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Abstract

Background: One of the most common goals of hierarchical clustering is finding those branches of a tree that
form quantifiably distinct data subtypes. Achieving this goal in a statistically meaningful way requires (a) a measure
of distinctness of a branch and (b) a test to determine the significance of the observed measure, applicable to all
branches and across multiple scales of dissimilarity.

Results: We formulate a method termed Tree Branches Evaluated Statistically for Tightness (TBEST) for identifying
significantly distinct tree branches in hierarchical clusters. For each branch of the tree a measure of distinctness,
or tightness, is defined as a rational function of heights, both of the branch and of its parent. A statistical
procedure is then developed to determine the significance of the observed values of tightness. We test TBEST as
a tool for tree-based data partitioning by applying it to five benchmark datasets, one of them synthetic and the
other four each from a different area of biology. For each dataset there is a well-defined partition of the data into
classes. In all test cases TBEST performs on par with or better than the existing techniques.

Conclusions: Based on our benchmark analysis, TBEST is a tool of choice for detection of significantly distinct
branches in hierarchical trees grown from biological data. An R language implementation of the method is
available from the Comprehensive R Archive Network: cran.r-project.org/web/packages/TBEST/index.html.
Background
Hierarchical clustering (HC) is widely used as a method
of partitioning data and of identifying meaningful data
subsets across multiple areas of biology including, prom-
inently, high-throughput genomics. Most commonly an
application consists of visual examination of the dendro-
gram and intuitive identification of sub-trees that appear
clearly distinct from the rest of the tree. Obviously,
results of such qualitative analysis and conclusions from
it may be observer-dependent. Quantifying the interpret-
ation of hierarchical trees and introducing mathematic-
ally and statistically well-defined criteria for distinctness
of sub-trees would therefore be highly beneficial and is
the focus of this work.
The need for such quantification was recognized

some time ago, and methods have been designed for (a)
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identifying distinct data subsets while (b) making use of
hierarchical tree organization of the data. These methods
fall into two categories, depending on whether or not they
employ statistical analysis. The simplest approach that
does not rely on statistical analysis is a static tree cut,
wherein the tree is cut into branches at a given height.
This procedure is guaranteed to produce a partition of the
data, but provides no way to choose the height at which to
cut. Moreover, some partitions cannot be produced by a
static cut. Dynamic Tree Cut, or DTC in the following [1],
is a more sophisticated recipe, capable of generating parti-
tions not achievable by a static cut. However, DTC parti-
tions depend on the minimal allowed number of leaves in
a branch, a user-defined parameter that cannot be deter-
mined by the method itself.
In addition, there are methods for choosing a tree

partition from considerations of branch distinctness and
its statistical significance. Sigclust, or SC in the following
[2], is a parametric approach wherein a two-way split of
the data is deemed significant if the null hypothesis that
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the data are drawn from a single multivariate normal
distribution is rejected. The method is designed to work
in the asymptotic regime, where the dimensionality of
the objects being clustered far exceeds the number of
the objects. In application to trees SC works in a top-
down fashion, by first examining the split at the root
node and proceeding from a parent node to its daugh-
ter nodes only if the split at the parent node has been
found significant. Unlike SC, the sum of the branch
lengths method, or SLB in the following [3] is designed
specifically for hierarchical trees and utilizes a measure
of distinction between two nodes joined at a parent
node that is linearly related to the heights of the two
daughter nodes and that of the parent. Similarly to SC,
SLB adopts a top-down scheme.
A method introduced here is termed Tree Branches

Evaluated Statistically for Tightness (TBEST) and shares
features with the existing approaches. Like SC and SLB,
TBEST employs statistical analysis to identify signifi-
cantly distinct branches of a hierarchical tree. Similarly
to DTC and SLB, it uses tree node heights to assess the
distinctness of a tree branch. As with the other three
methods, partitions generated by TBEST are not neces-
sarily accessible by a static cut.
At the same time, TBEST differs from the existing

designs in several aspects, two of which are critical. First,
unlike DTC, SC and SLB, it examines all the tree nodes
simultaneously for distinctness. Secondly, unlike SLB, it
combines node heights non-linearly to construct a statis-
tic for distinctness that is better able to handle a tree in
which distinct branches of approximately equal numbers
of leaves occur at different heights. The key properties
of all four methods are summarized in Table 1, and a
comparison of the methods’ computational complexities
is provided in Additional file 1.
In the remainder of this work we formulate TBEST

and systematically compare its performance to that of
DTC, SC and SLB on a number of benchmark datasets
originating from a variety of biological sources. In all
cases we find that TBEST performs as well as or better
than the three published methods. We conclude by
discussing generalizations of TBEST and its relation to
other aspects of cluster analysis.
Table 1 Properties of TBEST and of the three published
methods

Method Order of examining the tree Significance estimated

TBEST all internal nodes in parallel Yes

SC top down Yes

SLB top down Yes

DTC top down and bottom up No
Methods
Consider a set of objects with pair-wise relations given
by a dissimilarity matrix. Given a linkage rule, a
hierarchical tree can be grown for the set. We will only
consider inversion-free linkage rules here. The tree is
specified, in addition to its branching structure, by the
heights of its nodes. The height of the node quantifies
the dissimilarity within the data subset defined by the
node. We wish to construct, for each node of the tree, a
measure of how distinct the data subset corresponding
to the node is from the data set. The special case of the
objects being points in a Euclidean space, with the dis-
similarities defined as distances between the points, may
be used for guidance in this construction. The node
height then quantifies the linear extent of the data sub-
set defined by the node. Accordingly, it has been pro-
posed [3] to make the measure of distinctness of a node
n linear in the difference in heights between a parent P
(n) of n and that of n itself. An example of a one-
dimensional dataset, tabulated in Additional file 2 and
shown in Figure 1, illustrates a difficulty with such con-
struction. Both the subsets shown in blue and in green
are clearly distinct from the rest of the data, but the dif-
ference in heights between the blue node and its parent
is not as great as that between the green node and its
parent. Thus, based on the parent to child difference in
heights, one would conclude, counter-intuitively, that
the blue subset is not nearly as distinct as the green
subset. A measure in better agreement with intuition is
the relative difference of heights:

S nð Þ≡ h P nð Þð Þ‐h nð Þ
h P nð Þð Þ ð1Þ

where h(n) is the height of node n. In the following we
refer to S(n) as the tightness of node n. In the absence of
inversions, the tightness of any node is a number
between 0 and 1. In particular, S(n) =1 identically if n is
a leaf. The two subsets highlighted in Figure 1 are nearly
equally tight by this measure, despite the disparity in
their heights.
To enable statistical analysis of tightness, a null distri-

bution of S(n) is required, for making comparisons with
the observed S(n). This null distribution is obtained by
randomizing the dataset from which trees are grown.
How such randomization is to be performed depends on
the type of the data and on the broader context of the
study and cannot be specified in general. For example, if
the data matrix represents gene expression, with genes
as rows and observations as columns, it may be appro-
priate to randomize the data by permuting values inde-
pendently within each row. However, in other situations
a more restrictive randomization should be adopted. For
example, the elements of a binary data matrix may
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Figure 1 Illustration of the definition of tightness. The data consist of 280 points in one dimension, drawn from a normal mixture with the
components N(0.5,0.42) (blue), N(11,12) (green) and N(5,22); (black). A) A histogram of the input data. B) A hierarchical tree of the input data, grown
using the absolute difference of the data values as the dissimilarity measure, and single linkage. Thus, the node heights shown in (B) are equal to the
corresponding gaps in the data, as indicated in (A). Nodes n1 and n2 are approximately equally tight.
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represent the mutation status at a set of genomic posi-
tions (rows) in a collection of genomes (columns). The
investigator may wish to randomize the data while pre-
serving both the site mutation frequencies (row sums)
and the overall mutation burden within each genome
(column sums).
Here we design a general procedure for constructing

the null distribution of tightness for any given data
randomization scheme. To guide this design, we gen-
erated distributions of tightness in trees grown from
randomized data for multiple combinations of datasets,
definitions of dissimilarity, linkage rules and randomization
methods, as listed in Table 2. As Figure 2 and Additional
Table 2 Combinations of data sets, dissimilarity, linkage and

Dataset Dissimilarity Linkage Data permutati

Simulated6 Euclidean complete Independently fo

(1 - Pearson correlation) average

Leukemia Euclidean Ward Independently fo

(1 - Pearson correlation) average

T10 Euclidean Ward Independently fo

(1 - Pearson correlation) average

Organelles (1 - Pearson correlation) Ward Independently fo

(1 - Pearson correlation) average

Chondrosarcoma (1 - Spearman correlation) Ward Independently fo

(1 - Kendall correlation) average

Manhattan Ward
file 1: Figure S1 illustrate, the shapes of these distributions
generally depend on the number of leaves and, in most
cases examined, the peak of the distribution occurs at
higher tightness for smaller number of leaves. The identity
S(n) =1 for single-leaf nodes is consistent with this obser-
vation. We therefore conclude that, for a given observed
value of tightness, the appropriate null distribution should
be sampled by repeated randomization of the data, growing
a tree for each randomization, selecting among its nodes
the ones with the numbers of leaves matching the observa-
tion, and determining the tightness of these nodes. How-
ever, it is not guaranteed that, in any tree grown from
randomized data, there will be a unique node with a
randomization methods, used for testing TBEST

on method

r each coordinate (column)

r each gene (column)

r each chromosome; identically for all cores (columns) in a chromosome

r each protein (column)

r each surface marker (column)
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Figure 2 Null distribution of tightness. The null distribution of node tightness S depends on the number of leaves. The empirical probability
density distributions for the Simulated6 set with (1 - Pearson correlation) dissimilarity – average linkage combination (A) and for the Organelles
set with (1 - Pearson correlation) dissimilarity – Ward linkage combination (B) are shown, for three different values of the number of leaves in
each case. Each plot is based on 5000 randomizations of the respective data set.
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number of leaves exactly equal to that of the observed
node. To resolve this difficulty conservatively, we adopt the
following procedure. If, for a given data randomization, the
tree contains nodes with the number of leaves exactly as
observed, the highest S(n) computed for these nodes is
added to the sample. Otherwise we consider all the nodes
with the number of leaves nearest the observed one from
above and all those with the number of leaves nearest the
observed one from below, and add to the sample the high-
est S(n) of any of these nodes. Note that, since S(n) = 1 for
all single leaves, the latter can never be found significantly
tight, and the analysis as described is only valid for internal
nodes.
With the sampling procedure specified, tests for statis-

tical significance of tightness can be conducted for all
the internal nodes of the observed tree, excluding the
root, since the latter has no parent. The number of tests
Table 3 Properties of the five benchmark datasets

Dataset Origin

Simulated6 Simulation of gene expression

Leukemia mRNA levels from microarray analysis

T10 DNA copy number analysis, sequencing

Organelles Proteomic analysis, using mass spectrometry

Chondrosarcoma Flow cytometry analysis of surface markers from fluor
is therefore two less than the number of leaves. Due to
this multiplicity of tests, higher levels of significance are
required for rejection of the null hypotheses for trees
with larger numbers of leaves. A straightforward way to
handle this requirement would be to increase the size of
the sample from the null distribution by performing
more randomizations. However, for trees with large
numbers of leaves this simple-minded approach may be
rendered impractical by computational cost. Instead,
higher levels of significance may be accessed by using
the extreme-value theory (EVT) to approximate the tail
of the null distribution, thereby permitting considerable
economy of computational effort [4]. We have used the
EVT-based method alongside the more costly purely
empirical computation of significance in our bench-
mark studies reported in the following, and found the
two approaches to be in good agreement, as shown in
Number of
leaves

Number of
variables

True number
of classes

60 600 6

38 999 3

100 354 4

24 4768 4

escence intensity 32 11 4
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Additional file 1: Figure S2. The p-values displayed in
the following were computed by applying a multiple-
hypotheses correction of the form:

p ¼ 1 – 1 – peð ÞN−2; ð2Þ

where pe is the empirical p-value and N is the number
of leaves.
We use TBEST in the following to identify most

detailed significant partitions of the data into branches
of a given hierarchical tree. We define a partition to be
significant with a threshold α if (a) every part is a branch
and (b) if for every part at least one of the children of its
parent node is tight with the p-value p < α. Among the
significant partitions with a threshold α we find the most
detailed, i.e., the one with the highest number of parts.

Availability of supporting data
The dataset tabulated in Additional file 2 was generated
by a computer simulation in the course of this work.
The remaining five datasets used in this work, as
detailed in the Results section, are public, and each was
made available with the corresponding publication [5-9].
Our study involved no human participants and required
no participant consent.
A

D

Figure 3 TBEST compared to published methods for Simulated6. Perfor
Simulated6 dataset for the Euclidean dissimilarity – complete linkage com
average linkage (bottom). For each combination the left portion (A or D) sho
the partition best matching the truth for each of the methods are shown as c
partition is plotted against the required level of significance α for each of
of significance is shown by a dashed vertical. In the right portion (C or F), the
allowed number of leaves for DTC.
Results
We evaluated the performance of TBEST in compari-
son to three published methods of identifying distinct
subsets of observations, namely, DTC, SC and SLB. Of
the five datasets used in the evaluation one is synthetic,
generated to simulate a set of gene expression profiles.
The remaining four datasets share two common fea-
tures: they originate in biological experiments and in
each case there is an independently known, biologically
meaningful partition of observations into types. We call
this known partition “truth”, and the corresponding
types the true types, henceforth. The essential proper-
ties of the benchmark datasets are summarized in
Table 3. We also tabulated the execution times of the
four methods in Additional file 1.
To better judge the performance of TBEST in com-

parison to the other three algorithms, we considered,
for each dataset, more than one combination of dis-
similarity and linkage methods used for hierarchical
clustering. With the exception of the third benchmark
case, randomization of the input data, as required for
both TBEST and SLB, consisted of randomly permuting
the observed values, independently for each variable.
The degree of agreement between a computed partition
of the data and the truth is quantified in terms of
B

E

C

F

mance comparison of TBEST and the three published methods in
bination (top) and for the (1 - Pearson correlation) dissimilarity –
ws the corresponding dendrogram, under which then true partition and
olor bars. In the middle portion (B or E), the relative cRI of the computed
the significance-based methods. The customary α = 0.05 threshold
relative cRI of the computed partition is plotted against the minimal
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corrected-for-chance Rand index, or cRI in the following
[10]. Briefly, the original Rand index is a measure of agree-
ment between two partitions, 1 and 2, of n objects, defined
as the number of concordant pairs divided by the number
of all pairs: RI =Nc /Cn

2, where Nc = Σi<j[δ
1
ij δ

2
ij + (1-δ1ij)

(1-δ2ij)] and Cn
2 is the binomial coefficient. Here δkij = 1

if objects i and j belong to the same part in partition k
and δkij = 0 otherwise. cRI corrects this definition by
accounting for random concordance: cRI = (Nc – E(Nc))/
(Cn

2 – E(Nc)), where the expectation E(Nc) is computed
under the assumption that, for each partition, the as-
signment of objects to parts is random, while the sizes
of all parts are given and fixed. It should be noted that
the subsets of the data identified as distinct by TBEST
and the other three techniques by necessity correspond
each to a branch of a tree. This, however, is not neces-
sarily the case for the true types, some of which do not
correspond to a single branch. As a result, a perfect
match between any computed partition and the truth
may not be possible, and the maximal attainable value
of cRI may be below 1. For this reason, to evaluate the
performance of TBEST and the published methods
across benchmark datasets, we also identify, for each
tree considered, a partition into branches that best
matches the truth and determine cRI between that
A

D

Figure 4 TBEST compared to published methods for Leukemia. Perform
dataset for the Euclidean dissimilarity – Ward linkage combination (top) and f
For each combination the left portion (A or D) shows the corresponding
matching the truth for each of the methods are shown as color bars. In t
is plotted against the required level of significance α for each of the significan
shown by a dashed vertical. In the right portion (C or F), the relative cRI of th
leaves for DTC.
partition and the computed partitions for each of the
methods.
In each of the cases in the following we studied how

the most significant detailed partition found by TBEST,
and its correspondence to the truth, vary with the sig-
nificance threshold α. In an analogous fashion, we ana-
lysed the detailed partitions generated by SLB and SC.
For DTC, which is not a statistically supported method,
we examined the properties of the most detailed parti-
tion as a function of the minimal allowed number of
leaves in each part.

Simulated6
The data are a sample of size 60 in 600 dimensions [5],
represented by a 600 × 60 matrix. The true partition of
the data is into six subtypes, with the sizes of 8, 12, 10,
15, 5, and 10. Each of the 600 variables represents a
simulation of a gene expression. For 300 of these genes
the values are sampled from the same “background” nor-
mal distribution for all subtypes. The remaining 300
genes fall into six non-overlapping subsets of equal size.
Each subset corresponds to exactly one subtype, and for
that subtype only the genes in the subset are up-
regulated, i.e., sampled from a normal distribution that
differs from the background. Column 8 of the data
B

E

C

F

ance comparison of TBEST and the three published methods in Leukemia
or the (1 - Pearson correlation) dissimilarity – average linkage (bottom).
dendrogram, under which then true partition and the partition best
he middle portion (B or E), the relative cRI of the computed partition
ce-based methods. The customary α =0.05 threshold of significance is
e computed partition is plotted against the minimal allowed number of
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matrix is exceptional, with both subtype 1- and subtype 2-
specific genes up-regulated. Properties of this dataset are
summarized in more detail in Additional file 1: Table S1.
The comparison between the four algorithms is dis-

played graphically in Figure 3. For both combinations of
dissimilarity and linkage only TBEST and DTC match
the truth exactly, while the other two methods either fail
to partition the set or do so incompletely. We note that
the Euclidean dissimilarity – complete linkage combin-
ation results in a particularly challenging tree, which
cannot be partitioned correctly by a static cut.

Leukemia
The original Leukemia dataset [6] contained mRNA level
values for 6817 genes; this number was reduced to 999
by feature selection [5]. The truth is a partition of pa-
tient cases into those of acute myeloid leukemia (AML,
11 cases) and of acute lymphoblastic leukemia (ALL),
and a further partition of the ALL subset into the B-cell
lineage (19 cases) and the T-cell lineage (8 cases) types.
Performance of TBEST is compared with that of the
other three methods in Figure 4. For the Ward linkage,
two of the significance-based methods, SC and TBEST,
attain the highest possible value of the cRI. However, SC
only does so with low significance (α>0.33), while
A

D

Figure 5 TBEST compared to published methods for T10. Performance c
the Euclidean dissimilarity – Ward linkage combination (top) and for the (1 - P
combination the left portion (A or D) shows the corresponding dendrogram,
truth for each of the methods are shown as color bars. In the middle portion
required level of significance α for each of the significance-based method
dashed vertical. In the right portion (C or F), the relative cRI of the comp
leaves for DTC.
TBEST achieves it best performance with high signifi-
cance (α ≈ 2 × 10−3) and maintains performance close to
optimal in a wide range of significance thresholds. The
performance of SLB in this case is similar to that of
TBEST, but SLB does not attain the optimum. With the
average linkage, TBEST outperforms both SC and SLB
throughout the entire range of significance thresholds
considered and attains optimal performance at high
significance. In both cases the performance of DTC is
highly sensitive to the minimal allowed size of a branch,
especially so for the Ward linkage, where this algorithm
attains top performance for sizes between 6 and 10, but
performs substantially below the optimum outside this
range.

T10
The third benchmark dataset originates from DNA
copy number analysis of 100 individual cells harvested
from a breast tumor [11]. The true partition in this case
is four-way, with the subsets differing from each other
by ploidy as determined by cell sorting. The rows of the
data matrix correspond each to a cell, the columns cor-
respond each to a pre-defined genomic region of recur-
rent copy number variation called a core, specified by
the sign of variation (gain or loss) and the endpoint
B

E

C

F

omparison of TBEST and the three published methods in T10 dataset for
earson correlation) dissimilarity – average linkage (bottom). For each
under which then true partition and the partition best matching the
(B or E), the relative cRI of the computed partition is plotted against the
s. The customary α =0.05 threshold of significance is shown by a
uted partition is plotted against the minimal allowed number of
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positions of the region. The entries in the matrix
quantify the extent to which copy number alterations
observed in the cells match the cores [7].
There are multiple instances of strong geometric

overlap between cores. As a result, the corresponding
columns in the data matrix exhibit strong pairwise
correlations, positive for cores of equal sign (both gains
or both losses), and negative for cores of opposite signs.
Consistent with these geometric constraints, the null
distribution in this case is generated as follows: the data
matrix is divided into sub-matrices by the chromosome
number (1,2,…,22, X), and rows are permuted independ-
ently within each sub-matrix. The results are illustrated in
Figure 5. For the Euclidean dissimilarity - Ward linkage
combination only TBEST and SLB identify the true parti-
tion, with TBEST succeeding in a broader range of signifi-
cance thresholds. For the (1 – Pearson correlation)
dissimilarity - average linkage combination TBEST out-
performs the other two significance-based algorithms
and matches the truth perfectly in a broad range of the
values of α.
Organelles
Next, we consider a dataset derived from proteomic
analysis of the content of four cellular compartments in
A

D

Figure 6 TBEST compared to published methods for Organelles. Perform
Organelles dataset for the (1 - Pearson correlation) dissimilarity – Ward linkage
average linkage (bottom). For each combination the left portion (A or D) sho
the partition best matching the truth for each of the methods are shown as c
partition is plotted against the required level of significance α for each of
of significance is shown by a dashed vertical. In the right portion (C or F), the
allowed number of leaves for DTC.
each of six mouse tissues. The analysis is based on 4768
protein level readings [8].
The true partition of the data is by the cellular com-

partment, and the two hierarchical clustering methods
considered here both have the branch structure orga-
nized by the compartment label, to a good approxima-
tion. Of the three significance-based methods compared,
only TBEST reproduces the truth to the maximal extent
possible for both combinations of dissimilarity and link-
age, and it does so stably in the broadest range of the
levels of significance (Figure 6).
DTC achieves top performance for the (1 - Pearson

correlation) dissimilarity – Ward linkage combination
if its minimal allowed number of leaves does not ex-
ceed that of the smallest compartment-associated branch
of the tree. However, this property is lost for the (1 -
Pearson correlation) dissimilarity – average combination
where an additional cluster with two leaves is identi-
fied by DTC if the minimal number of leaves is set at or
below 2.
Chondrosarcoma
Finally, we discuss the performance of the four methods
on a dataset generated by flow cytometry analysis of cells
harvested from human tissues and cell lines. Among 34
B

E

C

F

ance comparison of TBEST and the three published methods in
combination (top) and for the (1 - Pearson correlation) dissimilarity –

ws the corresponding dendrogram, under which then true partition and
olor bars. In the middle portion (B or E), the relative cRI of the computed
the significance-based methods. The customary α = 0.05 threshold
relative cRI of the computed partition is plotted against the minimal
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samples, two samples were identified as multivariate
outliers and removed before clustering [9]. The truth is
a four-way partition, with three parts corresponding
each to a different tissue of origin and the fourth part
formed by cells from tumor cell lines.
We have identified three combinations of dissimilarity

and linkage for which the tree structure is fully consist-
ent with the true partition and performed comparative
analysis for all three, as shown in Figure 7. For two of
these combinations ((1 - Spearman correlation) dissimi-
larity – Ward linkage and (1 - Kendall correlation)
dissimilarity – average linkage) partition by TBEST
matches the truth in a range of acceptable levels of sig-
nificance. SLB does so for the first and, in a narrow
range of significance thresholds, for the third combin-
ation. SC fails to match the truth. Note the data di-
mension in this case is 11, and it is smaller than 32,
the number of observations. This dataset is therefore out-
side the range of applicability of SC. For Manhattan
A

D

G

Figure 7 TBEST compared to published methods for Chondrosarcoma. P
Chondrosarcoma dataset for the (1 - Spearman correlation) dissimilarity – Ward
linkage combination (middle), and Manhattan dissimilarity – Ward linkage
the corresponding dendrogram, under which then true partition and the
as color bars. In the middle portion (B, E or H), the relative cRI of the com
for each of the significance-based methods. The customary α = 0.05 threshold
(C, F or I), the relative cRI of the computed partition is plotted against the mi
dissimilarity – Ward linkage TBEST also matches the
truth, albeit at low significance (α = 0.1). DTC performs
well for the first and third combinations, but only
matches the truth in a restricted range of numbers of
leaves in the second case.

Discussion and conclusions
As our test results demonstrate, the performance of
TBEST as a tool for data partitioning is equal or superior
to that of similar published methods in a variety of
biology-related settings. This is true in particular for
datasets with underlying tree-like organization, such sets
of genomic profiles of individual cancer cells, of the
same type as our third benchmark case above. In a
work presently in progress we are applying TBEST sys-
tematically to a number of datasets of a similar nature.
But TBEST also performs well on datasets with no
underlying hierarchical structure, such as Simulated6 or
Leukemia above. In total, TBEST was able to recover the
B

E

H

C

F

I

erformance comparison of TBEST and the three published methods in
linkage combination (top), (1 - Kendall correlation) dissimilarity – average
(bottom). For each combination the left portion (A, D or G) shows
partition best matching the truth for each of the methods are shown
puted partition is plotted against the required level of significance α
of significance is shown by a dashed vertical. In the right portion

nimal allowed number of leaves for DTC.
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true partition of the data on par with or better than the
published methods in ten out of eleven combinations of
data, dissimilarity and linkage considered here. We fur-
ther note that for all but one such combination the opti-
mal partition of the data by TBEST also was the most
significant partition into more than one part. This was
not the case for the other significance-based methods
included in the comparison.
To guide the future use of TBEST, we must note the

limitations of the method. TBEST is designed specifically
for the analysis of hierarchical trees. In this sense, it is
not as universal as SC, which is applicable to any parti-
tion of the data, including, in the case of hierarchical
clustering, to trees with inversions. Further, TBEST
never considers single leaves to be significantly distinct,
whereas both SLB and DTC (but not SC) are free of this
limitation.
TBEST can both be applied and formulated more

broadly. The applicability of TBEST is not limited to
data partitioning that has been our focus here. TBEST
can be used for finding all significantly distinct branches
of a hierarchical tree, regardless of whether these form a
full partition. Further, alternatives to the test statistic of
Equation 1 can easily be devised, For example, for any
non-leaf node n we can introduce:

σ nð Þ≡ h nð Þ− 1
2 h c1 nð Þð Þ þ h c2 nð Þð Þ½ �

h nð Þ ð3Þ

where c1(n), c2(n) are the two children of n. While the
discussion of these extensions is beyond the scope of
this work, an implementation of TBEST as an R lan-
guage package provides a number of options, both for
the definition of tightness and for annotation of signifi-
cantly distinct branches [12].
Finally, we note that tightness of tree branches is com-

plementary to another important notion in clustering,
namely, cluster stability under re-sampling of the input
data. The latter property can be analysed in a number of
ways, such as bootstrap analysis of trees [13-15] or
methods not directly related to trees [5,16]. Existing
work provides examples where both distinctness and sta-
bility under resampling are prerequisites of a meaningful
partition [17]. Incorporation of TBEST into such com-
bined analysis will be addressed in the future.

Additional files

Additional file 1: A time complexity and performance analysis,
Figure S1, Figure S2 and Table S1. A PDF file containing 1) a comparison
of time complexity and performance for TBEST, SC, SLB and DTC, 2) Figure
S1, an 11-panel figure illustrating null distribution of tightness, 3) Figure S2,
a comparison of empirical p-value estimates for tightness to EVT-based
estimates and 4) Table S1, detailing the properties of the Simulated6
dataset.
Additional file 2: Dataset displayed in Figure 1. An Excel file containing
a set of 280 positive real values sampled from a mixture of three normal
components: N(0.5,0.42), N(11,12) and N(5,22).
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