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Abstract

Background: Measuring free-living gait using wearable devices may offer higher granularity and temporal resolution than the
current clinical assessments for patients with Parkinson disease (PD). However, increasing the number of devices worn on the
body adds to the patient burden and impacts the compliance.

Objective: This study aimed to investigate the impact of reducing the number of wearable devices on the ability to assess gait
impairments in patients with PD.

Methods: A total of 35 volunteers with PD and 60 healthy volunteers performed a gait task during 2 clinic visits. Participants
with PD were assessed in the On and Off medication state using the Movement Disorder Society version of the Unified Parkinson
Disease Rating Scale (MDS-UPDRS). Gait features derived from a single lumbar-mounted accelerometer were compared with
those derived using 3 and 6 wearable devices for both participants with PD and healthy participants.

Results: A comparable performance was observed for predicting the MDS-UPDRS gait score using longitudinal mixed-effects
model fit with gait features derived from a single (root mean square error [RMSE]=0.64; R2=0.53), 3 (RMSE=0.64; R2=0.54),
and 6 devices (RMSE=0.54; R2=0.65). In addition, MDS-UPDRS gait scores predicted using all 3 models differed significantly
between On and Off motor states (single device, P=.004; 3 devices, P=.004; 6 devices, P=.045).

Conclusions: We observed a marginal benefit in using multiple devices for assessing gait impairments in patients with PD when
compared with gait features derived using a single lumbar-mounted accelerometer. The wearability burden associated with the
use of multiple devices may offset gains in accuracy for monitoring gait under free-living conditions.

(JMIR Rehabil Assist Technol 2020;7(2):e17986) doi: 10.2196/17986
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Introduction

Gait is a complex sensorimotor activity involving dynamic
spatial-temporal coordination of legs, trunk, and arms. Gait
impairments negatively impact the functional mobility of
patients with Parkinson disease (PD) [1,2]. In the early stages

of PD, gait impairments manifest as reduced gait speed, shorter
stride lengths, gait asymmetry with higher variability of gait
measures, and reduced amplitude of arm swing. As the disease
progresses, gait measures become less asymmetric, but
impairments continue to increase in severity. Worsening gait
impairments coupled with balance and postural control issues
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lead to a significant reduction in mobility and an increased risk
for falls in advanced PD [1,3,4].

Clinical assessment of gait in PD is limited to observational
scales, such as the Movement Disorder Society version of the
Unified Parkinson Disease Rating Scale (MDS-UPDRS), [5]
and performance-based tests, such as the Timed Up and Go test
[6]. While these tools have been clinically validated, assessments
are influenced by the observer effect (Hawthorne effect) and
quality of instructions [7]. Assessments are susceptible to rater
bias; and because symptoms are rated on an ordinal scale, they
lack the resolution to detect changes that occur on a continuum.
In addition, since trained raters can only perform these
assessments infrequently, they provide intermittent snapshots,
which are inadequate for fully characterizing the day-to-day
variability of symptoms [8].

Advances in wearable technology allow for the development
of systems for objective measurement of gait [9-12]. Many of
these systems, such as APDM Mobility Lab (APDM Inc) [13],
provide a broad range of measures, quantifying various spatial
and temporal aspects of gait. However, they generally require
multiple sensing devices, which makes continuous, long-term
monitoring difficult outside the lab or clinic. Recent research
efforts to develop methods employing a single waist-mounted
inertial sensing device (accelerometer and gyroscope)
demonstrate the feasibility of monitoring gait in patients with
mobility deficits, including PD, Huntington disease, poststroke
disability, and sarcopenia [14-18]. Studies show
moderate-to-good agreement between the frequency domain
features (eg, dominant frequency amplitude or dominant
frequency width) extracted from the accelerometer time series
and subscales of the MDS-UPDRS associated with gait and
balance [19,20]. However, unlike gait features like stride length
and gait speed, these signal features do not have direct clinical
meaning and are therefore, difficult to use for clinical decision
making. Temporal (eg, swing time) and spatial (eg, stride length)
gait features derived from a single accelerometer on the lower
back (L5 vertebrae) have demonstrated moderate-to-excellent
agreement with an instrumented walkway for 8 out of 14 gait
parameters in healthy older adults and patients with PD [14].
Furthermore, gait features derived under free-living conditions
had greater discriminative power than that of the
laboratory-based gait assessments for differentiating between
healthy older adults and patients with PD [21]. Compared to
bilaterally worn ankle-mounted devices, lumbar-mounted

accelerometers were satisfactory for measuring temporal gait
features in young healthy adults despite their less accuracy [22].

While it is feasible to monitor gait using a single
lumbar-mounted wearable device, the relationship between the
number of devices used for deriving temporal and spatial gait
features and their ability to detect clinically meaningful changes
is not well understood. Herein, we employ a method, which
relies on a single lumbar-mounted accelerometer that presents
a significantly lower usability burden and affords better
wearability compared to methods that rely on 3 or 6 devices
[14,23-25]. However, the tradeoffs of reducing the number of
devices may include lower accuracy in the estimation of gait
features, measuring fewer aspects of gait, and reduced sensitivity
for detection of clinically meaningful differences. Therefore,
in order to objectively evaluate this tradeoff, we assessed (1)
the accuracy and reliability of gait features derived using a single
lumbar-mounted accelerometer relative to a reference system
(APDM Mobility Lab) [13] and (2) the impact of reducing the
number of sensing devices on the criterion and discriminative
validity of gait features in patients with PD.

Methods

Study Participants
We recruited 35 participants with mild-to-moderate PD (Hoehn
and Yahr scale score ≤3; mean age 68.3 years, SD 8.0 years;
males, n=23; and females, n=12) and 60 healthy participants
(mean age 44.1 years, SD 10.7 years; males, n=27; and females,
n=33). Participants with PD took regular dopaminergic
medication (levodopa-equivalent daily dose, mean 165.5 mg,
SD 81.3 mg). Participants with PD were recruited and tested at
Tufts Medical Center, Boston, Massachusetts. All procedures
were approved by The Tufts Health Sciences Institutional
Review Board (#12371). The protocol for the healthy cohort
was approved by the Schulman Institutional Review Board
(#201500837) and conducted at Pfizer, Andover, Massachusetts.

A participant with PD who self-reported as “On with dyskinesia”
was excluded from the analysis since dyskinesia might interfere
with gait feature measurements. Additionally, 1 healthy
volunteer was removed from the analysis due to technical errors
with data capture. The clinical and demographic characteristics
of the participants whose data were available for analysis are
listed in Table 1.
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Table 1. Clinical and demographic characteristics.

Participants with PDa (n=34)Healthy participants (n=59)Characteristics

2327Males, n

1132Females, n

68.1 (8.1)44.4 (10.5)Age (years), mean (SD)

1.7 (0.1)1.7 (0.1)Height (m), mean (SD)

28.9 (7.1)25.3 (4.8)BMI (Kg/m2), mean (SD)

Participants with the Hoehn and Yahr stage of PD, n

2N/AbHoehn and Yahr stage 1

26N/AHoehn and Yahr stage 2

6N/AHoehn and Yahr stage 3

164.5 (81.1)N/ALevodopa-equivalent daily dose (mg/day), mean (SD)

1.0 (0.9)MDS-UPDRSc III gait score in On condition, mean (SD)

0.0 (0.0)N/AHoehn and Yahr stage 1

0.8 (0.7)N/AHoehn and Yahr stage 2

2.0 (0.9)N/AHoehn and Yahr stage 3

1.4 (0.9)MDS-UPDRS III gait score in Off condition, mean (SD)

0.0 (0.0)N/AHoehn and Yahr stage 1

1.2 (0.7)N/AHoehn and Yahr stage 2

2.7 (0.5)N/AHoehn and Yahr stage 3

aPD: Parkinson disease.
bN/A: Not applicable.
CMDS-UPDRS: Movement Disorder Society version of the Unified Parkinson Disease Rating Scale.

Device Setup
As illustrated in Multimedia Appendix 1A, participants were
instrumented with 6 wearable devices (Opal, APDM Inc) located
bilaterally on the wrist and foot, and at the lumbar
(approximately at the L5 vertebra) and sternum locations. Each
device recorded raw data from 9-axis inertial sensors (triaxial
accelerometer, triaxial gyroscope, and triaxial magnetometer)
at a sampling rate of 128 Hz.

Experimental Protocol
Participants performed a battery of physical activities and
cognitive tasks over the course of 2 visits. Both visits were
identical for healthy participants but were randomized for
participants with PD so that they were in the On state (about 1
hour after medication intake, confirmed with the patient
self-report and clinician report) during 1 visit and in the Off
state (about 3 hours after last medication intake, confirmed with
the patient self-report and clinician report) during the other visit.
Physical activities during each visit included scripted activities
of daily living (eg, tying a shoe, opening and closing a door)
and motor assessments from the MDS-UPDRS part III (eg,
2-minute gait task, finger tapping). In this paper, we present the
analysis based on the data collected during the 2-minute gait
task. This is to ensure uniform testing conditions for determining
the agreement of postexperiment sensor data processing. During
this gait task, participants were instructed to walk back and forth

along a straight 10-meter track at a comfortable pace for a period
of 2 minutes. Participants with PD were assigned an
MDS-UPDRS gait score on an ordinal scale of 0 to 4 by a
neurologist to assess the degree of gait impairment. Sample
sizes (n) for MDS-UPDRS gait scores of 0, 1, 2, and 3 across
both visits were 17, 27, 18, and 6, respectively.

Gait Feature Extraction
APDM Mobility Lab is a commercially available system widely
used for objective assessment of gait and leverages data from
3 to 6 wireless, body-worn Opal inertial devices [13,26]. We
used APDM Mobility Lab to derive a set of lower limbs, lumbar,
and trunk range of motion and upper limb gait features from 6
wearable devices placed on the lower back, sternum, and
bilaterally on the feet and wrists (Multimedia Appendix 2).
Using 3 sensors located on the lower back and both feet, APDM
Mobility Lab can only derive features related to the lower limb
and lumbar range of motion. Therefore, we used only features
related to lower limb and lumbar range of motion as the 3-sensor
feature set (Multimedia Appendix 2). To derive gait features
from a single lumbar-mounted triaxial accelerometer, we
developed and implemented a previously published
wavelet-based method [14] in a Python v3.6 package called
GaitPy (Multimedia Appendix 1) [25]. A complete list of gait
features derived from a single lumbar-mounted device and those
requiring additional devices can be seen in Multimedia
Appendix 2.
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Statistical Methods
Statistical analysis was performed in R, version 3.4.1 (The R
Project for Statistical Computing) [27], using the following
packages: “psych” for intraclass correlation coefficient (ICC),
“BlandAltmanLeh” for Bland-Altman plots, “nlme” for linear
mixed-effects model, “car” for type 3 analysis of variance, and
“MASS” for stepwise model selection.

The median value of each gait feature extracted from the data
collected during the 2-minute walking task was calculated for
each visit separately. Test-retest reliability of gait features was
assessed by calculating the ICC on data collected from healthy
volunteers during visit 1 and visit 2. ICC was also used in
addition to Bland-Altman plots and 95% limits of agreement
to evaluate the agreement between gait features derived using
GaitPy and APDM Mobility Lab. The results are presented in
Figure 1, where values are ICC2,1 coefficient (2-way random
effects, absolute agreement) with lower and upper confidence
bounds, reported as ICC coefficient (lower, upper). Test-retest
reliability and agreement between features were assessed
according to the following benchmarks. ICC ≤ 0.4 indicates
“poor,” 0.4 to 0.59 “moderate,” 0.6 to 0.74 “good,” and 0.75 to
1 “excellent” reliability [28]. Variation of gait features with the
MDS-UPDRS gait score in patients with PD was assessed using
the Kruskal-Wallis test. Posthoc Conover-Iman tests were used

for pairwise comparisons, and multiplicity was adjusted using
false discovery rate correction.

Gait features derived using a single, 3, and 6 devices were
separately used to fit 3 longitudinal mixed-effects regression
models to predict the clinician’s MDS-UPDRS gait score (using
the lme function in “nlme” R package). Prior to model fitting,
pairwise correlation between sensor features was computed,
and highly correlated features were removed. Gait features and
covariates including age, gender, visit number, BMI, and years
since first symptoms were modeled as fixed effects and
participant as a random effect. An unstructured correlation
matrix was used. Numerical features were standardized to have
0 mean and unit variance. Stepwise model selection was
performed using Akaike Information Criterion as a cost function
to achieve the optimal model fit (using the stepAIC function in
“MASS” R package). Analysis of variance findings were
reported as chi-square values and corresponding P values using
Type 3 sum of squares (statistics were derived using the “car”
R package). Final models were used to predict the clinician’s
score using leave-1-subject-out cross-validation. We report the

root mean square error (RMSE) and marginal R2 representing
the variance explained by the model of fixed effects. Paired
Wilcoxon signed rank tests were used to compare predicted gait
scores between On and Off states.
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Figure 1. Agreement between gait features derived using the APDM Mobility Lab and GaitPy and test-retest reliability of gait features derived with
GaitPy in healthy participants. Intraclass correlation coefficient values showing excellent agreement (between 0.75 and 1) are highlighted in blue. PD:
Parkinson disease.

Ethical Compliance
The study of participants with PD was approved by The Tufts
Health Sciences Institutional Review Board (#12371) and
conducted at the Tufts Medical Center. The study of healthy
participants was approved by the Schulman Institutional Review
Board (#201500837), and conducted at Pfizer in Andover,
Massachusetts. Written informed consent was obtained from

all participants prior to testing. We confirm that we have read
the journal’s position on issues involved in ethical publication
and affirm that this work is consistent with those guidelines.
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Results

Accuracy of Gait Features Derived Using a Single
Device
Gait features derived during the 2-minute walking task using
GaitPy (single lumbar-mounted device) were compared with
the same features derived using the APDM Mobility Lab (6
devices) for healthy participants and participants with PD with
data from their 2 visits. Gait features derived using the APDM
Mobility Lab were used as the reference since the APDM device
has been validated against data from an instrumented treadmill
and has been extensively used in both healthy populations and
populations with PD [26,29]. Excellent agreement was observed
between the 2 methods for stride time and step time in both
healthy participants and participants with PD (ICC≥0.86), as
shown in Figure 1. Furthermore, excellent agreement was
observed for stance time, stride length, and gait speed in
participants with PD (ICC=0.86, 0.88, and 0.89, respectively),
and agreement was good in healthy participants (ICC=0.68,
0.60, and 0.70, respectively) (Figure 1). Bland-Altman analysis
showed that mean difference between GaitPy and APDM
Mobility Lab was smaller for longer stance times (Multimedia
Appendix 3). Good agreement was also observed for swing time
in both healthy participants and participants with PD
(0.64≤ICC≤0.73) (Figure 1). In contrast, double support showed
poor agreement in healthy participants (ICC=0.20) and moderate
agreement in participants with PD (ICC=0.46) (Figure 1).
Asymmetry and variability features also showed poor agreement
(ICC≤0.31) between the 2 methods for both healthy participants
and participants with PD (Figure 1).

Reliability of Gait Features Derived Using a Single
Device
Test-retest reliability of gait features derived using GaitPy was
assessed using the data collected from healthy participants.
Excellent test-retest reliability (ICC≥0.85) (Figure 1) was
observed for all spatial and temporal gait features. Asymmetry
and variability features showed poor-to-excellent test-retest
reliability (0.14≤ICC≤0.77) (Figure 1).

Criterion Validity of Sensor-Derived Gait Features
We assessed the ability of gait features derived by using methods
relying on different device setups (single device, 3 devices, and
6 devices) to distinguish between MDS-UPDRS gait scores.
Based on the APDM Mobility Lab documentation [30], we
could determine which gait features are available for analysis
with a 3-device setup and a 6-device setup. Therefore, for the
purpose of this comparison, we limited our analysis to the
1-device setup (using GaitPy) and 3- and 6-device setups (using
APDM Mobility Lab).

The spatial features of gait (ie, gait speed, stride length, and
step length) varied most significantly with MDS-UDPRS gait
scores in participants with PD (Multimedia Appendix 4). Using
leave-1-subject-out cross-validation, the longitudinal
mixed-effects regression model based on gait features derived
using a single lumbar-mounted device predicted the clinician’s

gait score with an RMSE=0.64 and an R2=0.53. The predicted
score significantly distinguished between scores of 1 and 2
(P<.001), and marginally distinguished between scores of 0 and
1 (P=.07), and 2 and 3 (P=.18) (Figure 2A). Stance time

(χ2
1=12.8; P<.001), step length (χ2

1=49.2; P<.001), and step

length asymmetry (χ2
1=6.7; P=.01) had significant effects on

describing the MDS-UPDRS gait score.

Comparable performance was observed for a model based on
gait features derived using data from 3 devices (RMSE=0.64;

R2=0.54). The R2 value for the 3-device model was only slightly
higher than the single-device model. The predicted gait score
could significantly distinguish between MDS-UPDRS gait
scores of 0 and 1 (P=.02), 1 and 2 (P<.001), and 2 and 3 (P=.03)

(Figure 2B). Pitch at initial contact (χ2
1=7.3; P=.007), maximum

pitch (χ2
1=10.5; P=.001), cadence (χ2

1=14.9; P<.001), initial

mid-swing duration (χ2
1=4.5; P=.03), and pitch at toe off

variability (χ2
1=6.4; P=.011) had a significant effect on

describing the MDS-UPDRS gait score.

Figure 2. MDS-UPDRS gait score model performance fit using gait features from (A) single device at the lumbar (L5) location (GaitPy), (B) 3 devices
(APDM Mobility Lab), and (C) 6 devices (APDM Mobility Lab). MDS-UPDRS: Movement Disorder Society version of the Unified Parkinson Disease
Rating Scale.

JMIR Rehabil Assist Technol 2020 | vol. 7 | iss. 2 | e17986 | p. 6http://rehab.jmir.org/2020/2/e17986/
(page number not for citation purposes)

Czech et alJMIR REHABILITATION AND ASSISTIVE TECHNOLOGIES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The model based on gait features derived using data from 6
devices achieved better performance than the single and 3-device

model at predicting clinician gait score (RMSE=0.54; R2=0.65).
The predicted gait score significantly distinguished between
MDS-UPDRS gait scores of 0 and 1 (P=.001), 1 and 2 (P<.001),

and 2 and 3 (P=.02) (Figure 2C). Pitch at initial contact (χ2
1=8.9;

P=.003), maximum pitch (χ2
1=5.4; P=.02), cadence (χ2

1=19.8;

P<.001), initial mid-swing duration asymmetry (χ2
1=5.7; P=.02),

trunk sagittal average angle (χ2
1=18.9; P<.001), upper limb foot

phase difference (χ2
1=5.0; P=.03), maximum pitch variability

(χ2
1=8.6; P=.003), trunk sagittal average angle variability

(χ2
1=5.0; P=.025), BMI (χ2

1=10.0; P=.002), and years since

first symptom (χ2
1=7.0; P=.008) had significant effects on

describing the MDS-UPDRS gait score.

Discriminative Validity of Sensor-Derived Gait
Features
We assessed the ability of predicted gait scores derived using
methods relying on different device setups (single device, 3
devices, and 6 devices) to discriminate between On and Off
motor states. As shown in Figure 3A, the clinician-rated
MDS-UPDRS gait score was significantly different (P=.001)
between the patient-reported On and Off state. Similarly,
predicted gait scores, estimated from 1-, 3-, and 6-device models
(Figure 3B-D), all significantly differentiated between On and
Off states (P=.004, P=.004, and P=.045 respectively).

Figure 3. Distribution of the (A) clinician-rated gait score, (B) single device predicted gait score, (C) 3-device predicted gait score, and (D) 6-device
predicted gait score, grouped by patient-reported On and Off motor states. MDS-UPDRS: Movement Disorder Society version of the Unified Parkinson
Disease Rating Scale.

Discussion

Principle Findings
In this exploratory, noninterventional study involving healthy
participants and participants with PD, we derived gait features
from participants during 2 clinic visits using wearable devices.
We found that gait features derived from a single
lumbar-mounted accelerometer could predict the clinician-rated
gait impairment score to a similar degree as gait features derived
from 3 or 6 sensors. Additionally, analogous to clinician-rated

scores, predicted gait scores using gait features derived from
either 1, 3, or 6 devices all significantly distinguished between
the On and Off medication states. Our results suggest that a
subset of gait features, derivable using a single lumbar-mounted
accelerometer, may be sufficient to measure the degree of gait
impairment and the effects of treatment in patients with PD.
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Accuracy and Reliability of Gait Features Derived
Using a Single Device
Agreement of GaitPy with the reference system (APDM
Mobility Lab) was assessed in both healthy participants and
participants with PD. While we observed moderate-to-excellent
agreement between the most temporal and spatial features of
gait derived using GaitPy from a single device and gait features
provided by APDM Mobility Lab using 6 devices, the agreement
was poor for asymmetry and variability features. Notably,
agreement was better in participants with PD for 4 out of 7
temporal and spatial features. The differences between ICC
values for healthy participants and participants with PD were
significant for stance time (0.86 vs 0.68), stride length (0.88 vs
0.60), and gait speed (0.89 vs 0.70). This result contrasts a prior
study [14] where a good agreement with the reference system
(gait mat) for both participants with PD and age-matched healthy
controls was observed. However, unlike the prior study [14],
the 2 groups in our study were not age-matched. To this end,
patients with PD showed a wider range of values for gait speed
and stride length compared to healthy participants, especially
in the lower range, which may have contributed to a better
agreement (Multimedia Appendix 5B and C).

We evaluated the test-retest reliability of gait parameters derived
using GaitPy in a sample of 59 healthy participants. Test-retest
reliability for GaitPy was excellent for all spatial and temporal
features, whereas it was poor-to-excellent for asymmetry and
variability features. These results suggest that the temporal and
spatial features of gait can be reliably measured using a single
accelerometer mounted on the lower back. However, as has
been reported previously [14], the agreement and reliability of
variability and asymmetry features might be sensitive to the
employed measurement technique (eg, sensing modality or
device location). This is partially because asymmetry and
variability are small measurements, which are significantly
affected by noise or error in the measurement of temporal or
spatial features. Potential sources of measurement error for
GaitPy include (1) biomechanical approximation of the inverted
pendulum model, (2) error in the estimation of vertical
displacement from vertical acceleration, and (3) distal location
of the sensing device relative to the feet.

Tradeoffs Between Gait Features Derived Using
Different Device Setups
We assessed the criterion and discriminative validity of
MDS-UPDRS gait scores using linear mixed-effects models
based on gait features derived using data from a single device,
3 devices, and 6 devices. Although a single device provides
substantially fewer features of gait compared to either 3- or
6-device models, 17 of the 34 features that varied most
significantly (P=.004) with MDS-UPDRS gait score can be
derived using a lumbar-mounted sensor (Multimedia Appendix
4). This includes many gait features known to be affected in
PD, including stance time, gait speed, step-to-step asymmetries,
and gait variability [3,4].

While the 6-device model (RMSE=0.54; R2=0.65) performed
slightly better at estimating MDS-UPDRS gait score,

performance of the 3-device model (RMSE=0.64; R2=0.54) was

comparable to the single device model (RMSE=0.64; R2=0.53).
However, unlike the 3 and 6 device models, the single device
model was unable to significantly distinguish between the
adjacent scores such as 0 and 1 or 2 and 3. A potential reason
for this could be the small number of observations for class 3
(n=6). Additionally, gait features related to the pitch and
mid-swing duration that were significant for both the 3 and
6-device models could not be derived using the single device
model. This indicates features derived from the lower extremity
(eg, foot) might have a higher predictive power. Indeed, 3 of
10 features in the 6-device model and 3 of 5 features in the
3-device model that were significant were related to the pitch
of foot.

When we assessed the ability of gait scores predicted by the
linear mixed-effects models to differentiate between On and
Off motor states, we found significant differences (P=.045) for
gait scores derived using 1-, 3-, and 6-device models.
Additionally, the Off to On gait score directionality was largely
consistent between those produced by each model and the
clinician-rated gait score. In 10 of the 12 subjects, the clinician
score and the predicted score differences between On and Off
states were in the same direction (Multimedia Appendix 5A).
This was comparable with the 3-device model (10/12)
(Multimedia Appendix 5B) and 6-device model (10/12)
(Multimedia Appendix 5C).

Limitations
Data analyzed in this study were collected during performance
of motor assessments in the laboratory settings and could be
affected by the observer effect and heightened awareness of the
patient. Gait features derived using wearable devices were not
validated against a gold-standard reference (eg, an instrumented
walkway or a motion capture system). This limitation of our
work is mitigated to some extent by prior work in which the
authors evaluated the algorithm implemented in GaitPy against
an instrumented walkway [31]. Another limitation of our work
is that the healthy participants and participants with PD were
not age matched. Therefore, the results for accuracy and
reliability in our healthy cohort might be different in healthy
older adults. Additional work is required to validate the results
presented herein on an independent data set as well as to confirm
the ability of GaitPy to accurately assess gait impairment in
free-living conditions.

Conclusion
Our results suggest that a single triaxial accelerometer on the
lower back may be sufficient to characterize gait impairments
in patients with PD. Algorithms that estimate gait features from
a lumbar-mounted sensor, such as GaitPy, could provide
clinically meaningful measures of changes in the severity of
gait impairments and changes in motor state associated with
the effects of treatment in patients with PD. The long battery
life of an accelerometer-only device and high degree of utility
associated with a single device worn on the lower back enable
further investigations to assess the validity of this approach for
monitoring gait under free-living conditions. Comparing
sensor-derived gait features with classical patient-reported motor
diary–based approaches in their ability to detect
treatment-related effects may provide an insight into the utility
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of a single lumbar-mounted sensor in free-living environments.
Our ongoing efforts are focused on performing a clinical

validation in a semisupervised setting as an intermediate step
between the clinic and at-home environment.
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Multimedia Appendix 2
Gait features derived using GaitPy with a single lumbar-mounted device, APDM Mobility Lab with 3 devices, and APDM Mobility
Lab with 6 devices. *Step length is not calculated by APDM Mobility Lab.
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Multimedia Appendix 3
Bland-Altman analysis comparing (A) stance time, (B) stride length. and (C) gait speed agreement between GaitPy and APDM
Mobility Lab in healthy volunteers (HV) and patients with Parkinson disease (PD).
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Multimedia Appendix 4
Kruskal-Wallis rank sum statistics and P values for sensor-derived features of gait in participants with Parkinson disease that
varied significantly (P≤.01) with MDS-UPDRS gait score in order of significance.
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