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In the twentieth century, a conspicuous lack of effective treatment strategies existed for

managing several retinal disorders, including age-related macular degeneration; diabetic

retinopathy (DR); retinopathy of prematurity (ROP); retinitis pigmentosa (RP); uveitis,

including Behçet’s disease; and vitreoretinal lymphoma (VRL). However, in the first

decade of this century, advances in biomedicine have provided new treatment strategies

in the field of ophthalmology, particularly biologics that target vascular endothelial growth

factor or tumor necrosis factor (TNF)-α. Furthermore, clinical trials on gene therapy

specifically for patients with autosomal recessive or X-linked RP have commenced. The

overall survival rates of patients with VRL have improved, owing to earlier diagnoses and

better treatment strategies. However, some unresolved problems remain such as primary

or secondary non-response to biologics or chemotherapy, and the lack of adequate

strategies for treating most RP patients. In this review, we provide an overview of the

immunological mechanisms of the eye under normal conditions and in several retinal

disorders, including uveitis, DR, ROP, RP, and VRL. In addition, we discuss recent studies

that describe the inflammatory responses that occur during the course of these retinal

disorders to provide new insights into their diagnosis and treatment.

Keywords: immune privilege, non-infectious uveitis, diabetic retinopathy, retinopathy of prematurity, retinitis

pigmentosa, vitreoretinal lymphoma

INTRODUCTION

In the last 2 decades, advances in the interdisciplinary collaboration of the fields of molecular
biology, biochemistry, genetics, and biomedicine have resulted in tremendous breakthroughs in
the treatment of refractory ocular disorders. Infliximab (IFX), a chimeric antibody of the tumor
necrosis factor (TNF)-α, is a biologics that is used for treating ocular symptoms of Behçet’s
disease that have not been adequately controlled (1). Anti-vascular endothelial factor (VEGF)
agents such as ranibizumab and aflibercept are used as the first-line therapy in the management
of intractable retinal disorders such as neovascular age-related macular degeneration and diabetic
macular edema (DME). These agents can also maintain remission in such cases (2, 3). For a
long time, laser photocoagulation alone has been used for the primary treatment of etinopathy
of prematurity (ROP). However, in 2018, ranibizumab was also validated for the treatment of
ROP in Japan. Gene therapy clinical trials targeting the treatment of autosomal recessive or X-
linked retinitis pigmentosa (RP), which is an incurable genetic retinal disorder, have been initiated
(4). Furthermore, the overall survival of patients with vitreoretinal lymphoma (VRL), which is
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a fetal retinal malignancy, has increased because of improved
treatment strategies that involve intense systemic chemotherapy
and/or radiotherapy (5–7). However, unmet needs remain in the
management of these retinal disorders because of primary and
secondary treatment failure or non-response to the biologics, or
most cases of RP untargeted by gene therapy.

The eye, just like the brain and the testes, is an immune-
privilege site (8). Ocular immune privilege is an active process
in which the regulatory molecules and cells of the eye
modulate the induction and the expression of inflammation
(8–10). As long as the ocular immune-privilege system is
working, a harmful immune response and degenerative eye
diseases can be prevented. By limiting intraocular inflammation,
immune privilege preserves the integrity of the visual axis
and thereby prevents blindness (11). However, the mechanism
of immune privilege can be compromised genetically and/or
by environmental stimuli such as damage-associated molecular
patterns, infection, and a chronic immune response, and thereby
give rise to various retinal disorders (11).

Immunological responses to various environmental stimuli
have been associated with the pathogenesis of uveitis and retinal
vascular diseases such as diabetic retinopathy (DR) and ROP
(11–13). Retinitis pigmentosa is a genetic disorder, although
inflammatory responses to microenvironmental changes, such as
rod cell death, which occur after the primary onset of the disease,
may cause subsequent loss of cone cells (11). In VRL, oncogenic
mutations of VRL cells and the evasion of immune surveillance
because of the immunosuppressive ocular microenvironment
may contribute to tumor growth.

In this review, we focus on the roles of immunological
responses in a normal conditions and in several major retinal
disorders including non-infectious uveitis (NIU), DR, ROP, RP,
and VRL. In addition, we contemplate new approaches for the
diagnosis and treatment of these intractable retinal disorders
from an immunological point of view.

THE NORMAL IMMUNOLOGICAL
CONDITION IN THE EYE

A properly elicited and regulated immune response by the
human body is necessary for eliminating threats due to
infectious microbes and tissue trauma to avoid irreversible tissue
damage (11). Acute inflammation should be self-limiting and
normally attenuated after the elimination of deleterious stimuli
to enable physiological recovery. Chronic inflammation causes
degenerative diseases with consequent loss of organ function.

Ocular immune privilege is believed to elicit self-limiting
immune responses (14). Several soluble and cell-bound
inhibitory factors are involved in the mechanism of ocular
immune privilege to create an intraocular immunosuppressive
microenvironment, which prevents excessive immune
activation and subsequent tissue damage. These factors
include transforming growth factor-beta (TGF-β)2 (15),
retinoic acid (16), and multiple immunosuppressive factors
in ocular fluids (17), and the constitutive expression of the
Fas ligand (18), programmed death-ligand 1 (PD-L1) (19),

galectins (20), membrane glycoprotein CD200 receptor 1 (21),
cytotoxic T lymphocyte-associated protein (CTLA)-2a (22),
B7 (23, 24) on the surface of ocular cells. For the maintenance
of retinal homeostasis, these immunosuppressive molecules in
the eye actively regulate the induction and the expression of
inflammation to prevent excessive activation and subsequent
tissue damage.

In addition to the abovementioned local immunosuppression,
ocular immune privilege is associated with the development of
a type of an antigen-specific systemic immune regulation, called
“anterior chamber-associated immune deviation” (“ACAID”) (8,
25). ACAID is induced by intrinsic intraocular bone marrow-
derived antigen-presenting cells (APCs) that trap an antigen
within the anterior chamber and migrates to the spleen via
circulating blood (8, 26). Antigens from the anterior chamber
can be transported to the regional lymph nodes (27). Tolerogenic
CD11c+ dendritic cells (DCs) also transport antigens to the
thymus (27). APCs bearing the eye-derived antigen can elicit
the development regulatory T (Treg) cells in these lymphoid
organs. In the eye, innate immune cells such as microglial cells,
neutrophils, monocyte-macrophages, natural killer (NK) cells,
natural killer T (NKT) cells, and γδT cells can exhibit a broad
range of antigen recognition and confer a widely distributed form
of immunity, which constitutes the first line of defense against
various invading pathogens (28).

The anterior chamber and the vitreous cavity or the posterior
chamber of the eye have the capacity to induce systemic immune
deviation (29). This phenomenon is called “vitreous cavity-
associated systemic immune deviation” (“VCAID”). Research
demonstrates that F4/80+ hyalocytes are distributed over the
retinal surface (30) and that murine hyalocytes are bone marrow-
derived and turned over in 4months (31). Hyalocytes have strong
scavenger activity (30); therefore, we postulated that ocular
hyalocytes capture an antigen on the retinal surface and carry
it via the blood to the spleen, which induces antigen-specific
Tregs (30).

NON-INFECTIOUS UVEITIS (NIU)

Human Non-infectious Uveitis
Non-infectious uveitis (NIU) is a sight-threatening disorder
associated with systemic autoimmune diseases such as Behcet’s
disease, sarcoidosis, and Vogt–Koyanagi–Harada disease (32).
NIU is often recurrent and causes tissue destruction and
scarring, especially in the retina and uvea, which results
in permanent loss of vision. Early studies showed that T-
helper (Th) 1 and Th17 cells are the major effector cells and
are crucial for development of uveitis (33). In many cases,
the administration of several immunosuppressive drugs for
an extended period is necessary to control inflammation in
eyes with uveitis (34). These agents include corticosteroids,
tacrolimus, and cyclosporine, which have a strong T cell-
suppressive effect and have serious side effects, such as diabetes,
hypertension, and nephrotoxicity (35, 36). A new generation
of biological compounds that inhibit T cell activation such
as monoclonal antibodies and recombinant forms of natural
inhibitory molecules have emerged (36, 37). For example, IFX
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is validated for the treatment of refractory ocular Behçet’s
disease (1, 38, 39). Adalimumab (ADA), which is a recombinant
human immunoglobulin G1 monoclonal antibody to TNF-α,
has also been validated for the treatment of patients with
NIU in the United States and in Japan. ADA has been
proven as an effective corticosteroid-sparing agent that reduces
adverse effects associated with long-term usage of corticosteroids
(34). Immunosuppressive therapeutic agents for treating non-
infections uveitis (based on the guidelines of an international
expert steering committee consisting of uveitis specialists
are summarized in Table 1) (40). However, several studies
report that IFX can cause the development of autoimmune
diseases, primarily cutaneous vasculitis, lupus-like syndrome,
and malignant lymphoma (41). In recent reports, some patients
had a decreased response to IFX or ADA during the course of
the treatment, owing to the development of antidrug antibodies
against IFX or ADA (42–44). Therefore, new effective therapeutic
targets for uveitis with less severe adverse effects need to
be identified.

Experimental Autoimmune Uveitis
Experimental autoimmune uveitis (EAU) is an animal
disease model of a T cell–mediated autoimmune disease

that mimics many of the pathological features of human
uveitis (45, 46). EAU is induced by injecting animals
with purified retinal antigens such as S-Ag, a fragment
(residues 1–20, GPTHLFQPSLVLDMAKVLLD) of the
human interphotoreceptor retinoid-binding protein (hIRBP);
rhodopsin (or opsin); phosducin, or recoverin. The disease
is mediated by Th1 and Th17 cells (47, 48), which are
generated from naive T cells in response to their exposure
to proinflammatory cytokines and to the foreign antigens
presented by APCs—including DCs, macrophages, NK
cells, and B lymphocytes—in secondary lymphoid organs.
Infiltration of inflammatory cells such as granulocytes and
macrophages and other non-specific lymphocytes that can
destroy ocular tissue also contributes to the development
of EAU (48, 49). In the next section, we will discuss recent
studies of EAU model mice and review studies on microglia,
NK cells, NKT cells, DCs, the P2X7 receptor, Notch signaling,
and the transcription factor Foxp3 (forkhead box P3), which
have been identified as targets for translational medicine.
Such research has provided insight into the mechanisms
underlying disease pathogenesis and the basis for the
development of new preventive or therapeutic approaches
to human uveitis.

TABLE 1 | Systemic corticosteroid and immunomodulatory therapeutic agents for non-infectious uveitis.

Drugs Drug administration route and dosage Disease entities or cause Evidence level

(No. of

publications)

Corticosteroid
Orally prednisolone, 20–60 mg/day

Intravenously methylprednisolone, 1,000 mg/day

Tapering to low-dose oral prednisone and addition of a

corticosteroid sparing agent

NIU

Mycophenolate preparations Oral, 500–3,000 mg/day NIU

BCR

VKH disease

2B¶

2B/3

2B/3

Azathioprine§ Started at 1 mg/kg/day and increased to 2–3 mg/kg/day

in steps of 50mg every 2 weeks

NIU

BD

VKH disease

2B

2B

4

Methotrexate Adult: oral, 6–25 mg/week

Child: oral, 4–10 mg/week

NIU

VKH disease

2B 2B/3

Cyclophosphamide Oral, 20–100 mg/day Intravenos, 750–1,000 mg/m2 of

body surface area monthly infusions

NIU 4

Tacrolimus Oral, 0.12–0.3 mg/kg NIU 2B

Cyclosporine Oral, 3–5 mg/kg NIU 2B

Infliximab Intravenous, 5 mg/kg at weeks 0, 2, and 6, and every 8

weeks thereafter

BD, BCR, sarcoidosis, idiopathic

vasculitis, VKH disease

Pediatric NIU (uveitis entities include JIA,

BD, sarcoidosis, VKH disease)

2B (2), 3B (1), 4 (4)

2B (1), 4 (2), 5 (1)

Adalimumab Initial dose of 80mg, followed by 40mg administered

every other week starting 1 week after the initial dose

NIU (including different uveitis entities: BD,

idiopathic uveitis, sarcoidosis, BRC, TINU,

VKH disease, pars planitis; other:

HLA-B27, JIA)

1B (4), 2B (4), 4

(5), 5 (2)

NIU, non-infectious uveitis; BCR, birdshot chorioretinopathy; VKH, Vogt–Koyanagi–Harada disease; BD, Behçet’s disease; JIA, juvenile idiopathic arthritis; TINU, tubulointerstitial nephritis

and uveitis.
¶Evidence level 4 and grade C recommendation for mycophenolate sodium.
§ Includes one study with methotrexate and mycophenolate mofetil as comparators.
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Advances in the Treatment of EAU
The important role of microglia in the regulation of
inflammatory cell infiltration into the retina associated with
the initiation of retinal autoimmune uveitis has recently been
demonstrated (50). During the early phase of EAU (days 7–10),
microglia have a direct effect on the increase in the number of
various adherent vascular leukocytes, including T cells, major
histocompatibility complex (MHC) class II+ cells, and CD11b+

cells. This effect was specific to microglia, given that it was not
reproduced by other immune cell types such as monocytes-
macrophages. Therefore, immunomodulatory therapies targeted
at microglia are a primary focus in the development of new
treatments for patients with uveitis.

We previously explained that NKT cells suppress the
induction of Th17 cells and the ocular infiltration of hIRBP-
specific T cells in EAU. However, in contrast to the ameliorating
effects of NKT cell activation that is apparent during the initiation
phase of EAU, the activation during the effector phase exacerbates
disease pathology. This finding suggests that NKT cells have a
dual role in EAU, depending on the phase of the disease (51).

CD83+CCR7+ NK cells induced by interleukin (IL)-18
released from DCs promote EAU (52). NK cells are negatively
regulated by a soluble form of CD83 in EAU (53). In addition,
DC–NK cell interactions that underlie the regulation of Th1
responses modulate the adaptive Th17 response and limit tissue-
specific autoimmunity through the innate interferon (IFN)-γ-IL-
27 axis in this model (54).

Treg cells are necessary for the resolution of EAU and the
prevention of relapse (55, 56). A recent study demonstrated that
PD-1+CD25+CD4+ Treg cells require programmed cell death 1
(PD-1) stimulation through a melanocortin-adenosine pathway
to suppress EAU. These Treg cells did not induce suppressor
activity in APCs through the PD-1 pathway (57).

Many studies have demonstrated that monocytes-
macrophages have a role in the development of EAU (58).
Activated bone marrow–derived macrophages are required
during the effector phase of EAU (45). However, in addition to
their proinflammatory function, macrophages have suppressive
effects on ocular inflammation, especially in the chronic phase.
Suppressor of cytokine signaling 3 (SOCS3) in macrophages
was recently found to be important in the suppressing the
inflammation caused by these cells in EAU (59).

Extracellular adenosine triphosphate (ATP) is a key
chemotactic signal for the recruitment of innate immune
cells to sites of brain injury (60). ATP is actively released via
exocytosis or transporters during the early phase of apoptotic cell
death, whereas it is passively released from necrotic cells after
the rupture of the plasma membrane. Extracellular ATP acts at
P2X and P2Y purinergic receptors and induces the formation
of inflammasomes, which are large intracellular multiprotein
complexes that are key players in host defense during the
innate immune response (61). The P2X receptor family consists
of ligand-gated cation channels that open in response to the
binding of extracellular ATP. Among the seven mammalian P2X
receptors, P2RX7 shows the highest affinity for ATP and is highly
expressed in immune cells such as monocytes and T lymphocytes
(62, 63). Research has demonstrated that the genetic ablation

of P2RX7 or the administration of the P2RX7 antagonist BBG
in mice suppresses EAU clinically and histopathologically by
attenuating hIRBP-dependent induction of interferon (IFN)-γ
and IL-17 (64).

Dendritic Cells in the Eye
DCs are highly efficient APCs and have the unique ability to
prime and activate naive T lymphocytes (65, 66). They are divided
into three types, based on their function: immature DCs, mature
DCs, and regulatory DCs. Under physiological conditions, DCs
are widely distributed among tissues and organs (67) where they
are in an immature state and contribute to immune surveillance.
In the eyes of mice and rats, these cells are at the peripheral
margin and in juxtapapillary areas of the retina (68, 69). The
functions of DCs in the quiescent retina include promoting the
generation of Foxp3+ Treg cells and inhibiting the activation of
naive T cells induced by splenic DCs and antigens (69).

Dendritic Cells in EAU
DCs have an essential role in innate immunity. They also
link the innate and adaptive immune systems and are key for
the induction of late immune responses. Cell-based therapy
involving the ex vivo manipulation of mature or regulatory DCs
has been adopted as a means to induce tolerance in autoimmune
disease (70–72). Studies of the mechanisms of DC function in
uveitis are thus warranted to identify new therapeutic targets
for this condition. Mature DCs pulsed with uveitogenic antigens
induce the development of EAU (69). Treatment with fixed
immature DCs, but not with fixed mature DCs, has also been
demonstrated to ameliorate the progression of EAU by inhibiting
uveitogenic CD4+ T cell activation and differentiation (73). In
addition, impairment DC maturation with drugs prevents the
generation of antigen-specific Th1 and Th17 cells and thereby
attenuates EAU (74). Moreover, regulatory DCs induced in vitro
suppress the development of EAU (75). These various data
altogether indicate that the regulation of DC status is potentially
beneficial for the treatment of uveitis.

In a previous study, conducted by the authors of the
present review, we found that mouse spleen-derived DCs
mediate the anti-inflammatory action of dietary ω-3 long-chain
polyunsaturated fatty acids (LCPUFAs) in EAU (76). Histological
analysis at 17 days after disease induction revealed retinal folds
and immune cell infiltration in the eyes of EAUmice that received
DCs from ω-6 LCPUFA–fed mice, and showed that such changes
were markedly suppressed in EAU mice that received DCs from
ω-3 LCPUFA–fed mice (Figure 1A) (77). Furthermore, DCs
exposed to ω-3 LCPUFAs in vivo or in vitro suppressed T cell
proliferation. This finding suggested that ω-3 LCPUFA–treated
DCs attenuate inflammation mediated by T cells (Figure 1B).
Cytokines released by activated DCs are essential for T cell
differentiation, with IL-12 p70 promoting Th1 cell differentiation
and with IL-6 and TGF–β promoting Th17 cell differentiation
(78, 79). We also found that dietary ω-3 LCPUFAs acting via
adoptively transferred DCs markedly inhibited IL-12 p70 and
IL-6 production by T cells from EAU mice. This finding is
consistent with the notion that ω-3 LCPUFAs suppress Th1
and Th17 cytokine production by CD4+ T cells, through the
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FIGURE 1 | The effects of ω-3 long chain polyunsaturated fatty acids in experimental autoimmune uveitis model mice. (A) Hematoxylin-eosin staining of retinal

sections at 17 days after disease induction in experimental autoimmune uveitis (EAU) mice maintained on a diet enriched with ω-3 or ω-6 long-chain polyunsaturated

fatty acids (LCPUFAs). A red arrowhead indicate inflammatory cells in the retina. A yellow arrow indicates a retinal fold. GCL, ganglion cell layer; INL, inner nuclear

layer; ONL, outer nuclear layer. Scale bars, 200µm. (B–D) The proliferation of T cells, as assessed by the measurement of [3H]thymidine incorporation (B), and by the

production of interferon-γ (C), and interleukin-17 (D) in co-cultures of CD4+ T cells from EAU mice and the indicated antigen presenting cell fractions from mice fed

with ω-3 or ω-6 LCPUFAs. Data are expressed as the means + the standard error of the mean (SEM). *P < 0.05, ***P < 0.001; NS, not significant vs. the

corresponding value for the ω-6 LCPUFA diet (i.e., Sidak’s multiple comparison test). The figure is reproduced from (77) with permission.

mediation of DCs (Figures 1C,D). Moreover, we also found that
ω-3 LCPUFAs, acting via DCs, suppressed the production of
proinflammatory cytokines and the anti-inflammatory cytokine
IL-10. However, the DC-dependent anti-inflammatory effects of
ω-3 LCPUFAs appear to outweigh their proinflammatory effects,
at least in EAU.

DIABETIC RETINOPATHY

The global prevalence of diabetes mellitus (DM) tends to increase
yearly, and the number of DM patients is estimated to reach
592 million within 20 years (80). Diabetic retinopathy (DR)
is a representative microvascular complication of DM that
causes visual impairment in working-age adults (81). Leasher
et al. reported that blindness and moderate to severe visual
impairment due to DR increased in 20 years (1990–2010)
from 2.1 to 2.6% and from 1.3 to 1.9%, respectively (82).
Vascular abnormalities such as hemorrhage, microaneurysm,
capillary non-perfusion, and exudates are frequently observed

in DR. Therefore, DR has been perceived as a disease that
originates from vascular abnormalities. However, several lines
of evidence indicate an association between inflammation and
the pathophysiology of DR (12). The principal causes of visual
impairment in DR are proliferative DR (PDR) and DME.
In the next section, we will discuss the relationship between
inflammation and PDR or DME formation.

Inflammation in PDR
PDR is characterized by the development of preretinal
neovascularization and epiretinal fibrovascular membranes
(FVMs) (81). Prolonged hyperglycemia, accumulation of
advanced glycation end products, and oxidative stress under
diabetic condition induce VEGF expression in the retina through
protein kinase C activation. VEGF promotes leukostasis by
increasing the expression of intercellular adhesion molecule-1
(ICAM-1) in retinal vascular endothelial cells (83). Low-grade
inflammation initiated by leukocytes (e.g., monocytes and
granulocytes) that adhere to endothelial cells via ICAM-1
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induces vascular endothelial cell damage and cell death and
promotes capillary loss and infiltration of leukocytes into the
retina (84). Expanding inflammation and ischemia induces the
further expression of VEGF and other angiogenic cytokines such
as TNFα, IL-1β, IL-6, and IL-8. This negative cycle gradually
advances DR (85). Van Hecke et al. showed that the prevalence
of DR is positively associated with the serum levels of C-reactive
protein (CRP) and soluble ICAM-1 (sICAM-1), which suggests
that early vascular damage is actually caused by inflammation
(86). Preventing the onset of DR is important to avoid DR-
induced visual impairment. Therefore, the serum levels of CRP
or sICAM-1 that indicate the level of the inflammatory activity
may become useful biomarkers for predicting the onset of DR.

In a previous study with an experimental animal model,
we previously reported that intravitreal injection of an anti-
VEGF agent can attenuate the infiltration of leukocytes,
especially macrophages, into the retina and can suppress
preretinal neovascularization (87). Esser et al. demonstrated
that inflammatory phase macrophages are localized in FVMs
in PDR (88). This finding implied that macrophage-induced
inflammation is associated with FVM formation. However,
macrophages have diverse populations, and the role of each
population differs (89). With regard to various populations of
macrophages, Zhou et al. found that M2-like macrophages (i.e.,
CD163-positive macrophages) promote pre-retinal angiogenesis
in DR (90). Kobayashi et al. also reported that some M2-
like macrophages localized in the FVMs produce periostin
(91). Periostin is a matricellular protein that is essential for
FVM formation in PDR (92). Thus, we believe that M2-like
macrophages may potentially become a new therapeutic target
in treatment of PDR. The process from the onset of DR to the
occurrence of PDR is summarized in Figure 2.

Inflammation in DME
Blood vessels in the central nervous system (CNS), including
the retina have a vascular barrier function and maintain a
proper neural microenvironment through strict control of
vascular permeability (93). Retinal neural tissue is separated
from the blood stream by the inner blood-retinal barrier
(94). The collapse of the inner blood-retinal barrier under
diabetic conditions results in DME, and persistent DME causes
irreversible neural damage (94). Experimental investigations
have proven that low-grade inflammation after leukostasis
can disrupt the vascular barrier (83), and VEGF and some
cytokines/chemokines that can increase vascular permeability
are secreted from infiltrated leukocytes (94). Moreover,
several clinical studies have demonstrated the upregulation of
inflammatory cytokines/chemokines in the vitreous fluid of eyes
with DME, which suggests a relationship between inflammation
and the pathogenesis of DME (95).

VEGF is the most studied molecule that can increase vascular
permeability (96). Regular intravitreal injections of anti-VEGF
agents (i.e., anti-VEGF therapy) can improve vision and reduce
the accumulation of macular fluid in DME. This therapy is
the primary treatment modality for DME (3). However, clinical
trials have demonstrated that ∼40% of patients are anti-
VEGF resistant (97). Several studies were conducted to detect

additional therapeutic targets for the treatment of DME. Sfikakis
et al. demonstrated the therapeutic efficacy of the intravenous
injection of IFX, an anti-TNFα antibody (98). Anti-inflammatory
treatment for DME produces worthwhile results; however some
concerns exist regarding the adverse effects of the therapy
because of the need to administer high concentrations of IFX
(5 mg/kg) multiple times to patients (98). Gale et al. conducted
a clinical trial to evaluate the efficacy of an oral chemokine
receptor (CCR) type 2 and type 5 (CCR2/CCR5) dual antagonist
for treating DME because CCR2 and CCR5 signaling pathways
are associated with vascular leakage, monocyte/macrophage
infiltration, and increased VEGF expression in the retina of
experimental DRmodels (99). However, its therapeutic efficacy is
inferior to that of monthly intravitreal injections of an anti-VEGF
agent (99). No molecule beyond VEGF has been found, although
the development of a novel treatment for anti-VEGF–resistant
DME is urgently needed.

To identify a new target molecule or a novel biomarker
for predicting anti-VEGF resistance, many researchers have
examined the relationship between the response to anti-VEGF
treatment and the concentration of intraocular inflammatory
cytokines/chemokines. Hillier et al. showed that an increase
in baseline aqueous ICAM-1 is associated with a favorable
anatomic response, whereas an increase in baseline aqueous
VEGF is associated with an unfavorable anatomic response
(100). Shimura et al. concluded that a favorable response was
obtained in patients with increased baseline aqueous VEGF,
soluble VEGF receptor-1, monocyte chemoattractant protein-1
(MCP-1), ICAM-1, IL-6, and IP-10 (101). Felfeli et al. compared
aqueous cytokine concentrations at baseline and 2 months after
anti-VEGF therapy; they reported that the aqueous levels of
ICAM-1, MCP-1, placenta growth factor, and TGF-β2 decreased
significantly in patients with a favorable response (102).

The results of animal experiments have revealed that VEGF
induces endothelial ICAM-1 expression in the early stage of DR
(83), and that ICAM-1 expression decreases in endothelial cells
in the chronic stage of DR (103). Therefore, DME in the “early”
stage with mild vascular injury (which does not indicate a short
medical history of DR) may respond well to anti-VEGF therapy.
Inflammatory cytokines and VEGF decreased in patients with a
favorable response to the anti-VEGF therapy, which suggests that
VEGF-dependent inflammation may have primarily contributed
to DME formation in these patients. The detailed mechanisms of
the association between inflammation and anti-VEGF resistance
are not completely understood; however, the change in the
quality of inflammation may cause treatment resistance. DME
animal models such as Akimba mouse models (104), will provide
new insights into the involvement of inflammation in the
pathogenesis of DME in future research (Figure 2).

RETINOPATHY OF PREMATURITY

Retinopathy of prematurity (ROP) is a retinal vasoproliferative
disorder that can lead to childhood blindness (105). Blencowe
et al. reported that ROP occurs in 184,700 infants annually
worldwide. Among these infants, ∼20,000 cases progress to
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FIGURE 2 | Summary of our hypothesis on the formation of proliferative diabetic retinopathy and antivascular endothelial growth factor resistant diabetic macular

edema. Diabetic macular edema (DME) animal models such as Akimba mouse models have been developed. The details of the involvement of inflammation in the

pathogenesis of DME are expected to be identified in the future.
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a stage that requires treatment (105). The incidence of ROP
onset cases has been declining because neonatal management is
improving every year (106) and because of a tendency toward a
declining birthrate, especially in developed countries. However,
a decrease in the number of cases does not necessarily mean
a decrease in the number of treatments. Improved neonatal
management indicates an increase in the survival rate of preterm
infants. The gestational age (GA) and birth weight (BW) of
infants enrolled in major large trials are steadily decreasing
(107). Low GA and low BW are common risk factors for
ROP progression (108). The risk of an increase in the relative
proportion of severe ROP cases that require treatment may occur
in the future.

Current primary treatments for ROP are retinal
photocoagulation and anti-VEGF therapy. Large clinical trials
such as the Early Treatment for Retinopathy Of Prematurity
study and the Bevacizumab Eliminates the Angiogenic Threat of
Retinopahty of Prematurity (BEAT-ROP) study have proven that
both methods are effective (109, 110). However, severe ROP is
sometimes accompanied by poor mydriasis and vitreous opacity.
In such cases, performing laser photocoagulation in infants
with ROP is difficult. Anti-VEGF therapy can be considered
the first-line therapy for these patients. The BEAT-ROP study
revealed that anti-VEGF therapy (i.e., the administration of
bevacizumab) is associated with significantly less recurrence
than laser photocoagulation in zone I ROP cases (110). To
date, bevacizumab is generally used as an off-label drug in
some limited facilities. The efficacy of intravitreal injection of
ranibizumab (IVR) was recently proven (111). On account that
ROP has been approved as one indication for ranibizumab,
more infants with ROP are expected to benefit from anti-VEGF
treatment in the future.

Inflammation in ROP
The recurrence rate of ROP after IVR monotherapy is ∼30%
(111). The provision of optimal treatment at a proper time is
essential to prevent the impairment of visual development in
infants with ROP; therefore, the identification of a biomarker
of ROP progression is very important. VEGF and many other
molecules such as insulin-like growth factor-1, hypoxia-inducible
factor-1, and reactive oxygen species, may be involved in the
onset of ROP (108); however, Sato et al. reported that the
vitreous concentrations of inflammatory cytokines/chemokines
are increased in patients with ROP (13), which suggests an
association between inflammation and ROP pathogenesis. Lyu
et al. showed that high levels of aqueous VEGF and macrophage
inflammatory protein (MIP)-1β at baseline were associated with
the recurrence rate of ROP after IVR therapy (112). In a previous
study, we reported thatMIP-1β expression significantly increased
in the retina of an ROP animal model (113). MIP-1β, also
known as chemokine CC motif ligand 4, is a member of the CC
chemokine family. Members of the CC chemokine family are
characterized by their ability to direct the migration of leukocytes
into the inflamed tissues. MIP-1β is upregulated very quickly
after hypoxic stimulation in mouse retina (113). Therefore, its
expression level may become a very sensitive sensor of retinal
ischemia. The administration of a neutralizing antibody against

MIP-1β inhibits physiological angiogenesis (113); therefore, we
believe that MIP-1β has the potential to be a useful inflammatory
biomarker of ROP progression or recurrence rather than a
therapeutic target molecule. Moreover, Matsuda et al. reported
that mast cell tryptase (MCT) released frommast cells is involved
in angiogenesis in ROP (114). They demonstrated that MCT
promotes angiogenesis by inducing the production of MCP-1
and other angiogenic factors from endothelial cells (114). On
account that the serum MCT level is elevated in infants with
ROP, MCT also has the potential to be a useful biomarker of
ROP progression.

RETINITIS PIGMENTOSA

Gene Mutations and Microenvironment
Alterations in Retinitis Pigmentosa
Retinitis pigmentosa refers to a subgroup of inherited
retinal degenerations (IRDs) that cause progressive rod-
cone degeneration (115). More than 90 causal genes have been
identified for typical RP, and these genes are frequently related
to the function, structure, and homeostasis of rod photoreceptor
cells. Night blindness due to rod dysfunction and death is an
early symptom of RP, followed by visual field constriction and
loss of central vision due to secondary cone cell death. RP is
a major cause of adult blindness in over one million patients
globally; no effective treatment substantially delays the disease
progression or restores the vision lost to RP (115).

Recent advances in gene therapy have shed light on the
treatment of IRDs. Supplementation of the retinal pigment
epithelium-specific 65 kDa protein (RPE65) gene in patients
with Leber congenital amaurosis due to RPE65 mutations
improves their light sensitivity and performance in the multi-
luminance mobility test (116). This therapy has been approved
in the United States and in Europe. Gene therapy for RP,
which targets autosomal recessive or X-liked mutations (e.g.,
phosphodiesterase 6B, retinaldehyde-binding protein 1, retinitis
pigmentosa GTPase regulator, MER proto-oncogene tyrosine
kinase) has been assessed in clinical trials (4). However, a
significant number of RP patients may not be indicated for gene
therapy because of the following reasons: (1) adeno-associated
viral vectors cannot accommodate large genes such as the eyes
shut homolog, (2) gene correction or editing of autosomal
dominant mutation in vivo is still challenging, and (3) many
patients are first diagnosed in themid- to late-stages of the disease
when the rod cells are mostly lost. Therefore, the elucidation
of the biological mechanisms that underlie retinal degeneration,
especially in the secondary cone cell death phase, will be critical in
developing novel treatments for RP, in addition to individualized
gene therapy.

In RP, rods are expected to be injured because of gene
mutations that are exclusively expressed or critically function
in rod cells. However, why and how cones also die subsequent
to rod cell death is puzzling. Accumulating evidence suggest
that microenvironmental changes associated with rod cell death
such as loss of trophic factors (117), metabolic alterations
(118), oxidation (119), collapse of outer nuclear layer (120),
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and inflammation (121), which are associated with rod cell
death, may contribute to the secondary cone cell death. These
factors mutually influence each other. For example, cytokines or
chemokines released from a collapsed retina evoke inflammatory
cell activation andmigration, activatedmicroglia ormacrophages
produce reactive oxygen species (ROS) to enhance oxidative
stress, and, alternatively, oxidative stress triggers, or augments
inflammatory response. The roles of oxidative stress and
metabolic dysfunction in cone cell death in RP have been
summarized in a previous review (119, 120). The present review
focuses on inflammation and immunobiology as potential factors
that mediate and modulate cone degeneration in RP. Assessing
immune involvement in RP/IRDs from a broader perspective,
including RP cases in the rod degeneration phase, is beyond the
scope of this review and have been described in our previous
recent review (11).

Clinical Findings of the Inflammatory
Response and Its Relationship With Cone
Degeneration in RP
Cell death and inflammation have a tight interaction with each
other. Dying or dead cells stimulate phagocytes to mediate their
clearance and maintain tissue homeostasis, whereas excessive
activation of inflammatory cells can exert cytotoxicity and
exacerbate the disease (122).

Without exception to this scenario, inflammatory cell
infiltration is usually observed in the vitreous of RP patients.
Using vitreous samples from post-mortemRP patients, Newsome
et al. demonstrated that this cell infiltration consists of a
mixed component of inflammatory cells including monocytes,
NK cells, lymphocytes, and others cells (123). In a previous
study, the authors of the present review graded the severity
of inflammation in the anterior vitreous using vivo in slit-
lamp biomicroscopy, and found that RP patients with a higher
number of inflammatory cells had worse visual acuity and lower
central retinal sensitivity (121). We also evaluated aqueous flare,
a marker of blood-ocular barrier breakdown and inflammation.
Our study data showed that aqueous flare values are increased
in the eyes of RP patients, compared to these values in
healthy individuals, and that aqueous flare values are negatively
correlated with central visual function in RP patients (124).
Consistent with our observation, independent groups have
reported that aqueous flare values have a negative association
with visual field area (125) and a positive correlation with inner
retinal thickening, which occurs during retinal degeneration and
remodeling, in RP patients (126). Daylight vision in the central
and peripheral area is provided by cone cells; therefore, these
findings suggest that inflammation may be implicated in retinal
degeneration, especially in secondary cone cell death that occurs
in RP. However, these studies were cross-sectional clinical studies
and have the limitation that a cause-effect relationship could not
be elucidated.

Cytokines and chemokines have critical roles in evoking
the differentiation, activation, migration, and suppression of
immune cells. A comprehensive measurement of inflammatory
cytokines and chemokines in the aqueous humor and vitreous

of the eyes of RP patients using multiplex enzyme-linked
immunosorbent assay showed that IL-6, IL-8, and MCP-1 are
elevated in the aqueous humor of RP patients, and that a greater
variety of molecules (e.g., IL-1β, IL2, IL-4, IL-6, IL-8, IL-10, IFN-
γ, MCP-1) are increased in the vitreous with more significant
fold changes (121). Lu et al. also conducted multiple cytokine
analyses and observed increased IL-6, IL-8, and MCP-1 levels
and increased extracellularmatrix-related proteins such asmatrix
metalloproteinases (127).

The inflammatory cytokines/chemokines elevated in RP are
related to innate and acquired immunity. IL-1β, IL-8, and
MCP-1 are pivotal molecules for activating and recruiting
monocytes/macrophages and neutrophils to the inflammatory
loci. IFN-γ, IL-2, IL-4, and IL-10 are produced primarily or
partly by T lymphocytes, and they mediate the differentiation
and polarization of Th cells and macrophages. These profiles of
inflammatory cytokines/chemokines in RP are consistent with
the infiltration of a variety of inflammatory cells into the vitreous,
as described above (123). To develop an anti-inflammatory
therapy for RP, further studies are needed to elucidate the key
inflammatory cytokines/chemokines that critically contribute to
the disease progression.

High sensitivity CRP (hs-CRP) is a serum inflammatory
marker, and an increased hs-CRP is associated with age-
related macular degeneration, DR, and uveitis (128, 129). The
measurement of serum hs-CRP levels in RP patients without
systemic disorders revealed that hs-CRP levels are ∼2 times
higher in RP patients than in control subjects (130). In
addition, a higher hs-CRP level is associated with a faster
deterioration in central retinal sensitivity in RP patients (130).
Taken together, these findings suggest that peripheral immune
cells and ocular resident immune cells may be implicated in the
disease progression of RP.

Functional Roles of Inflammatory
Response in Cone Cell Death in RP
The findings outlined previously suggest that innate and acquired
immunity are activated and involved in the pathology of RP.
However, the function of each inflammatory cells (e.g., microglia,
macrophages, and lymphocytes) and its regulatory mechanisms
remains unclear and is a topic of interest.

Microglia, a resident macrophage in the CNS that derived
from the embryonic yolk sac progenitors, are themost prominent
immune cells in the retina (131). Microglia are long-lived
cells that persist throughout the entire lifetime of mice, and
can proliferate and repopulate after experimental depletion or
during retinal degeneration (132). Monocytes in the peripheral
blood do not invade the CNS in healthy conditions, although
they can infiltrate and differentiate into macrophages in an
aging or diseased retina with a dysfunctional blood-retinal
barrier (133). These monocyte-derived macrophages resemble
microglia in their morphology and their long life span, but
have different functional features such as lower expression of
colony-stimulating factor 1 receptor and higher expression of
proinflammatory molecules such as MHC-II, IL-1β, and TNF-
α (134). These two myeloid cells (i.e., tissue-resident microglia
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and monocyte-derived macrophages) have been extensively
investigated as pivotal innate immune cells that contribute to the
health and disease of the retina.

Several reports have demonstrated the detrimental
function of microglia/macrophages in retinal degeneration
in experimental RP. In a previous study, suppression of activated
microglia/macrophages with minocycline or toxin-induced
depletion of CX3CR1-positive microglia/macrophages protected
rod cells against cell death in retinal degeneration (rd) 10 mice
(135, 136). However, attenuation of the homeostatic function of
microglia by disrupting the CX3C chemokine ligand 1-CX3C
chemokine receptor 1 axis or the complement component
3–complement receptor 3 axis accelerates rod degeneration,
along with proinflammatory microenvironmental changes
such as increased TNF-α and IL-6 levels (137, 138). Therefore,
microglia/macrophages have a bidirectional function in RP, as
expected from the basic understanding of the interaction between
cell death and inflammation. Dissection of the protective and
detrimental populations among microglia/macrophages and
precise understanding of the differential function of microglia
and macrophages in RP warrant further studies. In addition,
clinical studies suggest a link between inflammatory markers and
cone function; therefore, the effect of microglia/macrophages on
cone cell death also requires further study.

Oxidative stress significantly contributes to cone cell death
in RP. Campochiaro et al. postulated that rod cell loss in RP
substantially reduces oxygen consumption in the retina, and the
remaining cone cells are exposed to a high-level of oxygen and
resultant ROS (119). They showed that oxidized proteins, lipids,
and nucleic acids are accumulated in the outer retina (139), and
that pharmacological or genetic suppression of oxidative stress
leads to significant rescue of cone cells in animal models of
RP (140).

Oxidative stress may have a direct harmful effect on cone
cells, but it also affects microglial/macrophage activation
in RP. In a previous study, we showed that treatment
with anti-oxidant N-acetylcystein (NAC) substantially
suppresses microglia/macrophage activation with reduced
MCP-1, IL-1β, RANTES, and TNF-α expression (141).
The anti-inflammatory effects of anti-oxidants are also
observed in eyes with experimental retinal detachment that
are treated with a free radical scavenger, edaravone (142).
Our study further demonstrated that oxidative activation of
microglia/macrophages is a key step in the augmentation of
retinal inflammation and degeneration (including cone cell
death) in rd10 mice. This activation is partly mediated by an
oxidative DNA repair enzyme, MUTYH; an excessive activation
of which leads to the formation of single strand breaks and
increased expression of TNF-α in microglia/macrophages
(143). The concept that oxidative stress alters homeostasis
vs. neurotoxic balance of microglia and modulates cone
cell survival and neuroinflammation in RP is shown
in Figure 3.

Lymphocytes and lymphocyte-related cytokines are increased
in the eyes of RP patients. In addition, several studies suggest the
possible involvement of an autoimmune response and antiretinal
autoantibodies in the progression of RP (144). However, the roles

of acquired immunity in RP have been less investigated than the
role of innate immunity.

Rohrer et al. crossed rd1 mice with Scid or Rag1−/− mice,
both of which lack functional T and B lymphocytes, and showed
that the deficiency of lymphocytes did not change rod cell death
(145). In another study, Mishra et al. demonstrated that rod
degeneration was mildly attenuated in rd1 Nod.Scid mice, which
are deficient in T, B, and NK cells (146). These findings suggest
that NK cells may play a minor role in rod cell death in RP,
whereas lymphocytes may not have a significant function, at least
solely by themselves. However, lymphocytes and their related
molecules/factors are clinically observed in the mid- to late stage
of RP. Thus, studying the roles of acquired immunity in cone cell
death will be important in future research.

VITREORETINAL LYMPHOMA

Most primary vitreoretinal lymphomas (PVRL), which were
previously termed as intraocular lymphomas, are related to high-
grade non-Hodgkin’s lymphoma, which is a subset of primary
central nervous system lymphomas (PCNSL) (147). In Japan,
21 per 100,000 patients with ocular disorders have PVRL (148).
PVRL comprises 1% of non-Hodgkin’s lymphoma and <1% of
intraocular tumors (149). Most cases of VRL are primary or
secondary to CNS disease or may present simultaneously with
it; however, it can also rarely be derived from systemic metastatic
lymphoma (150). PVRL usually occurs in adults from the fifth to
the sixth decades of life (151). No sex or racial predilection to the
disease apparently exists, although some reports proposed that
PVRL occurs more frequently in females than males (152).

Clinical Features of Vitreoretinal
Lymphoma
The clinical ocular features of VRL, termed “masquerade
syndrome,” are often similar to those of chronic uveitis; therefore,
a misdiagnosis of VRL sometimes leads to the administration
of anti-inflammatory agents such as corticosteroids and thereby
cause a delay in reaching a definitive diagnosis. The interval
between the onset of the ocular or neurological findings and
a definitive diagnosis is variable, and ranges from 4 to 40
months (152). The involvement of the CNS arises in 16–34%
of patients with PVRL at presentation and develops in 42–92%
of patients within a mean interval 8–29 months (151). Ocular
involvement occurs in 15–20% of patients with PCNSL (151).
Most patients with VRL have bilateral ocular involvement, but
they often present with unilateral involvement at the initial
visit owing to the uneven distribution of the disease. PVRL
usually develops in the retina, the vitreous chamber, and/or the
optic nerve, but can sometimes involve the anterior segment
of the eye (153). Vitritis is the most common sign in VRL,
and the findings has an “aurora borealis”-like appearance. In
VRL, responses to corticosteroid therapy is initially observed
but treatment resistance subsequently occurs. Multifocal whitish
to yellow subretinal infiltrates are often observed. Coalescence
of the lesions with “leopard skin”-like pigmentation, which is
characteristic of VRL, is sometimes observed.
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FIGURE 3 | Oxidative stress modulates cone cell survival and neuroinflammation in retinitis pigmentosa. The remaining cones in retinitis pigmentosa (RP) are exposed

to a high level of oxygen and the resultant reactive oxygen species (ROS). ROS have a direct harmful effect on cone cells and affects the activation of microglia and

monocyte-derived macrophages. Activated microglia/macrophage have a bidirectional function to protect or promote cone cell death. Which environmental factors

(e.g., ROS, molecules released from dead cells) and cellular factors (e.g., microglia vs. macrophage) are critical to determine the homeostatic vs. neurotoxic function of

microglia/macrophage in RP is unclear.

The overall survival of VRL patients has improved over
the decades because of earlier diagnosis of the disease,
which is a result of advances in molecular biological or
genetic techniques. In addition, intense systemic chemotherapy
and/or radiotherapy have also increased the overall survival
rate. Several prospective studies have recently demonstrated
that high-dose methotrexate (HD-MTX)-based chemotherapy

with intravitreral MTX injections, subsequent whole brain
radiotherapy (WBRT), and/or consolidation chemotherapy
could improve overall survival and prevent CNS progression (5–
7). Kaburaki et al. showed that a combination treatment protocol
of intravitreral MTX injections, MTX-based systemic induction
chemotherapy and consolidation high-dose cytarabine, and
subsequent reduced-dose WBRT for the treatment of PVRL
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accomplished a 4-year progression-free survival of 72.7% and a
4-year overall survival of 88.9% (7), which suggests that these
intensive systemic therapeutic modalities should be introduced
for CNS prophylaxis. Some cases are resistant to these regimens,
although no standard regimens exist for the treatment of
refractory and relapsed PCNSL. Retreatment with HD-MTX-
based chemotherapy has been administered in some patients.
WBRT or high-dose chemotherapy and autologous stem cell
transplantation in younger patients who have not undergone
these treatments as part of the first-line therapy are used as
a salvage therapy instead (154). However, introducing these
treatments to elderly patients and patients with a poor general
condition is often difficult to prevent CNS progression and to
treat PCNSL because of the possible occurrence of treatment-
induced adverse events such as neurotoxicity and nephrotoxicity
(155, 156). In the next section, we review the association of
pathogenesis, especially the genetic or immunological aspects,
with B-cell VRL to exhibit new diagnostic and/or therapeutic
targets for the treatment of VRL.

Gene Mutations in Vitreoretinal Lymphoma
Most cases of PVRL can be classified as diffuse large B-cell
lymphoma (DLBCL), whereas very few cases are classified as
a T cell lymphoma or NK cell origin PVRL (152). Based
on gene expression profiles, DLBCL is divided into three
major subgroups: germinal center B-cell-like, activated B-cell-like
(ABC)/non-germinal center, and primary mediastinal DLBCLs
(157). The immunophenotype of most PCNSLs resembles ABC-
DLBCLs, which are more aggressive and have poor prognostic
outcomes, compared to the others (158).

High frequency of myeloid differentiation primary response
gene 88 (MyD88) and CD79B mutations have been characterized
in PCNSL (159). A single leucine-to-proline substitution at
amino acid position 265 of Myd88 (MYD88 L265P), is the most
common mutation and accounts for more than 60% of VRLs
(160). MYD88 is the adapter protein that mediates intracellular
signaling pathways downstream of the toll-like receptor and the
IL-1 receptor families. The CD79B mutation occurs in 35% of
patients with PVRL, and is associated with the CNS progression
of PVRL (161). The B-cell receptor (BCR) complex-associated
protein β chain, CD79B, forms a complex with BCR and
generates after recognition of an antigen to activate chronic BCR
signaling. MYD88 L265P and/or CD79B mutation contribute to
the constitutive activation of NF-kB or BCR signaling, thereby
promoting tumor growth.

Furthermore, in cases of PCNSL, because of the HLA locus
mutation (chromosome 6q21.32), a shortage in HLA class I and
II expression on tumor cells leads to escape from T or NK cell-
mediated immune surveillance against tumor cells (162), which
suggests that the lack of immune recognition of foreign antigens
is one of the mechanisms that B-cell VRL cells preferentially
retains in the eye.

PD-1, which is expressed on activated T-cells such as cytotoxic
T lymphocytes (CTLs), interacts with its ligands (PD-L1 and
PD-L2). These ligands are commonly expressed on tumor
cells and upregulated in the tumor microenvironment (TME),
thereby promoting inhibitory signaling of T cell receptors

(TCRs) in CTL and subsequent tumor growth (163, 164).
In PCNSL, investigations of copy number variations have
revealed that frequent copy number gains at chromosome 9q24.1,
which contains the PD-L1/PD-L2 locus (159). Chromosomal
translocation involving the PD-L1/PD-L2 locus were also
discovered in PCNSL, which indicates that immune evasion may
be associated with the development of PCNSLs, including PVRL.

Diagnosis of Vitreoretinal Lymphoma
Cytological examination of the intraocular fluid or tissue is
the gold standard for a definitive diagnosis of VRL. However,
cytology alone can have a low diagnostic yield (40–60%) because
of the limited amount of specimen that can be obtained, necrosis,
and the fragility of VRL cells (165, 166). The vitrectomy cell block
technique can improve diagnostic yield and can be utilized for
immunohistochemistry of pan B-cell markers, including CD20
and CD79a, to establish a definitive diagnosis of lymphoma (167–
169).

Several supplementary diagnostic methods can improve the
definitive diagnosis of VRL. They include cytokine analysis to
determine the ratio of IL-10 to IL-6 (i.e., the IL-10/ IL-6 ratio)
(170), molecular analysis of the immunoglobulin heavy (IgH)/
TCR chain gene to confirm monoclonality, and flow cytometric
identification of cell surface markers (171, 172). However, clonal
expansions of lymphocytes have not been circumscribed in VRL.
Therefore, molecular analysis with polymerase chain reaction
and flow cytometric identification can sometimes yield false-
positive results (173, 174).

Furthermore,MYD88 L265P can be screened with new genetic
techniques, including allele-specific polymerase chain reaction
and next generation sequencing (NGS) using an oncogene gene
panels, which allows for lower cellularity or a smaller volume of
samples to confirm the definitive diagnosis of VRL (175, 176).

Etiopathogenesis in Vitreoretinal
Lymphoma
As an exogenous factor, infection with the Epstein-Barr
virus (EBV) is associated with PCNSL, specifically in
immunocompromised patients such as individuals with
acquired immune deficiency syndrome (AIDS) (177). EBV,
which is a ubiquitous human herpes virus, affects most of the
human population. EBV infects humans mostly in childhood
and early adulthood, and subsequently spreads to B-lymphocytes
and exists in a latent state. In patients with impaired cell-
mediated immunity, such as patients with immune suppression
and the elderly with immunosenescence, latent EBV may
proliferate indiscriminately and drive neoplastic transformation
to lymphoid malignancy (178). EBV, Toxoplasma gondii, and
human herpes virus 8 are speculated as a cause of PVRL due to
the detection of their gene expression in the intraocular fluids of
some patients with PVRL (179).

On account that PVRL has selective tropism to CNS
lesions, a theory has been proposed that chemokines and
their receptors encourage the attraction and maintenance
of VRL cells in intraocular tissues. In patients with B-cell
chemokines, CXCL12, and CXCL13 are specifically expressed
in retinal pigment epithelial cells and/or in the vitreous cavity
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of patients with VRL. As a consequence, B-lymphoma cells
[which express CXCR4 and CXCR5 (i.e., receptors for CXCL12
and CXCL13)] are recruited into intraocular tissues such as
the retina, vitreous body, and subretina (180). CXCL13 levels
are also increased in the vitreous humor of patients with VRL
(181). CCL19 derived from astrocytes was recently reported
to promote the retention of lymphoma cells, which express
CCR7, and subsequent tumor growth in chronic gliosis lesions
in mice (182).

Immune Evasion in Vitreoretinal Lymphoma
VRL cells can evade attacks by CTLs and NK cells because
the eye is an immune-privileged site that possesses an
immunosuppressive ocular microenvironment composed of
soluble and cell surface inhibitory molecules. TGF-β is abundant
in the vitreous humor to maintain an anti-inflammatory state
in the eye (8). IL-10, which is widely regarded and has been
analyzed as an immunosuppressive cytokine, has a pivotal
role in the induction of immune tolerance in the eye (183).
In cancer, regulatory cytokines in the TME such as IL-10 and
TGF-β support tumor development by suppressing antitumor
immunity in cancer (184, 185). Treg cells, which are a highly
suppressive subset of T cells, increase regulatory cytokines
secretion for the maintenance of self-tolerance and inhibition of
autoimmunity, which result in tumor development (186, 187).
In B-cell malignancies, including systemic DLBCL, the TME,
which is formed with the reactive T-cells, macrophages, stromal
cells, blood vessels, and extracellular matrix, regulates tumor
cell survival or proliferation, and immune evasion for treatment
resistance, associated with worse prognosis (188). Vitreous
samples of B-cell VRL contain a large number of benign T
cells and macrophages as well as tumor cells (174), which
suggests that the infiltrating immune cells form the TME
and support the suppression of anti-tumor immunity in the
vitreous body.

Advances in the Treatment for Vitreoretinal
Lymphoma
Based on the outcome of the genetic studies described previously,
several new agents are currently being investigated as a
salvage therapy in clinical trials assessing in patients with
refractory or relapsed PCNSL and PVRL. In a prospective
French multicenter phase II trial, monotherapy with ibrutinib,
which targets Bruton’s tyrosine kinase downstream of BCR,
was effective and had objective response rates (ORRs) of up to
70% (189). Among 14 PVRL patients, the median progression-
free survival (PFS) was 22.7 months. The median overall
survival was not estimated because more than one-half of
the PVRL patients were alive (Table 2). Immunomodulatory
agent monotherapy with lenalidomide, which inhibits the NF-
kB and PI3K/AKT pathways, achieved ORRs of up to 64% (192).
However, in a prospective clinical study (191), lenalidomide
in combination with intravenous rituximab for refractory or
relapsed PCNSL and PVRL maintained an ORR of 35.6% owing
to the short response to the therapy. Among 11 PVRL patients,
the median PFS was 9.2 months. Nivolumab, an anti-PD-1 agent,
has been reported to have responses and maintain complete

TABLE 2 | Salvage treatment regimen for PVRL in prospective clinical trials.

Agent Number of

patients

Median PFS

(mo.)

Median OS

(mo.)

CYVE + ASCT (190) 5 8 19.2

Ibrutinib (189) 14 22.7 Not estimated

Lenalidomide + rituximab

(191)

11 9.2 Not reported

PVRL, primary vitreoretinal lymphoma; PFS, progression free survival; OS, overall survival;

CYVE, high-dose cytarabine and etoposide; ASCT, autologous stem cell transplantation.

remission in patients with relapsed/refractory PCNSL (193).
In the future, the combination of these agents with MTX-
based chemotherapy should be assessed as the first-line therapy
for PVRL.

Furthermore, increased expression of proinflammatory
cytokines related to CTLs, such as IFN-γ, granzyme A, and
IP-10 occurs in the aqueous humor and/or vitreous of VRL
patients (181), which suggests that CTLs are associated with
the pathogenesis of VRL. In a previous study, we revealed that
subretinal infiltration of VRL cells elicits the infiltration of
T-cells into the vitreous cavity (194). However, we were unable to
elucidate the association of the T cells with the prognosis of the
VRL patients. Little data exist that elucidate the roles of reactive
T cells in DLBCL-VRL. In the future, further detailed studies
on the infiltration of T cells into the eyes of VRL patients may
provide new insights into the pathogenesis of the disease and
deliver new therapeutic targets such as augmentation of CTL
and/or NK cells function.

CONCLUSION AND FUTURE DIRECTIONS

A profound understanding of the intricacies of immune
responses will raise innovations for the management and
treatment of these intractable retinal disorders. The generation
of biologics, including IFX or ADA, has dramatically changed
the treatment of NIU in the past few decades. However, during
long-term treatment of NIU patients, a decreased response or
adverse events to the biologics has emerged because of the
development of antidrug antibodies or paradoxical effects. The
development of selective small-molecule therapies is expected
to resolve these problems. From the results of our analysis of
EAU, the induction of regulatory DCs may be useful for the
treatment of NIU.

In retinal vascular diseases, low-grade inflammation can
destroy vascular integrity by the action of VEGF and some
cytokines/chemokines from infiltrated leukocytes. Resistance to
anti-VEGF therapy is sometimes observed in DR (including
DME); therefore, developing a new therapy associated with low-
grade inflammation as a “beyond VEGF” therapy for retinal
vascular diseases, including DR and ROP, may be useful.

Immunological responses also affect the pathogenesis of
RP, despite differences in genetic backgrounds. Targeting
cytokines/chemokines associated with immunological responses
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against RP may be an attractive target for the treatment of RP, in
addition to gene therapy.

The recent introduction of molecular profiling technologies,
including NGS, can exhibit the molecular characterization of
several cancers to provide information on tumor diagnosis and
specific targeted therapy. Several agents, which were selected on
the basis of the molecular characterization, have been assessed
in clinical trials of cases of refractory/relapsed PCNSL; however,
the utility of these molecular profiling technologies has not
been established. Considering the rarity of VRL, large-scale
collaborative registries, tumor molecular profiling programs, and
clinical trials in institutions across the world are necessary to
enhance diagnosis, prognostication, and treatment outcomes in
the future.
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