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Background: Macromolecule structure prediction remains a fundamental challenge of
bioinformatics. Over the past several decades, the Rosetta framework has provided
solutions to diverse challenges in computational biology. However, it is challenging to
model RNA tertiary structures effectively when the de novo modeling of RNA involves
solving a well-defined small puzzle.

Methods: In this study, we introduce a stepwise Monte Carlo parallelization (SMCP)
algorithm for RNA tertiary structure prediction. Millions of conformations were randomly
searched using the Monte Carlo algorithm and stepwise ansatz hypothesis, and SMCP
uses a parallel mechanism for efficient sampling. Moreover, to achieve better prediction
accuracy and completeness, we judged and processed the modeling results.

Results: A benchmark of nine single-stranded RNA loops drawn from riboswitches
establishes the general ability of the algorithm to model RNA with high accuracy and
integrity, including six motifs that cannot be solved by knowledge mining–based modeling
algorithms. Experimental results show that the modeling accuracy of the SMCP algorithm
is up to 0.14 Å, and the modeling integrity on this benchmark is extremely high.

Conclusion: SMCP is an ab initio modeling algorithm that substantially outperforms
previous algorithms in the Rosetta framework, especially in improving the accuracy and
completeness of the model. It is expected that the work will provide new research ideas for
macromolecular structure prediction in the future. In addition, this work will provide
theoretical basis for the development of the biomedical field.
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INTRODUCTION

Biological macromolecules such as protein, ribose, and polysaccharides are indispensable substances
in living systems, and the structural prediction of biological macromolecules is a grand challenge of
bioinformatics. The ab initio structure prediction of atomic accuracy was realized in the sixth critical
assessment of techniques for protein structure prediction (CASP) blind trial by adopting the
conformational sampling method combining low-resolution and high-resolution minimum
energy function and the Monte Carlo calculation method (Bradley et al., 2010). RNA secondary
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structure prediction has improved the performance of EA by
introducing a quantum computing strategy and achieved high-
precision and high-sensitivity prediction (Shi et al., 2020). As a
blind experiment to evaluate the RNA tertiary structure
modeling, the purpose of RNA puzzle is to find out the
capacity and bottleneck in RNA prediction. A grim result in
recent RNA assessments is that the accurate prediction rate of
noncanonical base pairs is less than 20% (Miao et al., 2017).

However, the RNA structure plays an essential role in molecular
biology. On the one hand, the function of RNA mainly depends
on its structure (Calonaci et al., 2020). Only by understanding the
structure can we further explore the function and the relationship
between the function and structure. On the other hand,
understanding the RNA structures can provide a basis for
medical progress, for example, providing the theoretical basis
for designing targeted ribosome drugs (Shi et al., 2014),
measuring the epigenomic features of each NC RNA type to
provide a theoretical basis for human disease research, especially
cancer (Boukelia et al., 2020), and providing a new perspective for
disease diagnosis and prognosis (Lu et al., 2021).

The RNA tertiary structure refers to the spatial coordinates of
all atoms in RNA (3D structure) and the spatial relationship
between atoms embodied by the atomic coordinates (tertiary
interaction) (Yang and Liu, 2021). Therefore, the RNA tertiary
structure prediction needs to predict van der Waals interactions,
hydrogen bond interactions, and other tertiary interactions
among atoms and needs to predict the spatial coordinates of
all atoms. Because the base is planar, the hydrogen donor/
acceptor at the base edge can be roughly divided into three
pairing edges, namely, Watson-Crick (W), Hoogsteen (H), and
Sugar (S). The paired edges also have forward and reverse
directionality. Therefore, four bases can theoretically form
12 hydrogen-bonding patterns (Leontis et al., 2002), proving
that RNA tertiary structure prediction is complicated. In
addition to the fact that the modeling accuracy of the RNA
tertiary structure is inversely proportional to the number of
nucleotides (Lorenz and Stadler, 2020), The RNA loop
contains unusual torsion combinations, extra helpful bulks,
and non-canonical interactions, increasing the difficulty of
modeling the RNA tertiary structure. However, if the RNA
loop is not modeled, it will be impossible to explain
evolutionary data or predict molecular chaperones. Therefore,
even if the prediction of the RNA tertiary structure is
complicated, it is still necessary.

Researchers have conducted a range of research studies on
RNA structure modeling, and numerous RNA tertiary structure
prediction algorithms have been proposed. Traditional structure
prediction algorithms mainly include MANIP (Massire and
Westhof, 1998), ModeRNA (Magdalena et al., 2011),
RNABuilder (Flores and Altman, 2010), 3dRNA (Zhao et al.,
2012), MC-fold/MC-Sym (Parisien and Major, 2008), FARNA
(Das and Baker, 2007), FARFAR (Das et al., 2010), and NAST
(Boudard et al., 2015). Improved optimization algorithms based
on these algorithms have also been produced, such as the direct
coupling analysis (DCA) algorithm of nucleotide coevolution
based on 3dRNA (Wang et al., 2017). Moreover, the new
RNA tertiary structure modeling methods have also achieved
good results; for example, Vladimir et al. put forward a graphical
model based on the Leontis–Westhof extended base-pair
classification (Waldispühl and Reinharz, 2015). In addition,
the emergence and development of Rosetta have made it
possible for the modeling of biomolecular macromolecules,
which is an extensive software suite for macromolecule
modeling. Rosetta has been tailored to address various protein
design tasks (Schmitz et al., 2021), and through the Rosetta

TABLE 1 | RNA motif from the PDB database.

Motif PDB id Length

5P_j12_leadzyme 1NUJ 15
5P_p1_m_box_riboswitch 2QBZ 15
j24_tpp_riboswitch 3D2V 5
23S_rrna_44_49 1S72 6
L1_sam_ll_riboswitch 2QWY 7
23S_rrna_1976_1985 1S72 10
23S_rrna_2003_2012 1S72 10
J31_glycine_riboswitch 3OWI 7
hepatitis_C_virus_ires_lla 2PN4 15

FIGURE 1 | Samples of conformational space. (A) Sampling under
single-thread. (B) Sampling under multi-thread.
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software suite, constant performance improvements have given
rise to a greater breadth of structure prediction, such as the
docking and design of antibody and antigen models (Schoeder
et al., 2021). Therefore, Rosetta can be used as a framework to
model the RNA tertiary structure, whereas the RNA tertiary
structure prediction methods in Rosetta need to be improved
and optimized.

The predicting algorithms of the ab initio RNA tertiary
structure have two critical points in the Rosetta framework.
First, candidate structures are generated by various sampling
methods. Then, the high-resolution energy functions are used to
evaluate the generated candidate structures, e.g., Rosetta Energy
Function 2015 (REF15) (Alford et al., 2017), a recently updated
free energy function. The structure with the lowest free energy or
a high score is used as the predicted structure, which is compared
with the native conformation to evaluate the performance of the
method. Inefficient sampling remains the bottleneck of RNA
high-resolution modeling. However, it is impossible to achieve an
accurate modeling and test strictly high-resolution energy
functions without efficient sampling in the conformational space.

To address the challenge of conformational sampling, Paul
Zakrevsky and Rhiju Das put forward a hypothesis called the
“stepwise ansatz,” for recursively constructing models by adding

residues one at a time, enumerating several million
conformations for each motif, and covering all build-up paths
(Sripakdeevong et al., 2011). Kladwang et al. further pointed out
that replacing deterministic enumeration sampling with random
sampling will reduce the calculation cost and improve the
modeling accuracy (Watkins et al., 2018). To further reduce
the calculation cost and improve the modeling accuracy, we
assume that the parallel mechanism is realized by using
the shared pool when sampling, stepwise ansatz would
further enhance the modeling accuracy, and the judgment
and processing of modeling results can further improve the
modeling integrity. To test this hypothesis, we developed
stepwise Monte Carlo parallelization (SMCP) based on the
Rosetta software suite framework, which is a Monte Carlo
optimization algorithm whose primary moves remain the
stepwise addition or deletion moves. Finally, we report
that SMCP can significantly improve the computational
accuracy and modeling integrity of ab initio structure
prediction.

MATERIALS AND METHODS

Datasets
Protein Data Bank (PDB) is a special database for the three-
dimensional structure of biological macromolecules such as
protein and nucleic acid (Qin and Su, 2019). RNA motifs used
in the experiment were filtered from the PDB database. The
coordinate data of this database not only need to yield good
geometry but also be suitable for experimental data (Berman,
2021). RNA motif information is shown in Table 1. In
Supplementary File S1, the benchmark datasets are provided
in the fasta format.

Algorithm Design
RNA modeling under the Rosetta framework adopts the
mechanism of combining the sampling method with energy
function. On the one hand, threads use sampling methods to
search conformations, and all sampling methods in the Rosetta
framework are based on the Monte Carlo method. On the other
hand, the energy function judges the conformations. In addition,
different potential energy evaluation criteria are needed in the
modeling process. We use the parameter root mean square
deviation (RMSD) when evaluating the conformation of the
results generated by modeling.

Method of Sampling
Inefficient sampling is still the bottleneck of RNA high-resolution
modeling. Efficient conformational space sampling is achieved
for accurate modeling. The sampling method based on the
stepwise ansatz hypothesis solves the problem of
conformational sampling accuracy to some extent. Owing to
the considerable sampling space, the computational cost of
enumerative conformation search is prohibitive, and the
random sampling scheme solves the cost problem of
conformation search. However, there are other problems in
the sampling process.

FIGURE 2 | Flowchart of the SMCP algorithm.
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The curve trend in Figure 1 (Kolodny, 2005) reflects the
energy change in the sampling space. The position of the lowest
energy value in the energy landscape map cannot be obtained in
advance. Therefore, we can only use energy function and
potential energy evaluation to approach the lowest energy
infinitely. The energy in the sampling space shown in
Figure 1 has a great deal of peaks and valleys, and pseudo-
minimum potential energy may be obtained in the sampling
process, resulting in low accuracy. Therefore, the existing single-
thread sampling method in Rosetta is a significant problem that
limits the sampling accuracy.

In Figures 1A, a random search is performed from s while
performing conformational sampling. The location of the local
lowest energy can be found by the Monte Carlo mechanism. Still,
the search ability of a single thread is limited, and it is difficult to
cross the energy barrier to find the authentic lowest energy. In
Figure 1B, three threads search the same conformation space at
different initial positions s. All threads will get a local lowest-
energy valley. Comprehensive processing of local conformational
samples sampled by all threads dramatically increases the
probability of obtaining the actual lowest energy valley in the
conformational space, resulting in high-quality samples. In
addition, the parallel mechanism has made progress in the
field of protein, e.g., using parallel and incremental sample
conformational sampling to solve the conformational sampling
problem when trying to dock large ligands to proteins (Devaurs
et al., 2019).

Energy Function
The keys to ab initio RNA tertiary structure prediction are to
generate candidate structures by the sampling method and to use
high-resolution energy function to evaluate the generated
candidate structures. Rosetta’s energy function considers more
than 30 kinds of energy terms, including fa_stack, ch_bond,
fa_elec_rna_phos, and rna_torsion for RNA. All the energy
terms with different weights are linearly summed to obtain the
final conformational energy value. On the Rosetta framework, the
components of all energy functions are the same, and the
difference lies in the distribution of weights, i.e., different
energy functions have different emphases on influencing factors.

Potential Energy Evaluation
The energy function scores the candidate structures to obtain the
potential energy value of the conformation. In the process of
conception selection, the evaluation of potential energy is critical.
Under different circumstances, the potential energy evaluation criteria
are different. For one thing, when modeling a single nucleotide based
on the stepwise ansatz hypothesis, add, add_submotif, delete, and
resample operation will be performed randomly on a single
nucleotide, and Monte Carlo will choose whether to accept or
reject these moves. At this time, the selected potential energy
evaluation criteria are potential energy value decrease or potential
energy value increment, which is lower than an energy value set by the
Metropolis criterion (Ferkinghoff-Borg, 2012). And, for another,
plenty of conformations are generated after modeling. Based on

TABLE 2 | Parameters of energy function (rna_loop_hires_04092010).

Term Description Units Weight

fa_atr Attractive energy between two atoms on different residues Kcal/mol 0.23
fa_rep Repulsive energy between two atoms on different residues Kcal/mol 0.12
fa_intra_rep Repulsive energy between two atoms on the same residue Kcal/mol 0.0029
rna_torsion Knowledge-based torsional potential kTa 2.9
rna_sugar_close Penalty for opening an RNA sugar kT 0.7
hbond_sr_bb_sc Energy of short-range hydrogen bonds Kcal/mol 0.62
hbond_lr_bb_sc Energy of long-range hydrogen bonds Kcal/mol 2.4
hbond_sc Energy of side chain to side chain hydrogen bonds Kcal/mol 2.4
fa_elec_rna_phos_phos Electrostatic energy (fa_elec) between RNA phosphate atoms kT 1.05
fa_stack π-π stacking energy for RNA bases kT 0.125

a1kT corresponds to one Rosetta Energy Units (REU).

TABLE 3 | Comparing the results of SWM and SMCP.

SWM SMCP SWM SMCP

score −35.720 −52.787 fa_stack −16.279 −25.613
fa_atr −19.790 −27.994 hbond_sc −30.093 −37.667
rna_sugar_close 0.974 1.103 hbond_lr_bb_sc −0.672 0.000
fa_intra_rep 0.311 0.324 hbond_sr_bb_sc 0.000 −0.168
lk_nonpolar −1.815 −3.402 geom_sol_fast 23.168 23.168
fa_elec_rna_phos_phos 0.566 −0.369 linear_chainbreak 0.978 0.040
ch_bond −9.296 −14.128 rna_bulge −4.500 0.000
fa_rep 2.387 3.438 atom_pair_constraint 0.000 0.000
rna_torsion 18.342 20.447 angle_constraint 0.000 0.000
rms 2.136 1.550 missing 1 0

aBoth of them are modeling 5P_j12_leadzyme.
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the principle that the low energy structure is more stable, the
conformation with the lowest potential energy value is selected as
the modeling result.

RMSD
The structural similarity in the field of structural prediction in
bioinformatics is usually measured by RMSD, which measures
the difference between the modeled conformation and the native
conformation. Apart from being used to predict the protein
structure, RMSD can also predict the structure of non-protein
molecules. RMSD is an indicator in the structure prediction
algorithm (Mohammad and Hakimeh, 2016).

The focus of RMSD calculation is alignment and optimal
superposition of structures. Comparing the structures of two
conformations means that it is necessary to establish a 1–1
correspondence between equivalent atoms in each
conformation. Then, by rotating and translating a structure to
find the best superposition, the weight of the sum of squares of the
distance between equivalent atoms in two structures is minimized
(Coutsias and Wester, 2019). There are many RMSD calculation
algorithms, among which the Kabsch algorithm is well-classic
(Kabsch, 1976). The functions that calculate RMSD are as follows
(Radoslava and Fatima, 2020).

RMSD �
�������
1
n
∑n

i�1δ
2
i

√
,

where δi is the distance between atom i and either a reference
conformation or a mean position of n equivalent atoms.
Atomic coordinates are usually expressed by Å [Length
units, where 1 Å � 10–10 m(×)]. RMSD is equal to 0 for
identical structures, and its value increases when the two
structures are different. Therefore, a smaller RMSD value
indicates that the similarity between the predicting and
native structures is low, which means that the modeling
accuracy is low. The RMSD calculator is mainly used to
calculate rms distances between the molecules. Therefore,
rms (Root Mean Square) has the same meaning as RMSD
throughout this study.

In this study, Monte Carlo, stepwise ansatz, and parallel
mechanisms are adopted to expand the sampling range by
multi-threading. In addition, all candidate conformations are
screened by multi-potential energy evaluation criteria, which
improves the modeling accuracy. The flowchart of the SMCP
algorithm is depicted in Figure 2.

Proposed Algorithm
The input of the algorithm includes start_pdb file, native_pdb file,
fasta file, flags command operation file, energy function EF, and
the number of parallel threads n.

The detailed description of the SMCP algorithm is as follows:
first, initialize pose, create n threads, and assign energy functions.
Then, each thread is modeled at the same time, and the modeling
process mainly includes the following:

1) Conformational sampling. The n threads sample the
conformational space at the same time. Based on the
stepwise ansatz hypothesis, the operations of add,
add_submotif, delete, and resample are performed on a
single nucleotide randomly and gradually.

2) Scoring by energy function. The energy value of each
conformation is obtained by scoring the energy function.

3) Preliminary potential energy evaluation. According to
specific rules, the potential energy is evaluated to select
the optimal conformation. The preliminary evaluation
criteria are potential energy of the model decrease, or
potential energy increment is lower than an energy value
standard.

4) Potential energy evaluation. The evaluation criterion is to take
the structure with the lowest potential energy in all threads as
the local optimal conformation.

5) Integrity and accuracy judgment. The integrity and modeling
accuracy of the current optimal conformation are judged.
When the modeling conformation is complete and when the
RMSD ≤ 2 Å of the predicted structure and the native
structure, the predicted structure is considered as the
native structure (Townshend et al., 2021); the conformation
will be regarded as the final modeling result. Otherwise, the
conformation is returned to the shared pose, and then, each
thread is reinitialized by using the current conformation for a
new round of modeling.

FIGURE 3 | Model on nine RNA motifs. (A) Comparison of modeling
RMSD between SWM and SMCP. (B) SMCP modeling results.
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The steps of our SMCP algorithm based on machine learning
is as follows:

Algorithm. SMCP.

RESULTS AND DISCUSSION

Parameter Setting
The parameter n indicates the number of parallel threads, and the
parameter m indicates the number of Monte Carlo samples. In
reality, many threads andMonte Carlo cycles will cause high time
costs. Considering the time cost of the experiment and the
requirement of modeling accuracy, we set up three parallel
threads in the experiment and 10,000 Monte Carlo samples,
i.e., n � 3 and m � 10,000. The database materials that we
used in this study are based on the research of Wipapat
Kladwang et al. Specific materials can be obtained in the
experimental section below. In addition, we use the same
energy function rna_loop_hires_04092010 as the SWM
algorithm, which is to control variables for comparison. The
related parameters and weights are described in Table 2.

Efficient Modeling of SMCP
We randomly performed some moves and chose random
positions to manipulate nucleotides instead of listing all
possible positions. In addition to add, we also served delete to

FIGURE 4 | Visual modeling results of the benchmark composed of nine RNA motifs.
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simulate the instantaneous non-deconstruction of the loop edge
nucleotides. Most importantly, we also allowed random selection
of the internal freedom of resampling. Based on the
conformational sampling method, we carried out multi-thread
parallel computation. After the parallel computation, we made a
potential energy evaluation, selected the conformation with the
lowest free energy in parallel computation, and further evaluated
the conformation. To begin with, we judged whether the
modeling was complete. Second, we judged the modeling
accuracy. After the above evaluation, the final modeling
conformation could be obtained if it met the requirements.

Before the more extensive SMCPmodeling tests, we first tested
the method on 5P_j12_leadzyme, a multi-strand RNA composed
of 15 nucleotides. In addition, since SWM is an algorithm with
high modeling accuracy under the Rosetta framework, we also
used the SWM algorithm to model 5P_j12_leadzyme. We
compared the modeling of SWM and SMCP, and the
modeling results are shown in Table 3. Several important
scoring terms are bound to be highlighted. The first scoring
term is score, which is the linear addition of the weight given by
the energy function and the energy item, which indicates the total
atomic free energy value of the RNA structure. A low scoremeans
low free energy, indicating a stable structure. The second scoring
item is rms, which indicates the error between the predicted
structure and the native conformation. We prefer a small rms
value on account of it means a high modeling accuracy. The third
scoring item ismissing, and the conformational sampling method
is based on the Monte Carlo algorithm, which is randomization
and may lead to incomplete modeling. For example, modeling is

incomplete if a nucleotide is not successfully modeled. We would
like to get missing equal to 0, that is, modeling is complete.

Terms in Table 3 show that the score value of SMCP is low,
which means low energy and more stable structure, rms value is
low, and missing is equal to 0. To sum up, compared with the
SWM algorithm, the SMCP algorithm has a higher modeling
accuracy and strong integrity.

Ab Initio Modeling on a Complex RNA
Benchmark
After preliminary testing, we then carried out SMCP modeling
and SWM modeling on a group of nine RNA motifs, whose
length is between 5–15 nt. Figure 3A shows the result of the
SMCP model and SWM model on a benchmark composed of
nine RNA motifs, and the abscissa in the figure shows the
modeling RMSD value of SWM. Here, the ordinate represents
the modeling RMSD value of SMCP, and the RMSD value
represents the error between the modeling result and the
native structure, which can reflect the modeling accuracy, and
its unit is Å. We prefer the RMSD value of SMCP modeling to be
minor, which means that the SMCP modeling accuracy is high.

In Figure 3A, the RMSD value of SMCP is lower than that of
SWM, indicating that the modeling accuracy of SMCP is higher
than that of SWM. We further demonstrate that the
parallelization and further judgment of modeling results can
improve the modeling accuracy. In the exceptional red cases,
the modeling RMSD values obtained by SWM and SMCP are less
than 2 Å. In this case, the advantage of SMCP modeling lies in its

FIGURE 5 |Modeling example with J31_glycine_riboswitch as material. (A) Start structure. (B) Predicted structure. Meaning marked in the figure: U 27.A indicates
that the 27th nucleotide in chain A is U.
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high modeling integrity. This further shows that the SWCP
algorithm can effectively improve the modeling integrity in the
modeling process.

As we all know, the lower the structural energy, the stronger
the structural stability. Therefore, we expect the conformational
energy output after modeling to be low enough. Figure 3B shows
the RMSD of nine RNA motifs and their corresponding
conformational energy values. Both RMSD and energy values
are relatively low, indicating that SMCP is very effective for RNA
modeling and can meet the requirements of low energy and high
accuracy.

UCSF Chimera was first used as an interactive visualization
tool for sequence structure analysis (Meng et al., 2006). Later, the
tool was used to visualize density maps (Goddard et al., 2007) and
nucleic acid (Couch., 2006), which clarified the structure and
characteristics of macromolecular components. In recent years,
UCSF Chimera has been applied in a sea of fields, which is used to
draw the 3D surface of ESCPT protein microscopic data (Le Bars
et al., 2019) and used for the drug design of Mycobacterium
tuberculosis (MTB) (Urooj et al., 2019). In this study, the

modeling results of SMCP are visualized by UCSF Chimera,
and Figure 4 shows the modeling visualization results of the
benchmark composed of nine RNA motifs. In addition, the basic
information of nine test motifs, such as name, PDB id, and
nucleotide number (length), are also compiled in Figure 4 (A–I).

This study gives a modeling example with
J31_glycine_riboswitch as material, and the motif length is
7 nt. Figure 5A is the start structure, and we need to model
nucleotides G and A on chain A based on this chain, and the
modeling results are shown in Figure 5B.

Furthermore, we can compare our model and the native
conformation by visual structure comparison. Figure 6 shows
the comparison diagram between the modeled conformation and
the native conformation of l1_sam_ll_riboswitch (PDB: 2qwy,
length: 7). Figure 6A shows the native conformation, and
Figure 6B shows the predicted structure. By comparing the
two conformations in Figure 6A and Figure 6B, we can see
that the difference between the two conformations is very small,
and the data also show that the RMSD value is only 0.213Å, which
indicates that our structure predicting method has a very high
modeling accuracy.

CONCLUSION

The sampling method in the existing RNA tertiary structure
modeling is still one of the critical factors affecting the modeling
accuracy. The Monte Carlo–based sampling method has
certain modeling limitations, and the modeling may be
incomplete. In view of these limitations, this study
proposes a Monte Carlo sampling parallel algorithm and
an SMCP algorithm based on the stepwise ansatz
assumption. The SMCP algorithm performs two rounds of
potential energy evaluation after sampling, detects the
modeling results, and finally obtains a better modeling
result.

Initialize multiple threads simultaneously, specify the same
energy function, use the stepwise ansatz assumption to perform
Monte Carlo–based sampling, and then, use the energy function
for scoring. After scoring, the algorithm performs a round of
potential energy assessments to determine whether the move is
reasonable. Then, comprehensively perform two rounds of
potential energy evaluation on all threads, select the best
modeling results among all threads, and judge the integrity
and accuracy of the conformation. Only when it meets the
requirements can the conformation be output.

Experiments show that the SMCP algorithm has the following
characteristics: 1) High modeling accuracy. Through constant
potential energy evaluation, the best conformation is selected. 2)
High integrity. Check the modeling results, and the final model
includes all nucleotides. 3) High flexibility. The execution times of
the algorithm can be set according to actual needs, and the
modeling accuracy and modeling time cost can be measured
by users.

Although the SMCP algorithm performs well in RNA
modeling, it also has certain limitations. The current
parallel algorithm uses the same energy function for

FIGURE 6 | Comparative diagram of the native structure and predicted
structure. (A) Native structure. (B) Predicted structure.
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multiple threads. Still, a single energy function may be
insufficient, and RNA modeling is very sensitive to the
energy function, so further exploring the algorithm’s
optimal energy function is necessary. In addition, multi-
threading using different energy functions is also one of
our future works.
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