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Lowering the thermal noise barrier in functional
brain mapping with magnetic resonance imaging
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Functional magnetic resonance imaging (fMRI) has become an indispensable tool for

investigating the human brain. However, the inherently poor signal-to-noise-ratio (SNR) of

the fMRI measurement represents a major barrier to expanding its spatiotemporal scale as

well as its utility and ultimate impact. Here we introduce a denoising technique that selec-

tively suppresses the thermal noise contribution to the fMRI experiment. Using 7-Tesla, high-

resolution human brain data, we demonstrate improvements in key metrics of functional

mapping (temporal-SNR, the detection and reproducibility of stimulus-induced signal chan-

ges, and accuracy of functional maps) while leaving the amplitude of the stimulus-induced

signal changes, spatial precision, and functional point-spread-function unaltered. We

demonstrate that the method enables the acquisition of ultrahigh resolution (0.5 mm iso-

tropic) functional maps but is also equally beneficial for a large variety of fMRI applications,

including supra-millimeter resolution 3- and 7-Tesla data obtained over different cortical

regions with different stimulation/task paradigms and acquisition strategies.
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S ince its introduction in 1992, functional Magnetic Reso-
nance Imaging (fMRI)1–3 based on blood oxygenation level-
dependent (BOLD) contrast evolved to become an indis-

pensable tool in the armamentarium of techniques employed for
investigating human brain activity and functional connectivity.
As such, it has been the central approach engaged in major
initiatives targeting the human brain, such as the Human Con-
nectome Project (HCP)4, UK Biobank project5, and the BRAIN
Initiative6.

In all techniques employed in imaging biological tissues, the
need for improving the spatiotemporal resolution is self-evident
and fMRI is no exception. To date, this challenge has been
addressed primarily by increasing the magnetic field strength,
leading to the development of the ultrahigh magnetic field (UHF)
of 7 Tesla (7 T)7. UHF increases both the intrinsic signal-to-noise
ratio (SNR) of the MR measurement as well as the magnitude and
the spatial fidelity (relative to neuronal activity) of the BOLD-
based functional images7–9. These UHF advantages have enabled
fMRI studies with submillimeter resolutions in the human brain,
leading to the functional mapping of cortical columns and layers,
and other fine-scale organizations7–9. Such studies provide
unique opportunities for investigating the organizing principles of
the human cortex at the mesoscopic scale, thus bridging the gap
between invasive electrophysiology and optical imaging studies
and non-invasive human neuroimaging.

Despite these successes, however, the signal-to-noise and the
functional contrast-to-noise ratios (SNR and fCNR, respectively)
of fMRI measurements remain relatively low. This represents a
major impediment to expanding the spatiotemporal scale of fMRI
applications as well as the utility, interpretation, and ultimate
impact of fMRI data.

What is considered “noise” in an fMRI time series is a complex
question. Thermal noise associated with the MR detection10,11,
arising either from the electronics and/or the sample, is an
important noise source in fMRI and would classify as a zero-
mean Gaussian distributed noise. The use of parallel imaging to
accelerate image acquisition, as is commonly done in con-
temporary MR imaging, introduces a spatially non-uniform
amplification of this “thermal” noise by the g-factor12. The con-
ditions under which this noise becomes dominant in an fMRI
time series depends on the static magnetic field strength, the voxel
volume, and image repetition time (TR) used in the experiment,
becoming more prominent at higher resolutions (i.e. smaller
voxel volumes), short TRs, and/or lower magnetic fields13,14. It is
the dominant contribution at ~0.5 µL voxel volumes (e.g.
~0.8 mm isotropic dimensions) typically employed in high reso-
lution 7 T fMRI studies; it remains dominant at 7 T up to ~10 µL
voxel volumes, gradually plateauing beyond that13,14. However,
even with 3 mm isotropic resolution (i.e. 27 µL voxel volume) and
relatively long TR acquisitions, thermal noise was estimated to be
a significant contributor to fMRI time series at 7T15. At lower
magnetic fields like 3 T, where this type of noise becomes more
conspicuous, and where typical fMRI resolutions employed are
≲3 mm, it would be a substantial contributor in virtually all fMRI
studies13,14.

In this paper, we tackle these SNR and fCNR limitations using
a denoising technique—namely, NOise Reduction with DIs-
tribution Corrected (NORDIC) PCA. NORDIC operates on
repetitively acquired MRI data and only removes components
that cannot be distinguished from zero-mean Gaussian dis-
tributed noise; as such, the method targets the suppression of
thermal noise and not the structured, non-white noise caused by
respiration, cardiac pulsation, and spontaneous neuronal activity
(e.g. refs. 16–19 and references therein).

High-resolution 7 Tesla data, as well as data obtained with
more conventional, supra-millimeter resolution at 3 and 7 T

using several different task/stimulus and acquisition strategies,
demonstrate that major gains are achievable under a wide variety
of experimental conditions with NORDIC in gradient-echo (GE)
BOLD fMRI without introducing image blurring. Based on these
findings, the approach is expected to markedly widen the scope
and applications of fMRI in general, and high spatial and/or
temporal resolution fMRI in particular.

Results
The fMRI data, acquired with GE simultaneous multi-slice
(SMS)/multiband (MB) echo planar imaging (EPI)20,21, were
reconstructed either by the algorithms provided with the MR
scanner (referred throughout this work as “Standard”) or by the
NORDIC PCA method (see the “Methods” section for a detailed
description) using the raw k-space files produced by the scanner
(referred to as “NORDIC”).

The bulk of the analyses were performed on data acquired on
four subjects with a variant of a widely used, 0.8 mm isotropic
resolution 7 T protocol (see the “Methods” section) based on a
block design visual stimulation paradigm (Fig. 1A); these analyses
are presented in this section. However, to ensure the general-
izability of our results and the versatility of the NORDIC
approach, we present as Supplementary Material evaluations of
NORDIC on fMRI across acquisition parameters, field strengths
(i.e. 3 and 7 T), cortical regions, and stimulation paradigms,
bringing the total number of datasets to N= 10. All data sets
showed converging results.

We used a block design, visual stimulation paradigm com-
parable to that implemented in Shmuel et al.22 with minor
modifications: It consisted of retinotopically organized target and
surround stimuli presented in alternating stimulus-on and
stimulus-off epochs (Fig. 1A). Each “run” consisted of six
stimulus-on epochs, three each for target and surround stimuli.
We acquired 8 experimental runs in 6 subjects (4 at 7 T and 2 at
3 T, the latter presented as Supplementary Material); 2 of these
runs were used to identify the retinotopic representation of the
target in V1, computed by contrasting the target versus the sur-
round condition (p < 0.01 uncorrected). This functionally defined
region of interest (ROI), referred to as “target ROI” from here on,
was subsequently used for all ROI confined analyses. The func-
tional runs used to estimate the ROI were excluded from sub-
sequent analyses (see the “Methods” section).

NORDIC vs. Standard MR images. Fig. 1B illustrates an
example slice for Standard and NORDIC reconstructed GE-EPI
images for two subjects before any preprocessing for fMRI ana-
lysis was applied. An improvement is visually perceptible for
NORDIC images, especially in the central regions where the
g-factor noise amplification would be particularly elevated. Sub-
traction of Standard from NORDIC processed image of a single
slice from a single time point in the fMRI times series displayed
only noise without any features of the image or edge effects; when
such a difference was calculated for all time points in the fMRI
time series and averaged, the result was equivalent to the g-factor
map (Supplementary Fig. 1). These observations are consistent
with NORDIC suppressing only random noise without impacting
the image.

Figure 1C shows temporal SNR (tSNR) maps averaged across
all eight runs for two exemplar subjects and slices. The average
tSNR across all the voxels in the brain was more than 2-fold
larger for NORDIC (S1tSNR: 27.34 ± 2.26 (std); S2tSNR:
33.01 ± 2.26 (std); S3tSNR: 43.31 ± 1.52 (std); S4tSNR: 26.61 ± 2.32
(std)) compared to Standard (S1tSNR: 13.28 ± 0.19 (std); S2tSNR:
13.97 ± 0.05 (std); S3tSNR: 16.1 ± 0.26 (std); S4tSNR: 14.12 ± 0.23
(std)) images. Paired sample t-tests carried out across all 8 runs,
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independently per subject, indicated that for all subjects, the
average tSNR for NORDIC was significantly larger (p < 0.01e−5)
than that for Standard images. Improvements in tSNR with
NORDIC in individual runs are shown in Supplementary Figs. 2
and 3.

Functional images. The impact of NORDIC on functional maps
was evaluated by comparing a single run processed with NOR-
DIC against the concatenation of multiple runs of the Standard
reconstruction (see the “Methods” section). Figure 2 illustrates
functional maps on the inflated surface of one hemisphere,
contrasting the target versus the surround condition thresholded
at |t| ≥ 5.7 for four subjects. For two subjects, representative
single-run functional maps are also shown for two different t-
thresholds and on the anatomical image of a slice in Supple-
mentary Fig. 4. At the same t-threshold, the extent of activation
achievable with a single NORDIC run was comparable or better
than that obtained by concatenating 3–5 Standard runs.

Similar results are presented in Supplementary Material for
supra-millimeter 3 and 7 T fMRI data obtained with visual
stimulation and face recognition paradigms (Supplementary
Figs. 8–11), and for 0.8 mm 7 T data obtained with auditory
stimulation (Supplementary Fig. 12); two of these datasets
(Supplementary Figs. 10 and 11) were acquired with an event-
related paradigm.

Consistent with the data displayed in Fig. 2, the t-values
examined further in two subjects (S1 and S2) were significantly
larger for NORDIC (p < 0.05) than its Standard counterpart
(Fig. 3A, E) within the target ROI, as determined with linear

mixed models carried out independently per subject. When the t-
value distribution for the target > 0 contrast was analyzed for
three ROIs (Supplementary Fig. 6), it was found to be shifted to
higher values in each individual run for the target ROI; for the
two other ROIs in regions where stimulus-evoked responses
should not exist, it was essentially unaltered, demonstrating that
NORDIC does not perturb t-values where it should not.

Percent signal change (PSC) within the target ROI as the mean
of all voxels and at the single-voxel level are presented in Fig. 3B,
F, respectively. The stimulus-induced PSC was highly comparable
across reconstruction types; linear mixed models carried out
independently per subject (with the individual runs as a random
effect) showed no significant (p > 0.05, Bonferroni corrected)
differences in PSC amplitudes across reconstructions for all runs.

Figure 3C depicts the standard deviation (20% trimmed mean
across voxels within target ROI23) computed amongst PSC betas
elicited by a single presentation of the target stimulus within a
run. As shown by both paired sample t-test (p < 0.05) and 95%
bootstrap confidence interval (carried out by sampling with
replacement of the individual runs), this metric was found to be
significantly larger for Standard than NORDIC, indicating greater
stability of NORDIC PSC single-trial estimates among the
different stimulus epochs within a run.

The equivalency of PSC amplitudes for NORDIC and Standard
reconstructions are further illustrated using images in Fig. 4 and
Supplementary Fig. 5. In addition, hold-out data analysis was
carried out with PSC estimates (Fig. 4); for this, we estimated
GLM model parameters in one run and assessed the precision
with which these parameters predicted the PSC in all other runs
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NORDIC Standard Normalized
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Fig. 1 Stimuli and paradigm, epi images, and tSNR. Panel A depicts the visual stimuli (left) used and a schematic of the visual presentation paradigm
(right). Panel B shows an example slice from a single volume extracted from an fMRI time series for Standard (left column) and NORDIC (right column)
reconstructions before any preprocessing, for two subjects S1 and S2. Panel C shows average (across all 8 runs) brain temporal signal-to-noise ratio (tSNR)
maps of 2 exemplar slices in 2 representative subjects (S1 and S2) for NORDIC (left) and Standard (center) reconstructions and the normalized difference
between the 2. The last was computed by performing (tSNRNORDIC -tSNRSTANDARD)/tSNRNORDIC). The slices chosen represent one of the anterior-most
slices in the covered volume, and an occipital slice that includes a portion of the target ROI in V1.
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at a single voxel level. The precision of PSC estimates, computed
as cross-validated R2 for single run GLMs, was higher (Fig. 4A,
third row) for the NORDIC compared to the Standard
reconstruction. Paired sample 2-sided t-test carried out across
cross-validations folds showed that within the target ROI average
R2 (see the “Methods” section) was significantly (p < 0.01
Bonferroni corrected) higher for NORDIC (S1: NORDIC mean
R2= 36.43 (ste= 9.81); Standard mean R2= 22.2 (ste= 5); S2:
NORDIC mean R2= 25.36 (ste= 5.74); Standard: mean
R2= 10.62 (ste= 3.2) and Fig. 4B, bar graphs), indicating again
higher precision of PSC estimates and their stronger predictive
value for NORDIC.

Figure 5 shows the functional point spread (PSF) measure-
ments on the cortical surface calculated following previous
work22 using NORDIC and Standard images (see the “Methods”
section) from two subjects: briefly, the approach defines the
boundary between the target and the surrounding stimuli as those
voxels showing a differential functional response close to 0
(Fig. 5A, left column for each subject). Along traces drawn
orthogonal to this boundary, the functional response amplitudes
are then measured in the single condition maps and subsequently

quantified by fitting a model consisting of a step-function
(representing infinitely sharp PSF) convolved with a Gaussian22

(Fig. 5B). The full-width at half maximum (FWHM) of the
Gaussian represents the functional PSF22. With NORDIC, the
average PSFs (across traces) were 1.04 mm (std: 0.19) and
1.22 mm (std: 0.51), for subjects 1 and 2, respectively; the average
PSFs for the Standard were 1.14 mm (std: 0.16) and 1.15 mm (std:
0.11). Paired sample t-tests carried across the 8 runs showed no
significant differences (p > 0.05) in functional PSF amongst
reconstruction types.

In addition, we estimated the global smoothness of individual
GE-SMS/MB-EPI images in the fMRI time series using AFNI
(3dFWHMx function)24, with automatic intensity-based masking
derived from the median image of each run. The spatial
autocorrelation was estimated using a Gaussian+monoexpo-
nential decay mixed model to account for possible long-tail
autocorrelations. The FWHM from this mixed model estimate,
averaged over four subjects, before and after data preprocessing
(see the “Methods” section) for the Standard reconstruction was
0.92 ± 0.002 and 0.94 ± 0.05 mm, respectively; for the NORDIC
reconstruction, these values were 0.93 ± 0.02 and 0.94 ± 0.05 mm

NORDIC Standard
S1

S2

-8

8

-5.7

5.7

T
Values

1 Run1 Run 3 Runs 5 Runs

S3

S4

Fig. 2 NORDIC vs. Standard t-Maps. Leftmost panel shows functional images as t-maps (target > surround) thresholded at |t|≥ 5.7 for a single NORDIC
processed run, and for 1, 3, and 5 Standard processed runs combined, for subject 1 (S1), subject 2 (S2), subject 3 (S3) and subject 4 (S4).
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(Fig. 5C). A linear-mixed model carried out across subjects and
runs indicated nonmeaningful differences in smoothness estimate
(p > 0.05) between Standard and NORDIC.

Figure 6 shows 0.5 mm isotropic resolution fMRI data
(0.125 µL voxel volume) obtained using the target/surround
visual stimulation paradigm (see the “Methods” section and also
Supplementary Fig. 14). Figure 6A and Supplementary Fig. 14A
display a single coronal slice in the visual cortex from one of the
repetitively acquired volumes in the fMRI time series. Processed
with the Standard reconstruction, the image of this slice is very
noisy and practically unusable for functional mapping. However,
the single image after NORDIC reconstruction and average of 10
images from the Standard reconstruction look virtually identical;
these very high-resolution data also demonstrate clearly that
NORDIC does not induce smoothing (see expanded panels in
Supplementary Fig. 14 and also Panel D in Supplementary
Fig. 16).

Functional maps from the 0.5 mm data computed for the
target > surround contrast using the 8 concatenated runs (i.e.
~44 minutes of data for the two stimulus conditions and

interleving baseline periods) are shown superimposed on T1-
weighted anatomical images (Fig. 6B) and the flattened cortex
(Fig. 6C). These functional data do not have any spatial
smoothing or masking applied to them. Little activation is
detected with Standard reconstruction. Localized and highly
precise BOLD activation, allowing differentitation of adjacent
sulcus banks (Fig. 6B) are observed for NORDIC images.
Consistent with these observations, stimulus-evoked signal
changes in the fMRI time course at a single voxel level were
virtually undetectable in Standard reconstruction but obviously
visible with the use of NORDIC (Supplementary Fig. 14B).

The NORDIC method should be equally applicable for resting
state fMRI (rsfMRI) that is used extensively to evaluate functional
connectivity. We present a preliminary analysis on one subject at
3 T confirming this expectation (Supplementary Fig. 13).

As previously mentioned, the “Standard” reconstruction
employed in these comparisons is the one provided by the
vendor of the scanner. For NORDIC, prior to denoising, the same
experimentally acquired k-space data was exported and had to be
processed “offline” for EPI and GRAPPA reconstructions using
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Fig. 3 Voxel responses within target ROI. Panel A shows the single-run (arranged over the x-axis) t-values (activity elicited by the target >0) induced by
the target stimulus for Standard (red) and NORDIC (blue) data. Panel B is the same as panel A, but for beta weights (transformed into percent signal
change). Panel C shows the single-run standard deviation computed across single-trial PSC beta estimates elicited by the target condition. For these three
panels, gray dots represent responses to single voxels with the target ROI (497 for S1 and 461 for S2). The box-and-whisker plots, computed across all ROI
voxels, represent the interquartile range (IQR—with box limits being the upper and lower quartiles), with the whiskers extending 1.5 times the IQR or to the
largest value. The horizontal lines within the boxplot represent the median, while the diamond the mean across voxels. Panel D shows the target ROI,
representing the left retinotopic representation of the target in V1 for 2 exemplar subjects in all three planes. Panel E shows the single runs, single-voxel
scatterplots for t-values (activity elicited by the target > 0), for Standard (x-axis), and NORDIC (y-axis). Panel F: same as panel E for the beta percent signal
change responses to the target condition. Source data are provided as source Data files.
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our own implementation. We had opted to use the vendor
provided reconstruction for the comparisons because we wanted
to demonstrate improvements attainable with NORDIC relative
to what is available for the general fMRI community, which relies
on reconstruction provided by the vendor of their scanners, in
this case Siemens scanners. This choice, however, raises the
question of whether the gains demonstrated are not only due to
NORDIC but are also partially related to differences in the
reconstruction pipeline. To address this question, we have
reproduced Fig. 2 for one of the four subjects (subject S2) using
our offline reconstruction pipeline but without the NORDIC
denoising step. Supplementary Fig. 15 displays the results both
for “Scanner Standard”, which, for ease of comparison, duplicates
the functional images shown in Fig. 2, and those obtained using
our offline reconstruction (“Offline Standard”). The results
demonstrate that in the three cases shown (1 run, and 3 and 5
runs concatenated), the Scanner Standard and the Offline
Standard produce virtually identical results, and in both cases,
functional maps of 5 concatenated runs look essentially identical
to a single NORDIC run.

Despite being fundamentally different from NORDIC, global
SVD or PCA-based methods (e.g. refs. 25,26) can also identify

random noise components in a time series and thus, can in
principle be used to selectively suppress its contribution. There-
fore, a comparison of NORDIC against such an approach would
be informative. On the other hand, performing a thorough
comparison under all possible conditions is beyond the scope of
this paper, the primary aim of which is to introduce NORDIC
and showcase its versatility (i.e. working well both in high and
low SNR, cyclic and event-related paradigms, 3 and 7 T, and
combinations thereof). Nevertheless, we present here the results
of comparing NORDIC to two other PCA-based approaches
using the 0.5 mm isotropic fMRI data where suppressing random
thermal noise without incurring meaningful spatial smoothing is
most challenging and at the same time, of utmost importance.
Supplementary Fig. 16 illustrates these comparisons. This figure
demonstrates that relative to a global PCA approach with a “white
noise” criterion to identify random noise26 (labeled PCAwn),
which essentially follows an earlier SVD approach25 with
modifications, the performance of NORDIC is far superior in
terms of the individual images, t-statistics, spatial smoothing, and
the resultant functional maps. This figure also contains a
comparison to a widely available implementation (named
DWIdenoise) for complex and magnitude data of a relatively
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recent denoising technique called Marchenko–Pastur principle
component analysis (MPPCA)27. Again, NORDIC outperforms
this approach with respect to t-statistics and consequently t-
thresholded functional maps, even though this method causes
significantly larger smoothing than NORDIC.

The metrics presented in Supplementary Fig. 16 are useful in
evaluating the performance of different denoising algorithms
when taken together. However, caution should be exercised in
interpreting any one metric alone. For example, the smoothness
estimate for PCAwn, taken alone, suggests that this method
performs relatively well. However, if we examine the EPI images,
t-value distribution, and the related functional map (Supplemen-
tary Fig. 16), it becomes evident that this apparent preservation of
spatial precision is an outcome of the failure to remove thermal
noise. As explained earlier, smoothness metrics derived here
utilize spatial autocorrelation, which is nonexistent for Gaussian
zero-mean thermal noise. Images dominated by thermal noise
would therefore show low smoothness estimates. Conversely,
highly smoothed images would lead to low GLM residuals and
therefore high t-values, albeit at the expense of degraded spatial
precision.

Discussion
fMRI is inherently a low contrast-to-noise measurement where
the biologically driven responses are relatively small compared to
fluctuations (i.e. “noise”) in the amplitude of the signal in the
fMRI time series. Certainly, the thermal noise of the MR
detection10,11 contributes to this “noise”. Physiological processes
of respiration and cardiac pulsation15,28–30, and, for taks and
stimulus fMRI, the spatially correlated spontaneous fluctuations
ascribed to functional networks in rsfMRI31 represent other
sources of tSNR degradation, which, unlike thermal noise, are
non-white in nature16–19. These non-Gaussian sources of signal
fluctuations are proportional to signal magnitude14,32–35; as such,
they become dominant only when a voxel’s signal (which is
proportional to voxel volume) is large compared to instrumental
thermal noise, as encountered, for example, with low spatial
resolutions, high flip angles used in conjunction with long TRs,
and at high magnetic fields13,14,36,37.

Reliably detecting the relatively weak biologically driven
responses in the presence of the afore-mentioned noise con-
tributions requires significant efforts to clean up the fMRI time
series. This problem was addressed as early as approximately two
decades ago using component analysis based on SVD25, and
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Fig. 5 Functional point spread function (PSF) and global image smoothness. Panel A, top row shows NORDIC normalized beta percent signal change
(PSC) maps for differential mapping target (in red) > surround (in blue) (left), and the target only (right) single-condition image for subjects 1 and 2. The
white dotted line is determined in the differential image as the “boundary” between the two stimulations. The same white dotted line is also superimposed
on the target-only PSC map where PSC values are greater than zero but decreasing in magnitude progressively away from this “boundary” posteriorly. The
functional PSF is calculated from this spread in PSC beyond the “boundary”. Panel A, the lower row is identical to the upper row but obtained from Standard
reconstruction data. Panel B left panel for each subject: the PSC magnitude changes (normalized to the highest value) along traces perpendicular to the
“boundary” are displayed as the average (across traces and runs). The model fits (solid line) and data (dotted line) are shown for both the NORDIC (blue)
and Standard (red) reconstructions. The vertical gray dotted line represents the “boundary” as derived from the differential maps. Panel B, right panel for
each subject portrays the full-width at half maximum (FWHM) standard deviation of the gaussian kernel that was convolved with a step function to model
functional PSF (see the “Methods” section). Panel C: Mean global smoothness of images used for the fMRI time series for Standard (red) and NORDIC
(blue) in four subjects, before (left panel) and after preprocessing related interpolations. Error bars represent the standard error of the mean across 6
independent runs (shown as gray dots). Source data are provided as a source Data file.
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subsequently, PCA and ICA26 to decompose the fMRI time series
into components containing task/stimulus-response, structured
noise, and thermal (random) noise. Although these early holistic
approaches have not been widely adopted, numerous methods
using PCA and ICA components analysis in various ways have
subsequently been introduced and employed almost exclusively
on the suppression of the non-white confounds (e.g.
refs. 16–19,38,39 and references therein). In this paper, we intro-
duce a method named NORDIC aimed at improving the
detectability of the inherently small fMRI signals by selectively
targeting the suppression of thermal noise. As such, the approach
represents a change in direction that shifts the focus from
structured, non-white noise to thermal noise, leaving the sup-
pression of the structured noise, if desired, to a subsequent
complementary step.

NORDIC is fundamentally different in its approach to the
above-referenced PCA and ICA methods. Although these pre-
vious methods for the most part have concentrated on identifying
structured noise17, some of them also provide a strategy to
selectively suppress thermal noise; they do so using a global PCA
analysis and an empirical threshold for the differentiation of noise
and signal components, in some cases working best in the

presence of a clear periodic temporal signature in the signal26,
which naturally limits their general utility. In contrast, NORDIC
uses a local (patch) approach, experimental characterization of
thermal noise independent of the functional imaging data, and a
well-defined objective principle to identify the threshold for its
suppression. Especially for low SNR, high-resolution fMRI data, a
global component analysis may be suboptimal (see the compar-
ison in Supplementary Fig. 16); as such, in such data where the
need for thermal noise suppression is immense, spatial smoothing
has been the method of choice to improve SNR and fCNR even at
the risk of degrading spatial specificity. In contrast, our results
demonstrate that NORDIC is particularly (but not exclusively)
useful for such low SNR high-resolution fMRI data (Fig. 6,
Supplementary Figs. 14, 16).

NORDIC and its application in diffusion-weighted imaging
(dMRI) was previously described40 and was shown to yield
superior results to the recently introduced MPPCA27 method,
which also selectively targets thermal noise removal. It is difficult
to precisely identify the components that are removed in
MPPCA, although its application leads to better results in
dMRI27,40 and increased reproducibility in rsfMRI41,42. In con-
trast, NORDIC yields a parameter-free threshold, correlated with
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Fig. 6 3D GE EPI images and fMRI data obtained with 0.5 mm isotropic voxels. Panel A shows a single slice from a single time point in the consecutively
acquired volumes forming the fMRI time series for Standard (left) and NORDIC (middle) images. The right panel shows the average of 10 images of the
same slice for the Standard reconstruction. Panel B shows t-thresholded (|t|≥ 2.9) functional maps (for the contrast target > surround on a T1 weighted
anatomical image for standard (left) and NORDIC (right) reconstructions for a saggital and axial slice (with related zoom-ins on the sagittal (blue) and axial
(red) planes). Panel C shows the same t-maps as in panel C on the inflated cortical space and at different t-thresholds. No spatial smoothing or
masking was applied to the data.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25431-8

8 NATURE COMMUNICATIONS |         (2021) 12:5181 | https://doi.org/10.1038/s41467-021-25431-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the global thermal noise level, to remove signal components that
cannot be distinguished from i.i.d, zero-mean Gaussian data,
which is attributable to thermal noise. Even though the remaining
signal components also contain some residual thermal noise (see
discussion in the “Methods” section), the overall impact is a
significant improvement in tSNR for NORDIC compared to
Standard data (Fig. 1C and Supplementary Figs. 2 and 3) as well
as to MPPCA (Supplementary Fig. 16).

Difference of NORDIC vs. Standard images show only noise,
which, when averaged over all the images in the fMRI times series
demonstrates equivalence to the g-factor maps (Supplementary
Fig. 1), without evidence of edge effects or features of the imaged
object; additionally, the FFT power spectra (Supplementary
Fig. 7) display only a broadband decrease in the magnitude of the
spectrum without impacting the various peaks detected at specific
frequencies associated with the stimulus presentation or physio-
logic fluctuations. These observations are consistent with the
expectation that NORDIC suppresses random noise associated
with the thermal noise of the MR measurement without per-
turbing the image.

t-Values are a useful metric in evaluating functional mapping
studies. Denoising algorithms inherently alter the dimensionality
of the data and, consequently, the DFs of GLM computations.
GLM’s DFs are crucial in computing p-values, though the correct
computation of DFs for an fMRI time series is debated43. Here we
do not attempt to address this issue, which is beyond the scope of
this work as it relates not only to denoised time-series but is
intrinsic to fMRI in general. We chose instead to compute our t-
values using Eq. (2) (see the “Methods” section) to provide a
measure of activation relative to GLM residual noise. Thus, our
activation maps are based on t-value rather than p-value
thresholds, although we give the equivalent p value as a reference
for the Standard reconstruction.

At the same t-threshold, the extent of voxels showing stimulus-
invoked signal changes that pass the t-threshold is considerably
larger for the NORDIC processed single run (Figs. 2 and 3;
Supplementary Figs. 4, 8–12) and equivalent to activation maps
produced by concatenating 3–5 runs of the Standard data. This
was also consistently observed for 3 and 7 T data obtained with
different resolutions, paradigms, and cortical regions (Supple-
mentary Figs. 8–19, 12). These observations are expected given
the fact that NORDIC improves more than 2-fold the trial-to-trial
precision of single-voxel PSC estimates while not impacting the
magnitude of the PSC (Figs. 3 and 4). Thus, NORDIC better
estimates the stimulus-evoked responses and does so in shorter
runs in fMRI studies. Single-trial responses represent a challen-
ging SNR starved scenario and capturing them accurately with
low single-trial variance is a highly desirable, yet seldomly
achievable feat, especially in submillimeter resolution fMRI.

One of the most important features of NORDIC is its ability to
preserve spatial precision of the individual images of the fMRI
time series, as well as the precision of the functional response.
Thermal noise associated with the MR process can and often is
suppressed with spatial filtering, which smooths (i.e. blurs) the
images, increasing the SNR and consequently the tSNR44; this
improves the t-values (Supplementary Figs. 8 and 11) and also,
when applied with a Gaussian kernel, serves the purpose of
making more valid the assumption of smoothness for FWER
control based on random field theory (RFT) approaches widely
used in the fMRI community. However, the resultant spatial
blurring leads to an undesirable loss of spatial precision. NOR-
DIC, on the other hand, suppresses thermal noise and has the
same impact on t-values as spatial-smoothing (Supplementary
Figs. 8 and 11) but without spatial blurring of either the indivi-
dual images themselves (Figs. 5C, 6, and Supplementary Fig. 14
and also see discussion in the “Methods” section) or the

functional PSF estimates in the visual cortex (Fig. 5A, B), yielding
PSF values consistent with previous reports22,45.

NORDIC can be said to improve the spatial specificity to
neuronal activity changes by reducing false positives, and nega-
tives. However, there could be additional benefits in specificity due
to the ultrahigh resolutions enabled by NORDIC. At sufficiently
high enough resolutions, the draining vein confound (e.g. see
ref. 46) of GE BOLD fMRI is less of a problem because partial
voluming and spatial averaging will be less and there would exist
many voxels unaffected by this confound providing access to
tissue responses, just like in optical imaging with intrinsic signals
where blood vessels are visible but the high resolution permits
visualization of the tissue responses in between blood vessels.
There is, however, an additional advantage that can arise from the
small voxel sizes achievable with NORDIC. GE BOLD fMRI is
based on the voxel-wise measurement of signal amplitude after it
is allowed to decay for an echo time TE with the rate constant 1/
T2*. T2* strongly depends on intravoxel B0 inhomogeneities,
hence on neuronal activity because of the extravascular B0 gra-
dients generated by deoxyhemoglobin-containing blood vessels.
However, in the limit voxel dimensions become small compared
to the spatial scale of these extravascular B0 gradients, intravoxel
inhomogeneities, hence their contribution to 1/T2*, also become
small, reducing the detectability of stimulus/task-induced altera-
tions as an amplitude change in GE BOLD fMRI. For a given
blood vessel, this limit is determined approximately by ðδd=rbÞ
where δd is the voxel dimension and rb is the blood vessel radius,
and the distance from the blood vessel since the gradient becomes
rapidly shallower with increasing distance from the blood vessel.
Thus, high resolutions enabled by NORDIC and other advances
will lead to an intrinsic shrinkage of the spatial extent of the
draining vein confound in GE BOLD fMRI and ultimately its
suppression. Extravascular B0 gradients still exist, of course.
However, in this limit, they will show up as a phase difference
among the different voxels. Such phase effects mixed with
amplitude changes were already reported and used to account for
large draining confound in GE BOLD fMRI47. As the resolutions
increase, however, the amplitude effects will become smaller,
leaving behind ultimately only the phase perturbation. The
intravascular BOLD effect will still persist and will be a source of
unwanted BOLD signals at lower magnetic fields like 3 T48 but not
at ≳7 T where the very short T2 of blood assures its elimination49.

In the mammalian cortex there exist elementary cortical units
of operation, consisting of several hundreds or thousands of
neurons, that are spatially clustered and repeated numerous times
in each cortical area. These mesoscopic scale ensembles are the
focus of extensive research carried out in animal models by
invasive techniques, such as optical imaging or electrophysiology.
However, these techniques cannot be used in human studies
because of their invasive nature. Therefore, the ability to generate
functional maps at the level of these elementary units by MR
methods is critically important and has been shown to be
feasible7–9. However, current achievable resolutions (~0.8 mm
isotropic or non-isotropic voxels of equal volume) and the
responses detected at such high resolutions are at best marginal.
Overcoming this barrier with reasonable acquisition times has not
been possible. For example, it has been possible to detect axis of
motion features in the human MT50 but not the direction of
motion subclusters that distinguish the motion in the two dif-
ferent directions along a given axis. It has been possible to
demonstrate layer specific activations aimed at studying laminar
organization but not with sufficient resolution to even distinguish
three layers across the cortex without partial voluming and with
Nyquist sampling; at least three (ideally more) distinct layers are
required in order to clearly differentiate feedforward inputs
arriving primarily into layer 4, local computations and cortico-
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cortical inputs shaping responses in layers 2/3, and outputs to
other brain areas from layers 2/3, and 5/6.

The afore-described barrier and its limitations on neu-
roscientific research were recognized in the first report of the
BRAIN Initiative Working group6,51, which challenged the MR
community to overcome it and achieve whole brain imaging
studies with at least 0.1 µL voxel volumes (e.g. 0.46 or ~0.5 mm
isotropic resolution). We demonstrate here that this goal is
achieved with NORDIC (Fig. 6) at 7 T and likely will soon be
surpassed when multiplicative gains will be attained combining
NORDIC with additional independent gains from acquisition
methods, higher magnetic fields52, high channel count RF coils
employed synergistically with very high magnetic fields53,54 and
image reconstructions methods (e.g. refs. 55,56).

In this paper, we demonstrate an fMRI-denoising approach to
remove thermal noise inherent in the MR detection process, and
markedly improve some of the most fundamental metrics of
functional activation detection while crucially preserving spatial
and functional precision. We demonstrate its efficacy for 7 T
mapping at high spatial resolution, as well as for 3 and 7 T fMRI
studies using the more commonly employed supra-millimeter
spatial resolutions targeting different cortical regions activated by
different stimuli and tasks. Importantly, as it specifically acts on
Gaussian distributed noise, NORDIC is complementary as well as
beneficial to denoising algorithms that primarily focus on struc-
tured, non-white noise removal. The cumulative gains are
expected to bring in transformative improvements in fMRI,
permitting higher resolutions at 3, 7 T and higher magnetic fields,
more precise quantification of functional responses, faster
acquisitions rates, significantly shorter scan times, and the ability
to reach finer scale mesoscopic organizations that have been
unreachable to date.

Methods
Image reconstruction
2D slice selective accelerated acquisitions. For 2D acquisition with phase-encoding
undersampling and/or SMS/MB acquisition, the GRAPPA and slice-GRAPPA
reconstructions were used as outlined in ref. 57. A single kernel Gch

j is constructed
for SMS/MB with/without phase-encoding undersampling such that for each slice,
j, and channel, ch,

Gch
j ðSMBÞ ¼ SBch

j 8j; ch ð1Þ

where SMB denotes the acquired SMS/MB k-space, and SBch
j denotes the recon-

structed k-space for the slice j and channel ch. The kernels Gch
j are calculated

similarly as in unbiased slice-GRAPPA from the measured individual slices SBi

with SMB ¼ ∑MB
i¼1SBj .

3D accelerated acquisitions. For 3D acquisitions with phase-encoding under-
sampling only, a gradient recalled echo (GRE) based Nyquist-sampled auto-cali-
bration signal (ACS) reference acquired without slice-phase-encoding (a single
slice-phase-encoding plane) was used. A Fourier transform was first applied along
the slice-phase-encoding, and then k-space interpolation along the phase-encoding
direction was performed with GRAPPA-weight calculated from the ACS reference.

g-factor noise for image-reconstruction. g-factors were calculated building on the
approach outlined in ref. 58 for g-factor quantification in GRAPPA reconstructions
and detailed in ref. 57. The same ESPIRIT sensitivity profiles used for image
reconstructions were also used for the determination of the quantitative g-factor.

NORDIC PCA. Let mðr; tÞ 2 CI1 ´ I2 ´ I3 ´Q denote a complex-valued volumetric
fMRI image series following an accelerated parallel imaging acquisition, where Q is
the number of temporal samples and I1; I2; I3 the matrix size of the volume. The
flow chart in Fig. 7, adapted from ref. 40, illustrate the principles of NORDIC
denoising of this dataset mðr; tÞ and the details of the noise model, locally low rank
model, threshold selection, and patch averaging.

Noise model. Images in MRI are inherently complex-valued but constructed as real-
valued by using the magnitude of the images. This transformation changes the
thermal Gaussian i.i.d. noise in the original measurement to be Rician for mag-
nitude of coil-combined images or non-central Chi2 distributed when combining

multiple magnitude images from different coils. Furthermore with parallel imaging
reconstruction, the noise undergoes a spatially varying amplification, which is
characterized by the geometry-factor, gðrÞ. In NORDIC, a signal and noise scaling
is performed on the complex valued data as mðr; tÞ=gðrÞ to ensure zero-mean and
spatially identical noise in a given patch (left-most column, Fig. 7). For NORDIC
processing, a sensitivity weighted channel combination59 is applied to the accel-
erated dataset57 to maintain complex-valued Gaussian noise60 of the combined
image, and the images are transformed to magnitude images only after denoising.

Locally low rank model. For locally low rank (LLR) processing, a fixed k1 ´ k2 ´ k3
patch is extracted from each volume in the series, and the voxels in each patch from
each volume is vectorized as yt , to construct a Casorati matrix Y ¼
½y1; � � � ; yt ; � � � ; yQ� 2 CM ´Q with M ¼ k1 ´ k2 ´ k3, and Q representing the
number of volumes (time points) in the fMRI time series. The concept of NORDIC
is to estimate the underlying matric X in the model where Y ¼ X þN, and
N 2 CM ´Q , where N is additive Gaussian noise.

LLR modeling assumes that the underlying data matrix X has a low-rank
representation. For NORDIC, k1 ´ k2 ´ k3 is selected to be a sufficiently small patch
size so that no two voxels within the patch are unaliased from the same acquired
data for the given acceleration rate40, ensuring that the noise in the pixels of the
patch are all independent. LLR methods typically implement the low-rank
representation by singular value thresholding (SVT). In SVT, singular value
decomposition is performed on Y as U � S � VH , where the entries of the diagonal
matrix S are the ordered singular values, λðjÞ, j 2 f1; ¼ ;Ng. Then the singular
values below a threshold λðjÞ< λthr are changed to λðjÞ= 0 while the other singular
values are unaffected. Using this new diagonal matrix Sλthr , the low-rank estimate of

Y is given as YL ¼ U � Sλthr � VH .

Hyperparameter selection. While the threshold in NORDIC is chosen automatically
without any empirical tuning, the method itself has hyperparameters related to the
patch size that determine the size of Casorati matrices. In NORDIC, k1 ´ k2 ´ k3 is
selected withM � 11 � Q, and k1 ¼ k2 ¼ k3, as determined heuristically in Moeller
et al.40. We note that the choice of patch size with a M : Q ratio of 11:1, can be
more challenging to accommodate for long fMRI runs since Q, is the number of
samples in the time series, especially in light of the requirement that no two voxels
within a patch are unaliased from the same acquired data. For whole brain rsfMRI,
as in the HCP, for example, M � 11 � Q can be maintained. If there is an issue
fulfilling this requirement, the geometry of the patch may be adjusted to something
different than k1 ¼ k2 ¼ k3.

The patches can be either 2D or 3D, and while 2D patches may better fit with
the temporal dynamics of the acquisition, the data independence constraint of no
two voxels within the patch being unaliased from the same acquired data can be
challenging. For longer series, the constraint of M � 11 � Q may either in itself not
be satisfied simultaneously with the data independence, or it may be further
difficult in the presence of phase-encoding ghosting e.g. from fat or eddy currents.
3D patches are less limited in this regard and also better capture spatially similar
signals.

Noise model and threshold selection. The distribution of the singular values of a
random noise matrix N is well-understood if its entries are i.i.d. zero-mean. The
threshold that ensures the removal of components that are indistinguishable from
Gaussian noise is the largest singular value of the noise matrix N. While this
threshold is asymptotically specified through the Marchenko–Pastur distribution,
for practical finite matrix sizes, we numerically estimate this value via a Monte-
Carlo simulation40. To this end, random matrices of size M ×Q are generated with
i.i.d. zero-mean entries, whose variance match the experimentally measured ther-
mal noise, σ2, in Y. The thermal noise level can be determined after g-factor
normalization from an appended acquisition without RF excitation (a noise
acquisition) to the series, or from a region of interest outside the brain devoid of
signal contributions or it can be determined from a receiver noise pre-whitening
acquisition. In this paper the first method of utilizing an additional noise-
acquisition has been employed. Then the empirical mean value of the largest
singular value is used as the numerical threshold.

The degree of noise removal. Though NORDIC removes zero-mean, i.i.d. Gaussian
noise, it does not remove all of it. This can be explained more formally by con-
sidering one of the M ×Q Casorati matrices we are trying to denoise based on the
model Y=X+N. According to our model, Y is the observed noisy data, N is a
matrix whose entries are zero-mean, i.i.d. Gaussian, and X is the low-rank data
matrix. More concretely, the low-rank condition states rank(X)= r « min{M,
Q}=Q (latter equality due to our choice of M). For ease of explanation, also
assume that all non-zero singular values of X are sufficiently above the noise level.
Thus, when the singular value decomposition of Y is performed, it will have r
singular values that contain a combination of signal component from X and noise
component from N, while the remaining (Q−r) singular values will only have
contributions from noise N. Since the thresholding is performed at the level of the
largest singular value of the noise matrix, NORDIC will remove the noise from all
these (Q–r) noise components, as they cannot be distinguished from zero-mean
i.i.d. Gaussian noise (i.e. random noise). On the other hand, the r singular values
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that are above the threshold will be unaffected by NORDIC processing. However,
these r singular values have contributions from both noise and signal components,
though these components will be dominated by the signal. Thus, the final denoised
estimate generated from these singular values and their corresponding singular
vectors will have residual Gaussian noise in them. Since r «Q due to low-rank
assumption, majority of the thermal noise is removed by virtue of thresholding
(Q–r) singular values, but a small amount of thermal noise that are on the
remaining r singular components will remain in the final estimate. As a side note,
this remaining thermal noise will be further reduced due to patch averaging in
processing, but this effect is difficult to quantify.

Patch averaging. The patches arising from these thresholded Casorati matrices are
combined by averaging61 overlapping patches to generate the denoised image series
mLLRðr; τÞ. The averaging of patches can be performed with patches having dif-
ferent geometries, i.e. k1; k2; k3, and the averaging can be identically weighted or
weighted by the number of non-zero λ’s. In NORDIC for fMRI, direct averaging
with identical weights is used, similar to the previous use of NORDIC in dMRI,
where it was shown that there was no difference from using weighted averaging40.
The patch-averaging is itself a denoising step62 which reduces the residual con-
tributions of noise. In NORDIC for fMRI, with typically Q>100, and M>1000, we
used patch averaging with 25–50% overlap, and the difference between this and
using all combinations of patches was minimal, but led to substantial savings in
computational time.

Finally, to obtain mNORDICðr; tÞ the denoised volumes mLLRðr; tÞ are multiplied
back with the g-factor map gðrÞ to correct the signal intensities.

Spatial blurring. It may seem counter-intuitive that noise can be removed without
introducing spatial blurring. The main idea behind the locally low-rank decom-
position is to separate out the noisy Casorati matrix Y into two components as
Y=X+N, where X is assumed to be low-rank, and N is Gaussian noise. Then the
algorithm thresholds to remove all principal components of Y, whose singular
values are below the threshold that is automatically determined in NORDIC by the
noise level. This will remove both contributions from N and from X. This is
analogous to the concept of image compression, where part of the data is removed
(e.g. some of the DCT coefficients in JPEG compression), but the end result is
visually indistinguishable from the uncompressed image, as long as the compres-
sion level is not too high. In this analogy, the compression is done via removing
some of the components of the low-rank X, but due to its low-rank property, this
does not fundamentally alter its visualization. Additionally, the compression level
in conventional image compression is analogous to the SNR/threshold level in our
method. A numerical simulation of the threshold and patch size relative to zero-
mean Gaussian noise was performed in Moeller et al.40.

Participants. To test the impact of NORDIC on fMRI, we acquired 10 data sets on
four (2 females) healthy right-handed subjects (age range: 27–33), with different
stimulation paradigms, acquisition parameters and field strengths (see the sections
“Stimuli and procedure” and “MRI imaging acquisition and processing” sections).
All subjects had normal, or corrected vision and provided written informed con-
sent. The study complied with all relevant ethical regulations for work with human

participants. The local IRB at the University of Minnesota approved the
experiments.

Stimuli and procedure. We tested the impact of NORDIC on fMRI across four
experimental paradigms:

1. Block design visual stimulation
2. Fast event related visual stimulation design
3. Fast event related auditory stimulation design
4. Resting state.

Block design visual stimulation. We implemented standard block design visual
stimulation paradigms (see Fig. 1A) for four acquisition types. These included the
two 3 T fMRI studies, the 0.8 mm isotropic resolution 7 T fMRI and the 7 T 0.5 mm
isotropic resolution fMRI datasets (see the section “MRI imaging acquisition and
processing” section). The experimental procedure consisted of a standard 12 s on,
12 s off for the 7 T 0.8 mm isotropic voxel acquisitions, and for the 3 T datasets,
and a 24 s on, 24 s off for the 7 T 0.5 mm isotropic voxel acquisitions (see Fig. 1A).
The difference in block length between the two resolutions was implemented to
account the difference in volume acquisition time between the 0.8 mm iso (i.e.
volume acquisition time= 1350 ms) and the 0.5 mm iso acquisitions (i.e. volume
acquisition time= 3652 ms). The stimuli consisted of a center (i.e. target) and a
surround square checkerboard counterphase flickering (at 6 Hz) gratings (Fig. 1A)
subtending approximately 6.5 degrees of visual angle. Stimuli were centered on a
background of average luminance (25.4 cd/m2, 23.5–30.1). Stimuli were presented
on a Cambridge Research Systems BOLDscreen 32 LCD monitor positioned at the
head of the 7 T scanner bed (resolution 1920, 1080 at 120 Hz; viewing distance
~89.5 cm) using Mac Pro computer. Stimulus presentation was controlled using
Psychophysics Toolbox (3.0.15) based codes. Participants viewed the images
through a mirror placed in the head coil.

Each run lasted just over two and a half minutes for the 0.8 mm 7 T and the 3 T
acquisitions (i.e. 118 volumes at 1350 ms TR) and just over 5 min for the 0.5 mm
7 T acquisitions (85 volumes at 3654 ms volume acquisition time), beginning and
ending with a 12 or 24 s red fixation dot centered on a gray background. Within
each run, each visual condition, target and surround, was presented three times.
For the 0.5 mm iso data sets, we collected eight experimental runs; for the 0.8 mm
iso 7 T and the two 3 T data sets, participants underwent eight runs, two of which
were used to compute the region of interest and excluded from subsequent
analyses. Participants were instructed to minimize movement and keep fixation
locked on the center fixation dot throughout the experimental runs. For the 0.8 mm
7 T acquisition on S3, run 8 had to be discarded due to excessive movement.

Fast event-related visual design. The visual fast event related design consisted of
six runs of a face detection task, with a 2 s on, 2 s off acquisition. Each run lasted
approximately 3 min and 22 s and began and ended with a 12 s fixation period.
Importantly, we introduced 10% blank trials (i.e. 4 s of fixation period) randomly
interspersed amongst the images, effectively jittering the ISI. Stimulus pre-
sentation was pseudorandomized across runs, with the only constraint being the
non-occurrence of two consecutive presentations of the same phase coherence
level. Behavioral metrics, including reaction time and responses to face stimuli

Fig. 7 Flowchart of the NORDIC algorithm for a series mðr; τÞ. First, to ensure i.i.d. noise the series is normalized with the calculated g-factor kernels as
mðr; τÞ=gðrÞ. From the normalized series, the Casorati matrix Y ¼ ½y1; � � � ; yj ; � � � ; yN� is formed, where yj is a column vector that contains the voxel values in
each patch. The low-rank estimate of Y is calculated as YL ¼ U � Sλthr � V

T, where the singular values in S, λðiÞ are set to 0 if λðiÞ<λthr. After re-forming the
series mLLRðr; τÞ with patch averaging, the normalization with the calculated g-factor is reversed as mNORDICðr; τÞ ¼ mLLRðr; τÞ � gðrÞ.
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indicating participants’ perceptual judgments (i.e. face or no face) were also
recorded.

We used grayscale images of faces (20 male and 20 female). We manipulated the
phase coherence of each face, from 0% to 40% in steps of 10%, resulting in 200
images (5 visual conditions × 20 identities × 2 genders). We equated the amplitude
spectrum across all images. Stimuli approximately subtended 9 degrees of visual
angle. Faces were cropped to remove external features by centering an elliptical
window with uniform gray background to the original images. The y diameter of
the ellipse spanned the full vertical extent of the face stimuli and the x diameter
spanned 80% of the horizontal extent. Before applying the elliptical window to all
face images, we smoothed the edge of the ellipse by convolving with an average
filter (constructed using the “fspecial” function with “average” option in MATLAB.
This procedure was implemented to prevent participants from performing edge
detection, rather than the face detection task, by reacting to the easily identifiable
presence of hard edges in the face images.

Fast event-related auditory design. Stimuli consisted of sequences consisting of four
tones. For each sequence, tones were presented for 100 ms with a 400 ms gap in
between them (sequence duration 1.6 s). The sequences were presented con-
comitantly with the scanner noise (i.e. no silent gap for sound presentation was
used) and 36 tone sequences were presented in each run, a session consisted of 10
runs of about 6 min each. Tone sequences were presented following a slow-event
related design with an average interval of 6 TR’s (ranging between 5 and 7 TR’s,
TR= 1.6 s).”

Resting state. The resting state acquisition consisted of four 10 min runs. Data were
obtained at 3 T with 3 T HCP acquisition parameters (see section below). No
stimulus presentation occurred and participants were instructed to stay still,
minimize movements and fixate on a visible crosshair.

MR imaging acquisition and processing
7 T Acquisition parameters. All 7 T functional MRI data were collected with a 7 T
Siemens Magnetom System with a single transmit and 32-channel receive NOVA
head coil.

We collected four variants of T2*-weighted images with different acquisition
parameters, tailored to the different experimental needs. Specifically, for block
design visual stimulus paradigm at 7 T we collected 0.5 mm iso voxel (T2*-
weighted 3D GE EPI, single slab, 40 slices, TR 83 ms, Volume Acquisition Time
3654 ms, 3-fold in-plane undersampling along the phase encode direction, 6/8ths
in plane Partial Fourier, 0.5 mm isotropic nominal resolution, TE 32.4 ms, Flip
Angle 13°, Bandwidth 820 Hz). The 0.8 mm iso voxel acquisition used T2*-
weighted 2D GE SMS/MB EPI, 40 slices, TR 1350 ms, MB factor 2, 3-fold in-plane
undersampling along the phase encode direction, 6/8ths Partial Fourier, 0.8 mm
isotropic nominal resolution, TE 26.4 ms, flip Angle 58°, Bandwidth 1190 Hz. For
the auditory event related design, we used a comparable submillimeter acquisition
protocol (2D GE SMS/MB EPI 42 slices, TR 1600 ms, MB factor 2, 3-fold in-plane
undersampling along the phase encode direction, 6/8ths Partial Fourier, 0.8 mm
isotropic nominal resolution, TE 26.4 ms, Flip Angle 61°, Bandwidth 1190 Hz)

For the visual fast event-related design, we used the 7 T HCP acquisition
protocol (2D GE SMS/MB EPI, 85 slices TR 1 s, MB factor 5, 2-fold in-plane
undersampling along the phase encode direction, 7/8ths Partial Fourier, 1.6 mm
isotropic nominal resolution, TE 22.2 ms, Flip Angle 51°, Bandwidth 1923 Hz).

3 T Acquisition parameters. We recorded data employed the block design visual
stimulus paradigm using two sequences varying in resolution: Acquisition sequence
1 used the 3 T HCP protocol parameters (72 slices, TR= 0.8 s, MB= 8, no in-plane
undersampling 2 mm isotropic, TE= 37 ms, flip angle= 52°, bandwidth= 2290
Hz/pixel). Acquisition sequence 2 parameters were 100 slices, TR= 2.1 s, MB= 4,
in-plane undersampling factor= 2, 7/8 partial Fourier, 1.2 mm isotropic, TE=
32.6 ms, flip angle= 78°, bandwidth= 1595 Hz/pixel.

For the resting state data we used the acquisition sequence 1 detailed above (i.e.
the 3 T HCP protocol).

For all acquisitions, flip angles were optimized to maximize the signal across the
brain for the given TR. For each participant, shimming to improve B0 homogeneity
over occipital regions was conducted manually.

T1-weighted anatomical images were obtained on a 3 T Siemens Magnetom
Prismafit system using an MPRAGE sequence (192 slices; TR, 1900 ms; FOV,
256 × 256 mm; flip angle 9°; TE, 2.52 ms; 0.8 mm isotropic voxels). Anatomical
images were used for visualization purposes and to define the cortical gray matter
ribbon. This was done in BrainVoyager via automatic segmentation based on T1
intensity values and subsequent manual corrections. All analyses were subsequently
confined within the gray matter.

Functional data preprocessing. All 7 T functional data preprocessing was per-
formed in BrainVoyager. Preprocessing was kept at a minimum and constant
across reconstructions. Specifically, we performed slice scan timing corrections for
the 2D data (sinc interpolation), 3D rigid body motion correction (sinc inter-
polation), where all volumes for all runs were motion corrected relative to the first
volume of the first run acquired, and low drift removals (i.e. temporal high-pass

filtering) using a GLM approach with a design matrix continuing up to the second-
order discrete cosine transform basis set. No spatial nor temporal smoothing was
applied. Functional data were aligned to anatomical data with manual adjustments
and iterative optimizations.

3 T dicom files were converted using dcm2niix63. All subsequent 3 T functional
data preprocessing was performed in AFNI version 19.2.1064. Conventional
processing steps were used, including despiking, slice timing correction, motion
correction, and alignment to each participant’s anatomical image.

EPI data were aligned to T1-weighted images. For all MB data sets (i.e. all
acquisitions other than the 3D 0.5 mm iso images), anatomical alignment was
performed on the Single Band Reference (SBRef) image which was acquired to
calibrate coil sensitively profiles prior to the MB acquisition and has no slice
acceleration or T1-saturation, yielding higher contrast65.

GLMs and tSNR. Stimulus-evoked functional maps were computed in Brain-
Voyager for all 7 T datasets and in AFNI for the 3 T datasets. ROI definition and
contrast maps were also computed using these software. Subsequent analyses (i.e.
ROI based and functional point spread function measurements) were performed in
MatLab using a set of tools developed inhouse.

Temporal tSNR was computed by dividing the mean (over time) of the
detrended time-courses by its standard deviation independently per voxel, run and
subject.

To quantify the extent of stimulus evoked activation, we performed general
linear model (GLM) estimation (with ordinary least squares minimization). Design
matrices (DMs) were generated by convolution of a double gamma function with a
“boxcar” function (representing onset and offset of the stimuli). We computed both
single trial as well as condition-based GLMs. The latter, where DMs had one
predictor per condition, were used to assess the differences in extent and
magnitude in activation between NORDIC and Standard images. The former,
where the DMs had one predictor per trial per condition, produced single trials
activation estimates that were used to assess the stability (see the section “NORDIC
vs. Standard statistical analyses” section below) of the responses evoked by the
target condition for each voxel within the left retinotopic representation of the
target in V1 (see below).

ROI definition. Out of the 8 recorded runs, 2 runs (identical for each recon-
struction type) were used to define a region of interest (ROI). Specifically, we
performed a classic GLM on 4 concatenated runs (2 reconstructed with NORDIC
and 2 with the standard algorithm) and computed the differential map by con-
trasting the t-values elicited by the target to that elicited by the surround. While
this approach may overinflate statistical power and misrepresent the size of the
ROI, it also ensures identical ROIs across reconstructions, which was the main goal
in this case. GLM t-values can be thought of as beta estimates divided by GLM
standard error according to this equation:

t ¼ c0b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðeÞc0ðX0XÞ�1c
q

ð2Þ

where b represents the beta weights, c is a vector of 1, −1, and 0 indicating the
conditions to be contrasted, e is the GLM residuals and X the design matrix. We
then thresholded this map (p < 0.05 Bonferroni corrected) to define the left
hemisphere retinotopic representation of the target stimulus within the gray matter
boundaries. This procedure was implemented to provide an identical ROI across
reconstruction types, however, it resulted in effectively doubling the number of
data points available, which could not be treated as independent anymore. To
partially account for this, we adjusted the GLM degrees of freedom used to com-
pute the t-maps to be equal to those of 2 rather than 4 runs.

GLMs for experimental runs. Independently per reconstruction type, for the
condition-based scenario, GLMs were performed for each single run as well as for
multiple runs (i.e. concatenating 2 or more experimental runs and design matrices
to estimate BOLD responses). For the multiple run scenarios, we estimated the PSC
beta weights and the related t-values for 2–6 runs. For each n-run GLM, we
computed independent GLMs for all possible run combinations (see the section
“Comparing extent of activation” section for more details).

NORDIC vs. Standard statistical analyses. In order to evaluate the impact of
NORDIC denoising on BOLD based GE-EPI fMRI images, the following analyses
were performed. Standard tSNR was computed as described earlier. To assess
statistically significant differences in average tSNR across reconstruction types, we
first computed the mean tSNR (using the 20% trimmed mean, which is more
robust to extreme values23) across all voxels in the brain for each of the 8 runs. We
then carried out 2-tailed paired sample t-tests between average tSNRs for NORDIC
and Standard images across all runs.

Moreover, to test for statistically significant differences in stimulus-evoked
BOLD amplitudes and noise levels across reconstruction algorithms, we compared
the ROI voxel mean PSC beta estimates and related t-values elicited by the target
condition independently per subject. We used the 18 responses elicited by the
3 stimulus presentations within each of the 6 runs. To account for the fact that
trials within each run are not independent, while the runs are, we implemented a
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linear mixed-effect model in Matlab (The Mathworks Inc., 2014) according to the
equation:

Data � Condþ ð1jrunsÞ þ ð1jtrialsÞ ð3Þ
Linear mixed-effect model allows estimating fixed and random effects, thus

allowing modeling variance dependencies within terms. Model coefficients were
estimated by means of maximum-likelihood estimation.

To assess differences in the precision of BOLD PSC estimates across
reconstructions, we computed the cross-validates R2 for single runs GLMs. This
was achieved by deriving the beta weights using a given “training” run, and testing
how well these estimates predicted single voxel activation for all other “test” runs.
Single voxel cross-validated R2 (also known as coefficient of determination) was
computed according to the equation:

R2 ¼ 1-SSerror=SStotal ð4Þ
and, in our specific case

SSerror ¼ ∑ðf ðxÞ � xÞ2 ð5Þ

SStotal ¼ ∑SðxðiÞ � μðxÞÞ2 ð6Þ
In Eqs. (5) and (6), x is the empirical time-course of the test run, x(i) represents

the ith point of the empirical time-course of the test run x, μ(x) is the time-course
mean, and f(x) is the predicted time course computed by multiplying the design
matrix of a given training run by the beta estimates derived on a different test run.

We computed all possible unique combinations of training the model on a
given run and testing on all remaining runs, leading to 15 R2s per voxel. To infer
statistical significance, we carried out paired sample t-tests across the 15 cross-
validated R2 (averaged across all ROI voxels) for NORDIC and Standard images.

To assess the stability and thus the reliability of single trials response estimates
we computed the standard deviation across PSC amplitudes elicited by each single
presentation (i.e. single trial) of the target stimulus for every run, voxel and
reconstruction type. To infer statistical significance between these stability
estimates for NORDIC and Standard, independently per subject we carried out 2
tests: (1) we performed 2-tailed paired sample t-tests across runs; (2) we computed
95% bootstrap confidence intervals as follows. First, for a given subject, we
computed the difference between the single trials’ standard deviations of NORDIC
and Standard data. For each bootstrap iteration, we then sampled with replacement
the runs, computed the mean across the sampled runs and stored the value. We
repeated this operation 10,000 times, leading to 10,000 means. We sorted these
10,000 means and selected the 97.5 and the 2.5 percentiles (representing the 95%
bootstrapped confidence intervals of the difference). Statistical significance was
inferred when 95% bootstrap confidence interval did not overlap with 0.

Comparing extent of activation. We further compared the extent of activation
across reconstructions for the GLMs computed on 1 and multiple runs by quan-
tifying the number of active voxels at a fixed t-value threshold. To this end, we
computed the t-map for the contrast target > surround. For each GLM, we then
counted the number of significant voxels at |t| ≥ 5.7 (corresponding to p < 0.05
Bonferroni corrected for the Standard images) within the ROI. As we intended to
understand and quantify the difference in extent of activation between NORDIC
and Standard reconstructions, we compared GLM computed on 1 NORDIC run
versus 1–6 runs of Standard GLMs. To ensure that any potential difference was not
related to run-to-run variance, we implemented the following procedure. Firstly,
we computed GLMs for all possible unique run combinations. This led to six data
points for single run GLMs (i.e. 1 GLM per experimental run), 15 data points for
GLMs computed on 2 concatenated runs (e.g. runs 1–2; 1–3;1–4;1–5;1–6; 2–3, etc.),
20 data points for GLMs computed on 3 concatenated runs; 15 data points for
GLMs computed on 4 concatenated runs; 6 data points for GLMs computed on 5
concatenated runs and 1 data point for the GLM computed on 6 concatenated
runs. For each run combination, we counted the significant number of active voxels
at our statistical threshold and stored those numbers. Within each n-run GLM
(where n represents the number of concatenated runs), we then proceeded to
compute 95% bootstrap confidence interval on the mean of the active number of
voxels across all possible run combinations. This was achieved by sampling with
replacement the number of significantly active voxels estimated for each combi-
nation of runs and computing the mean across the bootstrap sample. We repeated
this operation 1000 times to construct a bootstrap distribution and derive 95%
bootstrap confidence interval23. This procedure not only ensured sampling from all
runs, but it also decreased the impact of extreme values23.

Quantifying BOLD images smoothness. Global smoothness estimates from each
reconstruction prior to preprocessing (‘pre’) and following all data preprocessing,
just prior to the GLM (‘post’). This was performed using 3dFWHMx from AFNI64

using the ‘-ACF’ command. The data were detrended using the default settings
from 3dFWHMx with the ‘-detrend’ command. As we are interested in the
smoothness within the brain, we also used the ‘-automask’ command in order to
generate an intensity-based brain mask, based on the median value of each run.
This method iterates through various background clipping parameters to generate
a contiguous brain only volume, that excludes the external areas of low signal. The
spatial autocorrelation is estimated from the data using a Gaussian plus mono-

exponential model, which accounts for possible long-tail spatial autocorrelations
found in fMRI data. This estimated FWHM, in mm, from this fitted auto-
correlation function is used as an estimate of the smoothness of the data. This
estimate was derived for all of the runs, excluding the held-out runs used for ROI
creation. For each subject, smoothness was averaged within each stage across the 6
experimental runs to evaluate if global smoothness was markedly increased due to
the reconstruction method. Paired sample t-tests were carried out between esti-
mated FWHM parameters for the NORDIC and Standard reconstructions to infer
statistical significance.

Functional point spread function. Functional point spread function (PSF) was
computed according to Shmuel et al.22. We estimated the BOLD functional PSF on
all individual runs independently for the Standard and NORDIC reconstructions.
In brief the analysis was implemented as follows: We first identified the anterior
most retinotopic representation of the target’s edge in V1 separately in Standard
and NORDIC reconstructed data. This was achieved by computing the contrast
target > surround on all runs concatenated within each group (Standard vs.
NORDIC) and identifying those voxels showing differential BOLD closest of 0
(Fig. 5). Then, using BrainVoyager, we flattened this portion of the cortex to
produce Laplace-based equipotential grid-lines in the middle of the cortical ribbon.
To increase the precision of the PSF measurement, we upsampled the BOLD
activation maps to 0.1 mm isotropic voxel. Independently per run, we then drew 10
traces orthogonal to the retinotopically anterior most edge of the target. We esti-
mated the BOLD functional PSF on all individual runs independently for the
Standard and NORDIC reconstructions. In brief the analysis was implemented as
follows: We first identified the anterior most retinotopic representation of the
target’s edge in V1 separately in Standard and NORDIC reconstructed data. This
was achieved by computing the contrast target > surround on all runs concatenated
within each group (Standard vs. NORDIC) and identifying those voxels showing
differential BOLD closest of 0 (Fig. 5). Then, using BrainVoyager, we flattened this
portion of the cortex to produce Laplace-based equipotential grid-lines in the
middle of the cortical ribbon. To increase the precision of the PSF measurement,
we upsampled the BOLD activation maps to 0.1 mm isotropic voxel. Independently
per run, we drew 10 traces orthogonal to the retinotopically anterior most edge of
the target. We then superimposed these traces to the activity elicited by the target
condition and, from the target’s edge, we measured the slope of BOLD amplitude
decrease along the traces. PSF was quantified by fitting a model to the mean of the
10 traces consisting of a step-function (representing infinitely precise PSF) con-
volved with a gaussian22 with three free parameters. The three parameters were the
width of the gaussian (representing functional precision—see ref. 22, the retinotopic
location of the edge and a multiplicative constant. Parameter fitting was performed
in Matlab using the lsqcurvefit function, with sum of squares as stress metric.
Paired sample t-tests across the 8 runs were then carried out between the Gaussian
widths for NORDIC and Standard images to infer statistical significance.

Resting state analysis. We collected 4 sequential runs of resting state. Each run was
10min in length, with the subject fixating on a crosshair throughout. Minimal pro-
cessing steps, performed with AFNI, were applied to the Standard and NORDIC data.
These included slice timing correction and motion correction to the first volume of
the first run of the Standard data for both Standard and NORDIC data. For both
reconstructions, motion was computed (and corrected) relative to the first volume of
the first run of the Standard data. Next, we regressed out the 6 estimates of motion
parameters and polynomials up to 5th order. A spherical seed, with radius of 3 mm
was placed in the medial prefrontal cortex, corresponding to a location within the
Default Mode Network. The extracted seed time course for each run was used to
generate a map of Pearson’s r values, corresponding to the correlation of each voxel in
the brain with the seed timeseries (i.e. seed-based correlation).

Denoising algorithms comparison. We compared the performance of NORDIC
to that of other denoising strategies on the 0.5 mm isotropic functional data, which,
amongst the many datasets in this paper, represents the one most greatly affected
by thermal noise and therefore an ideal candidate for NORDIC. Specifically, we
evaluated the performances of a global PCA-based algorithm26 (PCAwn), and a
local PCA-based algorithm DWIDenoise (DWIdn)27, on both magnitude dicoms
and complex dicoms. DWIdn is a publicly available implementation on the
MPPCA method27. PCAwn was implemented following Thomas et al.26 by first
selecting all voxels in the brain by image intensity thresholding on the average
series, and then applying a SVD on the Casorati matrix of the whole volume.
Following the SVD, each of the left singular basis vectors was evaluated for signal
contributions using the multi-taper analysis25,26, and an empirical threshold,
determined from the ratio of the power to the standard deviation of the power
spectrum from the multi-taper analysis25,26, was utilized to select and remove
components which only contributed to the thermal noise as in ref. 26. DWIdn. is a
local PCA method designed to select and remove components which only con-
tributed to the thermal noise using an objective threshold derived from the
Marchenco–Pastur distribution for random matrices. DWIdn was applied both on
magnitude only and on complex dicoms using the MRtrix3 toolbox; http://
www.mrtrix.org, with its default optimized settings27. To obtain complex dicoms,
we converted phase images to radians and then combined them with magnitude
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images using mrcalc, a tool also part of MRtrix3. Of these methods NORDIC and
DWIdn are the most similar, but presenting a number of importance difference,
including, but not limited to, the approach of the threshold selection and the
optimization of local patch-size (see ref. 40 for more details).

The impact of denoising methods on fMRI data entailed comparing a number
of metrics all described in the previous pages. These included the t-maps for the
contrast target >surround; the distribution of these t-values on an ROI hand drawn
on the co-registered T1, approximately corresponding to the representation of the
target region in V1; smoothness metric as implemented in AFNI and the impact of
the different methods on single EPI image quality. The reason for hand drawing the
ROI rather than deriving it from the maps themselves, was to ensure no bias
towards a specific denoising algorithm. The ROI was further constrained to only
include values within the brain for the EPI images, to account for potential
misregistration across modalities. The results of these comparisons are presented in
Supplementary Fig. 16.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request, subject to human subjects IRB limitations. Source data
are provided with this paper.

Code availability
The codes that support the findings of this study will be available here: https://
github.com/SteenMoeller/NORDIC_Raw and on Zenodo (https://doi.org/10.5281/
zenodo.5147408 https://zenodo.org/record/5147408). Source data are provided with
this paper.
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