for existing studies). Hence, the chal-

lenge now is to increase sample size, sequencing resolu-

tion and number of measured traits so as to discover

more associations. Current discovery efforts based on

large-scale cohorts (e.g. UK Biobank [38] and INTERVAL

study [39]) or collaborative efforts based on bespoke

genotyping arrays [40] should increase the power of dis-

coveries, alongside whole-genome sequencing efforts (e.g.

UK10K project).

Strategies for selecting candidate genes
associated with GWAS

To realise the translational benefit of GWAS studies, it is

essential to identify the target genes through which iden-

tified variants influence traits or phenotypes. This can

lead to the discovery of new genes and pathways

involved in biological processes or identify those that

underlie risk to particular diseases. Here, we outline gen-

eral strategies in assigning gene targets to GWAS variants

and in prioritizing genes for experimental validation

(Fig. 1), highlighting where they have been successfully

applied to blood cell studies.

We discussed in the previous section how genes proxi-

mal to GWAS variants may be prime candidates for fur-

ther investigation, particularly those with a known

function relating to the trait of interest. However, a poten-

tial mechanism through which non-coding SNPs are

believed to act is through the disruption of regulatory ele-

ments influencing distally located genes. This implies that

the nearest gene is not always the target gene mediating

the genetic association [41, 42]. For instance, regulatory
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enhancers can also interact with promoters of distal genes

and can ‘skip’ over nearest genes to regulate those situated

at further distances or in trans [43]. In this context, we

discuss two methods that probe short- and long-range

interactions between a variant and the target gene.

Expression quantitative trait loci (eQTL) mapping is

performed to find statistical association between a genetic

variant and the transcript level of a gene considered as a

quantitative trait [44]. eQTL studies can be used as a gen-

eral method to help identify a set of target genes as many

SNPs associated with GWAS traits were shown to be

eQTLs [15, 45]. As an example, GWAS SNP rs342293

(associated with platelet volume) was found to influence

the mRNA levels of PIK3CG kinase gene in platelets and

macrophages [24, 46]. This SNP is located in a megakary-

ocyte-specific open chromatin region [46] and causes dif-

ferential binding of the transcription factor EVI1. Still,

there are inherent limitations to assigning genes through

eQTL studies. Even though most eQTL SNPs are proximal

to transcription start sites (TSS) of their target genes [47],

more complex cis- and trans- effects with co-regulation

of multiple genes are relatively common. Analyses of pro-

Table 1 Summary of the main haematological indices, unit of measure and related diseases and conditions.

Symbol
Trait
[Units] Measures Examples of related diseases and conditions

RBC Red Blood Cell Count

[count 9 1012/l]

Number of red blood cells in blood

Anaemia due to deficiency of Iron and Foliate;

Polycythemia vera

HB Haemoglobin

[g/dl or mol/l]

Level of haemoglobin in blood

HCT Haematocrit

[total volume of red blood cell/total

volume of blood]

Fraction of volume of red blood

cells in blood

MCV Mean Cell Volume

[fl]

Average size of red blood cells

RDW Red blood cell distribution width

[sd MCV/mean MCV 9 100%]

Variance in size of red blood cells

MCH Mean Corpuscular Haemoglobin

[pg/cell]

Average amount of HB per red

blood cell

MCHC Mean Corpuscular Haemoglobin Concentration

[g/dl]

Average concentration of HB per

red blood cell

fHB Foetal Haemoglobin [g/dl or mol/l] Predominant form of HB in foetus

and infants up to 12 months

Sickle cell anaemia; Beta thalassaemia

PLT Platelet Count

[count 9 109/l]

Number of platelets in blood

Essential thrombocythemia; Thrombotic

Thrombocytopenic Purpura

MPV Mean Platelet Volume

[fl]

Average size of platelets

PDW Platelet distribution width

[sd MPV/mean MPV 9 100%]

Variance in size of platelets

PCT Plateletcrit

[MPV 9 PLT]

Fraction of volume of platelets in

blood or platelet mass

WBC White Blood Cell Count

[count 9 109/l]

Number of white blood cells in blood Autoimmune diseases (rheumatoid arthritis,

systemic lupus erythematosus); immunological

disorders; infections; inflammation; Leukaemia

NEU Neutrophil Cell Count

[count 9 109/l]

Absolute number of basophils in blood Myelodysplasia; bacterial infections

LYM Lymphocytes Cell Count

[count 9 109/l]

Absolute number of lymphocytes in blood Lymphoma; viral infections (Epstein–Barr virus,

HIV)

MON Monocytes Cell Count

[count 9 109/l]

Absolute number of monocytes in blood Myelomonocytic leukaemia; chronic infections

(tuberculosis)

EOS Eosinophil Cell Count

[count 9 109/l]

Absolute number of eosinophils in blood Allergies; asthma; parasitic infections

BAS Basophil Cell Count

[count 9 109/l]

Absolute number of basophils in blood Mediate allergic response by releasing

histamine
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moter and chromatin interactions in relevant tissues can

be used to provide additional evidence to assign target

genes to each QTL. Secondly, the statistical cost of multi-

ple testing implies that most current studies have limited

statistical power to detect effects in trans.

Thus, more accurate methods of target gene identifica-

tion are required. Recent advances in chromatin confor-

mation techniques provide such opportunities. Chromatin

conformation capture (3C) and variants of this approach

(4C, 5C, Hi-C and ChIA-PET) probe long-range interac-

tions by utilizing formaldehyde-directed cross-linking of

genomic modules that are close in physical space [48].

For example, using ChIA-PET and 5C, GWAS variants

located in open chromatin (DNAse-I hypersensitive sites)

were found to control distant genes associated with rele-

vant phenotypes [12]. Specifically, the SNP rs385893

associated with platelet count is located in a DHS site and

physically interacts with its target gene, JAK2, which

plays an important role in platelet formation with muta-

tions in this gene being associated with myeloprolifera-

tive disorders [12]. Further development in this area now

enables the high-throughput, genomewide application of

these techniques to assigning gene targets to variants.

Novel methods such as Capture-C and Capture-HiC enable

simultaneous assessment of genomewide SNP targets

through the addition of an enrichment step using probes

to select defined regions (known often as ‘baits’) [49, 50].

Capture-HiC has been applied to assay the interactions of

the genomewide cellular complement of promoters [50].

Like eQTLs, chromatin interactions are context-dependent,

and thus, the cellular background in which these interac-

tions are probed needs to be considered.

With a list of candidate target genes for each GWAS

SNP, it is useful to annotate and then prioritize genes for

experimental validation using approaches summarized in

Fig. 1. To validate whether a gene causes the phenotype of

interest, genetic manipulation techniques such as CRISPR/

Cas9 and gene knockdown approaches in model organisms

and/or cellular models may be applied [51, 52] (Fig. 1). A

recent GWAS study has demonstrated platelet phenotype

of 11 novel genes by silencing them in model organisms

[14]. Antisense morpholino oligonucleotide-directed

silencing of one such gene, the ARHGEF3 ortholog in zeb-

rafish (Danio rerio), leads to ablation of both primitive ery-

thropoiesis and thrombocyte formation, and a novel role in

the regulation of iron uptake and erythroid cell maturation

[14, 53]. In-depth modelling of haematopoietic phenotypes

can also be achieved in model organisms. For instance,

using in vivo imaging of the transparent zebrafish embryo,

the developmental stages of haematopoiesis are easily

traceable from primitive to adult haematopoiesis [37].

Strategies for selecting candidate variants
associated with GWAS

We have discussed methods for prioritizing gene targets

where genes are either mapped to the lead SNP or to any

variants within an LD region. However, the lead SNP is

not necessarily the functional variant. Therefore, without

appreciating this, it is possible that genes will be mapped

to variants that may not be causally responsible for the

phenotypic change. In addition, phenotypic differences

could also be driven by a combination of variants. It is

therefore important to identify which variants are func-

tional to explain the molecular mechanisms underlying

genetic associations.

Extensive linkage disequilibrium in the human genome

and the incomplete ascertainment of sequence variation in

p < 5 E-8

GWAS lead SNP  LD region + fine-mapping

LD r
2
 ≥ 0·8

Overlap gene

Nearest gene 

Gene from eQTL (short to long range)

Gene from chromatin capture (short to long range)

AA      AB        BB

ex
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si

on

gene

• Mendelian disease
• blood disorder
• known blood function

• Gene Ontology
• Pathways (Kegg, Reactome)
• Protein-protein interaction 
  (Uniprot, BioGRID)
• Haematopoietic gene expression atlas
  (Blueprint, DMAP, Haematlas)

Gene manipulation
• CRISPR-Cas9 knockout
• RNAi silencing
• shRNA 
• Morpholino constructs

Model organisms
• Danio rerio
• Drosophila melangaster
• Mus musculus

Cellular models
• Cancer cell lines 
  (HL60: neutrophil, K562:erythroblasts, 
  CHRF: megakaryoblast,
  U937: monocytes)
• pluripotent stem cell lines 
  (embryonic, induced pluripotent)

Assign gene to a variant Annotate and prioritise genes Experimental validation

Number of genes to be validated

Genes with known functions
 in haematopoiesis

Genes with unknown functions 
in haematopoiesis

Aim to discover novel genes 
with haematopoietic phenotype

Aim to produce gene list for validation
Genetic variant: lead or in LD 
or from finemapping result

Chromatin loop

Fig. 1 Strategies employed to prioritize gene targets. Summary of the main approaches that can be used for assigning genes to a genetic variant iden-

tified from GWAS and fine mapping approaches, and experimental approaches that can be used to validate the hypothesis that given gene candi-

dates are influenced by the variant of interest. For references relating to techniques please see Table S3.
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genotyping arrays make it difficult to distinguish between

independent genetic contributions. We outline in Fig. 2 the

strategies in prioritizing variants that are likely to underlie

causality by identifying regulatory effects or functionality

associated with specific variant candidates. From the

GWAS lead SNP, the search is expanded to take all variants

in high LD (e.g. r2 ≥ 0�8), that is variants that are highly

correlated with the lead SNP. For this purpose, it is recom-

mended to use the haplotype reference of the discovery

population. A first intuitive step is to assess whether a vari-

ant overlaps a coding region, which potentially leads to

amino acid sequence alterations. Changes to protein

sequence can in turn influence phenotype, thus indicating

that a variant may be functional. However, an altered pro-

tein is not always causative and a change in amino acid

sequence may not always change protein function.

To further refine association signals within the LD

region, we briefly describe in Fig. 2 the statistical meth-

ods used in fine mapping genetic variants. These

approaches can significantly eliminate proxy effects and

reduce the list to the most probable groups of trait-asso-

ciated variants with independent effects. There are how-

ever limitations to these methods. Conditional regression

may miss identifying functional variants when variants

are in perfect LD, whereas Bayesian methods [54] may

only assume a single functional variant in a locus. Never-

theless, Bayesian scoring can incorporate genomic anno-

tations (e.g. transcription start sites) and epigenetic data

(e.g. enhancer histone modifications) to set prior weights

in ranking variants [55–57].
Assigning functional characteristics to variants within

a LD region can help to indicate causality. However, the

non-coding location of a high proportion of reported

complex trait GWAS SNPs complicates assignment of

molecular mechanism due to our incomplete understand-

ing of the function of large regions on the non-coding

genome. This is where epigenetic information and knowl-

edge of the function of genomic architecture can be valu-

able in the generic annotation of non-coding variants,

notably those that are in gene deserts. In addition, a vari-

ant could be located hundreds of kilobases away in linear

scale from the target gene but due to chromatin looping,

it is spatially close to directly regulate gene expression.

Epigenetic markers such as histone modifications can

mark transcriptional activity (H3K4me3, H3K36me3), cis

and distal enhancer regions (H3K4me1, H3K27Ac), and

repressed genes (H3K27me3, H3K9me2/3). Genomic

assays such as DNAse-seq and ATAC-seq can identify

p < 5 E-8
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Annotate coding variants

Epigenome mapping 
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• Histones hQTL
• Allele specific events
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•  Splice site mutation
•  Missense

Database 
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Tools for annotation: 
Annovar,
Variant Effect Predictor (ENSEMBL)
VariantAnnotator (GATK),
VariantAnnotation (Bioconductor) 

Type

2

Methods
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• iterative univariate GWAS 
  with most significant 
  variants as covariates

Bayesian refinement
• use of GWAS summary 
  statistics to rank variants by
  posterior probability

Bayesian refinement
• with integration of  
  functional and epigenomic
  annotations 

Database for Epigenome
ENCODE
RoadMap
Blueprint
Fantom5
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Haploreg
RegulomeDB
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FunciSNP
GWAVA
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Enrichment analysis
Garfield
Maurano

Type of mark

• transcription factor 
   binding site

•  non coding RNA
   binding site
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   transcription,elongation,
   repressive domains
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    DNase HS, Faireseq, ATACseq

•   DNA methylation

GCTA, PLINK,
SNPTEST, GEMMA
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CAVIAR

Fgwas, PAINTOR,
PICS

Tools

AA      AB        BB
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• LIMIX
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• VBQTL
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Gene
Database: 
UK10K, 1000 Genomes, HapMap

Tools for LD calculation: 
SNAP, HaploView

Annotate non-coding variants

Fig. 2 Strategies employed to prioritize functional variants. Trait-associated variants and variants in high LD can be further defined through statistical

fine mapping approaches. Methods to annotate variants can vary depending on the location of the variant (non-coding versus coding). Demonstrating

potential functionality through functional approaches is necessary to infer variant causality and the mechanism underlying the association. For refer-

ences relating to techniques please see Table S3.
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open chromatins that may be bound by transcription fac-

tors or repressors (e.g. CTCF). Sequence variation at the

nucleotide level can add or remove the methylation of a

nucleotide and for instance can disrupt binding of tran-

scription factors (e.g. CTCF) especially if found in CpG

islands [58]. There are already available tools (Fig. 2) that

can easily integrate GWAS variants with large-scale epi-

genome data (e.g. ENCODE) and in addition to providing

LD information can also rank variants according to

cumulative evidence of regulatory marks. Lastly, analysis

can also be focused on individual variants and their asso-

ciation to epigenetic marks as molecular traits within the

context of quantitative trait loci (QTL) study and allele-

specific analysis (Fig. 2) [59]. Recently, alternative splic-

ing has been shown to influence transcriptional diversity

in haematopoietic progenitors in a cell specific manner

[60]. Therefore, new efforts in treating splicing as a quan-

titative trait (sQTL) may reveal novel loci. QTL mapping

can provide direct evidence of cis and distal regulation of

sequence variation affecting differences in epigenetic reg-

ulation, with the aim to link to transcriptional and phe-

notypic effect.

Epigenetic and regulatory information does, however,

differ based on cell-type and developmental or other con-

text, so availability of epigenetic data for cell types that

are most relevant to the phenotype or disease of interest

can greatly enhance the interpretation of functional con-

sequences of GWAS variants [12, 55, 61]. Enrichment

analysis (Fig. 2) is designed to rank and evaluate which

combinations of tissue/cell and functional annotation

types are most informative for a given phenotype of

interest [12, 55, 61]. There are numerous studies [1, 62]

using immortalized cancer cell lines (e.g. LCL, CHRF,

HL60) as model blood cells. However, the epigenome of

such cells has been demonstrated to be different from pri-

mary cells, for instance altered DNA methylation in LCLs

[63, 64]. More recently, the BLUEPRINT Project [65] has

been generating reference epigenome data for primary

blood cell types isolated from healthy blood donors and

for selected disease population. Future efforts in this field

will provide insights into how cellular specificity, devel-

opmental stage or response to external stimuli all impact

these quantitative traits.

Integration with these annotated regulatory genomic

features will be important to suggest hypotheses by which

potential functional variants may impact phenotype/traits

through regulatory effects, but these must be subse-

quently experimentally tested. As an example, variant

rs2038479 in LD with MPV associated lead SNP

rs10914144 was validated to mark an alternative pro-

moter site affecting transcription of gene DNM3 and

consequently leading to reduced proplatelet formation

in vitro [66]. The variant rs2038479 was prioritized for a

functional follow-up experiment because it was found in

a MK-specific open chromatin region that co-localizes

binding of megakaryocytic transcription factor MEIS1,

altogether a genomic evidence which suggests the mecha-

nism of how this variant regulates platelet phenotype.

Variants are often described as enriched with enhancer

or promoter marks and in vitro cellular assays can directly

demonstrate whether a variant possesses enhancer or pro-

moter activity through using luciferase reporter systems

[67]. Transgenic mouse assays enable an in vivo assessment

of enhancer activity [68]. Massively parallel reporter assays

extend this approach to assay thousands of variants for

enhancer activity [69]. Recent, larger scale, higher through-

put assays of enhancer activity include techniques FIRE-

WACh [70] and STARR-seq [71]. STARR-seq, applied to the

Drosophila genome, uses RNA-seq based readouts to mea-

sure enhancer strength and genomic location. Alterna-

tively, FIREWACh qualitatively assays nucleosome-free

regions of the mammalian genome. In future, it may be

possible to adapt these techniques in order to experimen-

tally estimate the proportion of non-coding variants that

possess enhancer activity, thus suggesting potential mech-

anisms in high-throughput experiments.

Interaction of a variant sequence with a protein can be

indicative of function, and disruption of these binding

sites can influence gene expression. In vitro gel shift

experiments can demonstrate interaction with specific

proteins [67]. Genomewide in vivo TF binding is assayed

using ChIP-seq, if cells from the individual with the

desired genotype are available through recall-by-geno-

type or the generation of iPSC lines [67]. Alternatively,

within one (heterozygous) individual, allele-specific

approaches can be used to investigate variant functional-

ity [64, 72].

Current challenges and future opportunities
in Blood GWAS

Rare, low frequency and copy number variants
from whole-genome sequencing

GWAS studies in complex traits and diseases including

blood phenotypes and disorders have until now mainly tar-

geted genetic variants that are relatively common in the

general European population (MAF>5%). However, associ-

ated common variants across all traits have only accounted

for less than 10% of genetic heritability in blood cell traits,

despite large sample sizes and dense genotyping. With

decreases in cost of whole-genome and whole-exome

sequencing, the reach of association studies should soon

extend to low frequency and rare variants with intermedi-

ate to large effect sizes, and more exhaustive evaluations

of structural variation (e.g. insertions, deletions, duplica-
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tions) [73]. Whole-genome sequencing will allow associa-

tion tests for variants across the full allelic spectrum and is

also expected to greatly increase the resolution of imputa-

tion-based analysis through the generation of enhanced

imputation panels. This initiative is being exemplified by

large-scale genetic studies such as the UK10K project and

in addition studies with much larger sample cohorts and

extensive meta data such as UK Biobank [38]. For instance,

the UK Biobank as a major national health bioresource

aims to genotype data for 500 000 volunteers and to

record extensive haematological measures and lifestyle

information. While these large-scale initiatives are

expected to greatly increase the pace of genetic discoveries

in the near future, it is yet unclear what prospects there are

for clinically translating GWAS findings, as the vast

majority of variants have neither well-defined biological

nor clinical implications despite the widespread use of

blood indices as biomarkers for diseases.

Current efforts in the epigenome of human blood

New studies suggest that epigenetics and not genetics

may contribute a substantial component of trait heritabil-

ity [74, 75]. Whether this is true or not, addressing the

lack of data in the epigenome of human primary cells

including blood tissues has been the motivation of vari-

ous consortia such as NIH Roadmap [76] and Blueprint

[65]. We now know that epigenetic data are necessary to

elucidate cell specific regulatory mechanisms that control

phenotypes [77] and severity of diseases and could sug-

gest new drug targets for therapeutic disease treatments

[65]. Recently, the NIH Roadmap released the largest cata-

logue of 111 human reference epigenomes in at least 24

different tissues, including 8 blood cell types [76]. Ongo-

ing efforts in the Blueprint consortium aim to provide the

first extensive reference epigenome (up to 100) of the

human haematopoietic tree covering more than 50 high-

quality purified distinct primary blood subtypes from

healthy individuals and their malignant leukaemic coun-

terparts [65]. However, there is still a lack of sufficient

data that interrogate the direct chromatin interaction

between putative enhancers and their target gene promot-

ers to finally validate long-range gene regulation. There

is a need therefore of corresponding high-quality geno-

mewide chromatin capture data such as Hi-C.

Pluripotent stem cell-derived blood as a model
system of haematopoiesis

Advancing technologies to expand and differentiate

pluripotent stem cells into various somatic tissues includ-

ing blood cells (e.g. megakaryocytes/platelets [78], ery-

throid progenitors/RBC [79], macrophages [80]) for

clinical and commercial applications opens unprecedented

opportunities to capitalize on the availability of these

novel cells as a model system of haematopoiesis. There is

potential to produce and bank all blood subtypes espe-

cially those rare populations, including genome-edited

mutations. The effect of variation can then be studied

from the start of differentiation with HSCs towards pro-

duction of mature blood cells. Although the differentia-

tion protocol, which is still a work in progress, tries to

recapitulate in vivo HSC differentiation in vitro, the

derived cells are not the exact equivalent of bone mar-

row-derived blood cells in terms of their full genomic

and epigenetic character and even functionality.

The genetic techniques we have described have identi-

fied many new regulators in processes such as haemato-

poiesis. With recent efforts from studies such as the

INTERVAL study and UK Biobank, association studies of

blood cell traits in very large cohorts (in the tens to

hundreds of thousands) will provide the means to vastly

increase the number of discovered loci. Full description

of traits including white blood cell differentials also

increases the power of these studies to discover new

loci. We now have all the tools in place to improve our

understanding of not only the haematopoietic system

but also, more generally, the functional consequences of

sequence variation and their contribution to complex

human traits.
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Additional Supporting Information may be found in the

online version of this article:

Table S1. Summary findings of 23 published GWAS stud-

ies in haematological traits. For variant annotation, we

used ANNOVAR and GENCODE.

© 2015 The Authors ISBT Science Series published by John Wiley & Sons Ltd on behalf of
International Society of Blood Transfusion, ISBT Science Series (2016) 11 (Suppl. 1), 211–219

From GWAS to function: lessons from blood cells 219


