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Abstract: In the last few decades, the increasing interest in microalgae as sources of new biomolecules
and environmental remediators stimulated scientists’ investigations and industrial applications.
Nowadays, microalgae are exploited in different fields such as cosmeceuticals, nutraceuticals and as
human and animal food supplements. Microalgae can be grown using various cultivation systems
depending on their final application. One of the main problems in microalgae cultivations is the
possible presence of biological contaminants. Fungi, among the main contaminants in microalgal
cultures, are able to influence the production and quality of biomass significantly. Here, we describe
fungal contamination considering both shortcomings and benefits of fungi-microalgae interactions,
highlighting the biological aspects of this interaction and the possible biotechnological applications.
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1. Introduction

Microalgae are photosynthetic unicellular or simple-multicellular microorganisms,
smaller than 400 µm, that form the base of the entire aquatic food chain [1]. They have
been able to adapt to a large range of temperatures, pH, salinities, and light intensities and
this led them to evolve into a wide variety of species, colonizing many places on earth
including extremophilic habitats [2–4]. In the last few decades, the increasing interest
in these microorganisms stimulated scientists to investigate how to use them as sources
of biomolecules or as sustainable solutions for environmental issues [5–9]. For instance,
microalgae can be used for bioremediation [8–10], or as biofertilizers and biostimulants
or biopesticides [7,11–16]. Due to their high concentrations of proteins, vitamins, and
fatty acids, microalgae have been also evaluated as possible nutrients for different animals
including both aquatic and terrestrial species [17–24]. Moreover, antioxidant molecules
and pigments can have beneficial effects on animal and human wellness [25–28].

For biotechnological applications, very large volumes of microalgae are required to
produce considerable amounts of biomass, which enhances the possibility of contami-
nations. The presence of biological contaminants can often cause a decrease in biomass
production [29–35] and sometimes massive death of microalgae within cultures [36].

Thus, a balance in the coexistence of microalgae and contaminants should be pursued
beneficially for large-scale cultivation. To this end, microalgae-mixed cultures and co-
cultures are effective methods to use. In mixed cultures, microalgae are mixed with a
varied spectrum of microorganisms [37–42]. Co-cultures consist of microalgae growing
with another particular species that is usually effective to boost the production of algal
biomass [20,43–45].

The interaction between microalgae and fungi is very interesting to consider even if less
investigated than the interaction between microalgae and bacteria [46]. In commercial culti-
vations, fungi contamination is of particular concern [47]. On the other hand, according to
recent literature, the microalgae-fungi interaction can be used to improve wastewater treat-
ment, to facilitate cultivation management, and to produce valuable metabolites [20,48–54].

J. Fungi 2022, 8, 1099. https://doi.org/10.3390/jof8101099 https://www.mdpi.com/journal/jof

https://doi.org/10.3390/jof8101099
https://doi.org/10.3390/jof8101099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://orcid.org/0000-0003-1647-3593
https://orcid.org/0000-0001-5791-2885
https://orcid.org/0000-0002-9862-1280
https://doi.org/10.3390/jof8101099
https://www.mdpi.com/journal/jof
https://www.mdpi.com/article/10.3390/jof8101099?type=check_update&version=1


J. Fungi 2022, 8, 1099 2 of 14

In fact, fungi are often used in co-cultures as they can promote the flocculation of microalgae,
improving their harvesting without using more expensive chemical flocculants [37,55–62].

Here, we will review the mechanisms of interaction between fungi and microalgae in
cultivation systems, highlighting some possible advantages for the industrial and biotech-
nological applications.

2. Overview on Biological Contaminants in Microalgal Cultivation Systems

Globally, more than 80% of algal biomass is generated in open reactors due to the low
costs of these cultivation systems [62]. Nevertheless, the use of closed cultivation systems
is expected to grow by 2024 because of their benefits [63]. Closed systems are mainly
represented by photobioreactors (PBRs), in which temperature, light, pH, and nutrients are
controlled, resulting in increased cell density and biomass collection [62]. However, both
systems have their downsides. In open systems, light saturation and seasonal influences
can affect algal biomass growth, making difficult the control of the culture. In closed
systems, the cost of the equipment used to maintain constant cultivation parameters and
sterilization is too expensive. Moreover, these two systems share the crucial challenge of
contamination [64]. The interactions between microalgae and other organisms such as
bacteria, fungi, viruses, and others are regularly present in nature [65]. Thus, it is common
for these types of relationships also to develop in open systems and, to a smaller degree,
in closed systems used for microalgae cultivation [66,67].

The groups of microorganisms considered as common contaminants in microalgae cul-
tivation systems are grazers, bacteria, fungi, photosynthetic organisms, and viruses [46,68].
The relationships among these classes of organisms and microalgae can be: (i) mutualistic
or symbiotic; (ii) commensalistic; (iii) parasitic. For instance, a symbiosis can be established
between bacteria and microalgae (e.g., Dunaliella salina with Marinobacter sp., Porphyridium
purpureum with Halomonas sp., Chlamydomonas nivali with Mesorhizobiums sp.), and they are
often co-cultivated for many purposes [56,65]. Interesting results were achieved in terms of
lipid production with the co-cultivation of Characium sp. And the heterotrophic bacterium,
Pseudomonas composti, or with Chlorella vulgaris and Stenotrophomona smaltophilia [69,70].
Parasitism occurs when an organism steals a resource from another organism. For example,
bacteria belonging to genera such as Alteromonas, Flavobacterium, Bacillus, Pseudomonas can
attack microalgae by cell-to-cell contact or by releasing extracellular compounds [71–73],
breaking the integrity of the microalgal cell walls, entering the cells, and destroying the
DNA [74].

Another example of organisms competing with microalgae are grazers such as ciliates,
rotifers, copepods, and Cladocera. These are larger than microalgae and can cause a rapid
and significant depletion in microalgal biomass [36]. Other photosynthetic groups, such as
competing microalgal species, can overwhelm the cultivated strain. Harmful microalgae
are probably the most difficult form of contamination to control, since the biological and
physical properties of the contaminant are very similar to those of the desired species [75].

Microalgae cultures may also be affected by several species of fungi [76]. Chytrid-
iomycetes spp. are host-specific parasites and among the most pathogenic fungal groups for
microalgal populations. The main concern in this case is that fungi can survive without
their host if they have enough organic compounds to live on [77]. This explains why
different fungal species are found in heterotrophic cultures in closed systems and why the
possibility of a fungal outbreak in the cultivation may occur.

3. Fungi in Aquatic Environment

Fungal cells have a true nucleus, internal cell structures, and a cell wall. A unique
property of their nuclear membrane and nucleolus is that they persist throughout the
metaphase of cellular division, unlike animals and plants cells. An important structure
of fungal cells is the wall that protects them from osmotic pressure and environmental
stress and determines the cell shape. The fungal wall also prevents the intrusion of toxic
macromolecules, and this may cause fungal resistance to certain fungicidal products [78].
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Although the cell wall composition differs among the different fungal species, most varieties
consist of: (1→3)-β-glucan, (1→6)-β-glucan, (1→3)-α-glucan, chitin, and glycoproteins [79].

A hypha is another fungi trait which consists of one or more cells surrounded by a
cell wall. The multitude of cells forming the hypha is internally divided by cross-walls
called “septa”. This fungal structure is classified as a true hypha in molds (multicellular
filamentous fungi) and pseudo-hyphae in yeasts (unicellular filamentous fungi). A mass
of hyphae constitutes the thallus (vegetative body) of the fungus, composed of mycelium.
These filaments branch out in all directions, thus colonizing wide spaces in their habitat.

In natural aquatic environments, the key function of fungi is the degradation of dead
plants or other organic material. Decomposition is vital for the nutrient cycle, resulting in
the production of fungal biomass, the formation of reproductive spores, and transformation
products as dissolved organic matter [80]. This process enhances the palatability and
nutritional quality of the litter for the invertebrates [81], consequently transferring energy
and nutrients to higher trophic levels [82]. Nevertheless, the fungal role in the natural
environment is still largely underexplored even if fungal presence has been frequently
observed [6,83,84]. Different classes of fungi were identified also in artificial aquatic habitats
such as: (i) urban wastewaters [85]; (ii) algal mass cultures [86]; (iii) hydroponic systems
for plants [87].

Predominant genera of fungi in different aquatic habitats are shown in Figure 1.
In these habitats, the fungi contribution and their interaction with other organisms are
influenced by several abiotic factors such as nutrient availability, light, temperature, and
pH. Visible light is an important source of energy for autotrophic organisms, and, although
fungi are not photosynthetic organisms, they are affected by light. Over the last few years,
some studies analyzed the effects of light on primary metabolic pathways, the production
of secondary metabolites, and sporulation related to fungi [88]. Fungi exploit light to
adapt to stressful conditions and to orient themselves in the environment and produce
reproductive structures in the right place and the right time [88,89]. In addition, light
has different effects on the biosynthesis of mycotoxin, depending on light intensity and
wavelength, as well as on the species of fungi. In Penicillium nordicum and Penicillium
verrucosum, blue (455–470 nm) and red (627 nm) wavelengths reduce the biosynthesis of the
ochratoxin A and influence their growth and metabolism [90,91]. Other influencing factors
for fungal growth are environmental temperature and pH [92]. In general, fungi prefer a
liquid media with pH ranging from 3.0 to 8.0, with a growth optimum around pH 5.0 [92].
For instance, Aspergillus spp. are more tolerant to alkaline pH, while Penicillium spp.
appear to be more tolerant to acidic pH [93]. Fungi can actively modify the pH of their
environment, adapting it to their needs, by secreting acids or alkali [94]. The ability of pH
change depends on the nutrient availability, the organic acids being produced, and the
ability of the fungus to remove ammonium ions from media and to excrete H+ deriving
from NH4

+ assimilation [94,95]. Several pathogenic fungi acidify the environmental media
as a strategy to damage host tissues [94]. Temperature is another environmental factor
influencing metabolic functions of microorganisms [96]. Fungi can adapt at a relatively
large range of temperatures; in aquatic environments (natural and not), they are found at
temperatures ranging from 0 to 34 ◦C [97].
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Figure 1. Predominant genera in different aquatic habitats. Yellow: coastal and oceanic 
environments; Blue: deep sea and sub-sea floor; Purple: lakes; Red: rivers, streams, and ponds. 
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4. How Fungi Interact with Other Organisms in Aquatic Habitats

Although fungi are fundamental for aquatic food chains, they can also operate as
parasites. Fungal parasitism can highly influence the dynamics that occur among the species
that populate aquatic ecosystems [98]. Parasitism is not often clearly distinguishable from
mutualism [99], but there is evidence that both parasitic and mutualistic fungal species exist.
Fungi are considered among the most dangerous parasitic species for other organisms,
as they can strongly reduce the number of parasitised individuals [77]. However, fungi
are not obligate parasites and only use the host for completing their life cycle. The most
common modus operandi of fungi when interfacing with other organisms is the release
of metabolites. Fungi synthesize a broad spectrum of chemical compounds from either
primary or secondary metabolism. Different secondary metabolites have been studied
for their potential as pathogenic substances, such as mycotoxins, enzymes, siderophores,
pigments, and others. Secondary metabolites released by species belonging to Fusarium
and Aspergillus are able to activate specific gene clusters within bacteria, establishing
either a mutualist or competitive interaction [100,101]. Antagonism between fungi and
bacteria seems to be frequent, and it is related to nutrient competition. Nevertheless,
synergistic interactions have also been demonstrated [87]. Baudy et al. [102] described the
positive effect that bacteria can have on the competition occurring between different fungi
species. Bacterial inhibition of fungal growth plays a pivotal role during fungi colonization,
enabling fungal species with lower growth rates to colonize the aquatic environment
under lower competitive pressure. Fungi also hold a relation with viruses that can be
both mutualistic and antagonistic [87]. Recently, it was demonstrated that viruses can
infect fungi in aquatic habitats [103,104]. However, further studies need to be conducted
on this relation. Furthermore, both microalgae and fungi can be present in the same
waterbody, and they are usually in competition for the nutritional resources [105]. In marine
habitats, physical associations between fungi and microalgae have been reported to induce
microalgal aggregation, while no data are available on their chemical interactions [56,84].

In summary, fungi can have a positive or negative impact on other organisms as they
can be involved in a range of interactions shifting from cooperation to competition [106].
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5. Fungi in Microalgae Cultures

Fungi can act as a competitor or symbiont with freshwater and marine microalgae
cultures. There are many examples of spontaneous and induced fungal contamination of
microalgae cultures (Table 1). Complete removal of undesired biological parasites at the
industrial scale is neither cost-effective nor achievable [107].

Table 1. Parasites reported for microalgae in laboratory culture and open raceways.

System Microalgal Host Parasite’s Species References

Laboratory
culture Haematococcus pluvialis Paraphysoderma

sedebokerensis (Chytrid) [108–110]

Chlorella vulgaris Aspergillus niger [69]

Chlorella vulgaris Mucor sp. [111]

Various diatoms
Chytriomyces sp. and

Zygorhizidium sp.
(Chytrid)

[112]

Scenedesmus sp. Amoeboaphelidium
protococcarum (Aphelid) [113]

Scenedesmus sp. Phlyctidium scenedesmi [114]

Asterionella Formosa
Rhizophydium
planktonicum

(Chytrid)
[115]

Nannochloropsis oceanica Mortierella elongata [116]

Nannochloropsis oceanica Aspergillus sydowii [117]

Chlorococcorum minutum Rhizophydium algavorum
(Chytrid) [118]

Spirulina platensis Rhodotorula glutinis [119]

Closterium sp. Leptophyrs vorax
(Amoebae/Endomyxa) [120]

Mass culture Scenedesmus sp. Phlyctidium scenedesmi
(Chytrid) [114,121]

Scenedesmus sp. Amoeboaphelidium
protococcarum (Aphelid) [122]

Scenedesmus sp. Rhizophidium sp. [123]

Scenedesmus dimorphus Amoeboaphelidium
protococcarum [124]

Grasiella sp.

Amoeboaphelidium
protococcarum (Aphelid)

and Rhizophydium
scenedesmi (Chytrid)

[125]

Members of the Chytridiomycota are one of the most common fungal parasites associ-
ated with microalgae in both open and closed culture systems. Their hosts’ spectrum can
be narrow or wide, depending on the species. This group of fungi causes huge losses in mi-
croalgae populations, and unfortunately is resistant to several disinfection techniques [77].
Aphelids are intracellular parasites that feed on microalgae and are close to the taxon of
chytrids [126]. The group of Labyrinthulyds includes some important parasites of ma-
rine microalgae. However, they have not been described in commercial systems yet [77].
Zoosporic fungi negatively affect diatoms’ biomass production [127]. Many of these fungal
pathogens caused the disappearance of several marine microalgae in specific areas of India,
the USA, and Europe, and it is thought that these species can be even more harmful in
commercial systems [128].
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Fungal infection occurs in several crucial steps. The attack occurs within a few days,
and fungi damage the microalgae’s cell walls. Specific enzymes are presumably involved in
this stage. Subsequently, pathogens settle, encyst, and germinate inside the host. Microalgae
usually lose their green color, turning brown. Young microalgae during their motile phase
are not infected but are targeted as soon as they mature [129].

The nutrients present in the culture systems and that may facilitate the spread of
fungal parasites are inorganic salts, potassium, magnesium, sulphate, phosphate. In hetero-
and mixo-trophic microalgal cultures, the presence of organic substrates such as glucose or
sucrose induces a significant growth in the fungal population and increases contamination.
On the contrary, the presence of bicarbonate or galactose in the medium severely limits the
contamination of microalgal cultures [108,130].

Generally, a molecular identification of fungal contamination is time-consuming and
costly. Rather, strategies to eliminate or reduce contaminants should be applied. Several
methods are used to deal with contamination. An example of a biological approach is the
adoption of viruses attacking fungi as well as bacteria [131]. This is a viable strategy as long
as viruses also parasitize microalgae culture. A most traditional, chemical resolution is the
application of triticonazole and other commercial fungicides. However, these fungicides
have been reported to be toxic also for some microalgae species [117].

In summary, it is of pivotal importance to manage the cleaning and sanitization phases
correctly, to avoid large contaminations by pathogenic fungi, specifically in closed systems.
Contamination can be caused by inadequate sterilization of facilities, control of inocula,
culture media, water supply, and aeration gases [68]. Studying interactions and dynamics
in fungi-microalgae relationships is becoming very important for optimizing yields and the
productivity of algal factories.

6. Co-Culture of Fungi-Microalgae: The Biotechnological Use

The interaction between microalgae and fungi existed for more than 600 million
years [132]. However, it was recently investigated since the fungi-microalgae consortium
serves several biotechnological applications.

One of the most important advantages of co-cultures is related to microalgae harvest-
ing. This can be economically challenging because of microalgae’s small size (2–40 µm),
motility, negatively charged surface, and low cell density (0.3–0.5 g/L) [133,134]. In fact, har-
vesting can account for more than 50% of total production costs [52]. Different approaches
have been used to collect microalgae, and each of them has evident limitations [52,54,135].
Fungi have potential as bio-flocculants since self-pelletization of fungi occurs in various
fungal strains. This same property can lead to the increase in algal biomass collection [135].

The co-pelletization is made possible since the surface of microalgae is negatively
charged because of phosphoric, phosphodiester, amine, hydroxyl, and proton-active car-
boxylic functional groups, while the surface of fungi is positively charged by their surface
containing polysaccharides [135]. This causes microalgae to be entrapped in fungal hyphae
(Figure 2), ranging in diameter from 2 to 10 mm, where they aggregate, segregating from
the surrounding liquid, which also facilitates microalgae recovery [52,56,136].

Fungal spores or fungal pellets can be included in the microalgae culture for a more
efficient symbiosis and the consequent enhancement of co-pelletization. However, the
technique is expensive as the pellet consumes nutrients. This technique would be more
applicable when fungal growth is achieved without economic investment, as cultivating
fungi or waste [137]. Costs of co-pelletization are further reduced as fungi consume sugars
and nutrients produced by microalgae photosynthesis, and, in return, the algal biomass
increases due to the retention of water and nutrients by fungi [52,138,139].

Different parameters can however affect the microalgae-fungi interaction in both
positive and negative ways. Strain selection is one of the major factors to consider when
developing an effective binary culture system. Assuming the primary partner is a well-
defined microalgal species, the secondary partner (the fungus) needs to (i) be able to co-exist
with this species; (ii) neither inhibit its growth nor be toxic for it; (iii) have an adequate
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communication (metabolite/peptide) profile; (iv) be able to use the primary species’ wastes
as feedstock for its growth. In most cases, choosing two species already living in the
same habitat can be a good starting point for the development of the fungi-microalgae
consortium [52,139,140].
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It is also important to consider when, during the cultivation, to add the fungal inocu-
lum, and in which ratio with the primary partner to avoid overgrowth of either species
at the expense of the other [51,141]. To limit growth imbalance, control of the amount of
nutrient within the medium culture is also essential. It was previously established that
the fungi-microalgae consortium usually requires mixotrophic conditions as the fungi are
obligate heterotrophs, and green microalgae are photoautotrophs [142,143]. This requires
fungal growth on expensive nutrients such as glucose. However, cheaper compounds
such as sucrose, glycerol, sodium acetate can be used as alternatives to glucose [45], and
fungal growth on food wastes is being now attempted, as anticipated. In all cases, it is
fundamental that microalgae and fungi do not reach the peak of their growth during the
same experimental phase [144] to avoid the overwhelming of one or the other species.

The co-cultivation of microalgae and fungi is also strongly dependent on factors such
as pH, temperature, agitation rate, etc. A more acidic pH favors an enhanced growth of
fungal hyphae [145]. However, the acidic pH of the growth medium frequently becomes
more basic as bicarbonate (HCO−3) is commonly converted to CO2 and hydroxide ions
(OH−) [146]. Microalgae consume CO2, inducing an excess of OH− within the growth
medium, resulting in a pH increases [147].

Alterations in temperature can also make the system unstable, altering the microalgae
lipid profile. Co-culturing fungi and microalgae that are similarly tolerant to stresses (e.g.,
halotolerant or thermophile) is often suggested [2,4,148].

The fungi-microalgae binary system has been adopted for several scopes. Since
wastewaters pose a great risk to human health and ecosystems, as they carry many toxic
substances, the fungi-microalgae co-culture was recently considered as a viable approach
for their treatments and remediation [149]. In water, as previously mentioned, inorganic
carbon is mainly present in the form of HCO−3 that microalgae can actively absorb and
convert directly into CO2 [146]. Subsequently, they convert CO2 into organic compounds,
via photosynthesis, further releasing oxygen. Oxygen will be used by fungi for their
respiration process and the organic compounds for their growth.

In most cases, wastewater needs to be purified from heavy metals. It was previously
demonstrated that microalgae can face the presence of high concentrations of heavy metals
when grown with fungi, as fungi secrete organic acids that create favorable acidic conditions
for the transformation of these toxic molecules into less toxic compounds [150]. Fungi
and microalgae walls contain functional substances such as cellulose, proteins, and other
polymers, and they may help by absorbing other elements due to mechanisms such as
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electrostatic interactions, ion exchange, and chelation/complexation [45]. Furthermore,
fungi are also able to release extracellular polymeric substances (EPS) that can bind metal
ions, playing an important role in protecting the microalgae from stress and preventing
a reduction in total biomass in stressful conditions [151]. Wang et al. [52] demonstrated
that the synergic action between Synechocystis sp. PCC6803 and A. fumigatus induces 98%
adsorption and immobilization of Cd(II) within wastewater.

Fungi-microalgae systems can be also involved in other wastewater treatments which
involve the purification from antibiotics, food organics, and nitrogen (N) and phosphorus
(P) [48,152]. Microalgae are not able directly to utilize some substrates, and a binary culture
with fungi might represent a suitable option to overcome this obstacle. For example, one-
step co-cultivation of C. pyrenoidosa with A. oryzae exhibited an optimal removal efficiency
of the chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) [153].

The microalgae-fungi consortium made by Chlorella vulgaris and P. geesteranus prompted
a high-rate removal of COD, TN, and TP, as well. Moreover, the presence of the filamentous
fungus enhanced growth performance and photosynthesis of C. vulgaris resulting in a
consistent CO2 removal ability [54]. Another culture binary system demonstrating effec-
tiveness is Chrorella vulgaris and Aspergillus oryzae. The fungi-microalgae pellet originating
by this symbiosis presented a remarkable adsorption capacity of sulfamethazine (SMZ),
sulfamonomethoxine (SMM), and sulfamethoxazole (SMX) [20].

Cooperation between microalgae and fungi is not only convenient for wastewater
treatments, but also for producing a wide range of distinctive substances of use in food,
cosmetic, and renewable energy industries. For instance, the demand for fish oil, rich in
polyunsaturated omega-3 fatty acids (PUFA), is constantly growing, while over-fishing
is becoming an urgent issue to cope with. Marine microalgae and diatoms produce an
impressive amount of PUFA, among which the most important are Eicosapentaenoic acid
(EPA) and Docosahexaenoic acid (DHA) [154]. However, up to now, no oil-producing
microalgae possess a good ratio of these two compounds. Co-culturing microalgae with
fungi has been recognized as a favorable strategy to solve this problem alternatively. For
example, the culture system composed by P. tricornutum and A. limacinum produced EPA
and DHA in advantageous ratios [155]. Carotenoids’ production is also enhanced when
co-culturing fungi and microalgae. Carotenoids produced by co-cultivation of C. vulgaris
and R. glutinis were higher than those made by each culture [156].

Microalgae are considered one of the best options for generating energy without
impacting the environment, and they gained attention as suitable alternative bio-fuel
sources. Moreover, in this case, co-cultivation with fungi may further increase the value of
microalgae as energy crops. For example, co-cultures of C. vulgaris and P. geesteranus [54]
and of various microalgae with A. niger and T. reesei [157] were considered valuable sources
of bioenergy. Indeed, when microalgae were grown with the two filamentous fungi, they
exhibited increased cellulase activity. This improves the hydrolysis process of cellulosic
materials which is considered a key point for bioethanol production [157].

7. Concluding Remarks

The fungi-microalgae relationship needs to be better explored in systems of microalgae
cultivation as some fungal species can contaminate algal culture, leading to an extensive
reduction in the algal population. On the other hand, the relationship between fungi and
microalgae is a mechanism that could potentially be used for different industrial purposes
to develop productions cheaper and more sustainable than with other methods.
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