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Abstract
Background: Mitochondrial	 dysfunctions	 caused	 by	 mitochondrial	 DNA	 (mtDNA)	
pathogenic	mutations	play	putative	roles	in	type	2	diabetes	mellitus	(T2DM)	progres-
sion. But the underlying mechanism remains poorly understood.
Methods: A	 large	 Chinese	 family	 with	maternally	 inherited	 diabetes	 and	 deafness	
(MIDD)	 underwent	 clinical,	 genetic,	 and	molecular	 assessment.	 PCR	 and	 sequence	
analysis	are	carried	out	to	detect	mtDNA	variants	in	affected	family	members,	in	ad-
dition,	phylogenetic	conservation	analysis,	haplogroup	classification,	and	pathogenic-
ity	scoring	system	are	performed.	Moreover,	the	GJB2,	GJB3,	GJB6,	and	TRMU genes 
mutations	are	screened	by	PCR-	Sanger	sequencing.
Results: Six	 of	 18	matrilineal	 subjects	 manifested	 different	 clinical	 phenotypes	 of	
diabetes. The average age at onset of diabetic patients is 52 years. Screening for the 
entire mitochondrial genomes suggests the co- existence of two possibly pathogenic 
mutations:	 tRNATrp	A5514G	and	tRNASer(AGY)	C12237T,	which	belongs	 to	East	Asia	
haplogroup	G2a.	By	molecular	 level,	m.A5514G	mutation	 resides	 at	 acceptor	 stem	
of	tRNATrp	(position	3),	which	is	critical	for	steady-	state	level	of	tRNATrp.	Conversely,	
m.C12237T	mutation	occurs	in	the	variable	region	of	tRNASer(AGY)	(position	31),	which	
creates	a	novel	base-	pairing	(11A-	31T).	Thus,	the	mitochondrial	dysfunctions	caused	
by	 tRNATrp	 A5514G	 and	 tRNASer(AGY)	 C12237T	mutations,	may	 be	 associated	with	
T2DM in this pedigree. But we do not find any functional mutations in those nuclear 
genes.
Conclusion: Our	findings	suggest	that	m.A5514G	and	m.C12337T	mutations	are	asso-
ciated	with	T2DM,	screening	for	mt-	tRNA	mutations	is	useful	for	molecular	diagnosis	
and prevention of mitochondrial diabetes.
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1  |  INTRODUC TION

Diabetes	 is	 a	 common	 endocrine	 disease	 in	 China,	 in	 particular,	
type	2	diabetes	mellitus	 (T2DM)	accounted	 for	>10% of general 
population.1,2	Although	the	pathophysiology	of	DM	has	not	been	
fully	 elucidated,	 overwhelming	 evidence	 suggests	 that	 environ-
mental,	personal	 lifestyle,	or	nuclear	genes	mutations	may	 influ-
ence T2DM pathogenesis.3,4	Among	these	factors,	some	families	
are	presented	in	maternally	inherited	pattern,	indicating	that	mu-
tations	 or	 variants	 in	 mitochondrial	 DNA	 (mtDNA)	 play	 critical	
roles in T2DM.5,6

Human	 mitochondrial	 genome	 is	 a	 relative	 small	 molecule	
(16,569-	bp	 long)	 which	 encodes	 13	 polypeptides,	 2	 rRNAs	 (12S	
rRNA	and	16S	rRNA),	and	22	tRNAs.7 Despite the fact that the en-
tire	mt-	tRNA	genes	account	only	for	approximately	10%	of	total	mi-
tochondrial	 genome,	more	 than	2/3	mitochondrial	 disease-	related	
pathogenic	mutations	are	localized	at	tRNA	genes.8,9	Among	these	
mutations,	 the	A	to	G	substitution	at	position	3243	appears	 to	be	
the most common T2DM- associated pathogenic mutation.10– 12 
Furthermore,	 several	 case-	control	 studies	 indicate	 that	 tRNAIle 
T4291C,13	 tRNAGlu	 A14692G,	 and	 T14709C	mutations14,15 are in-
volved in the pathogenesis of T2DM.

Maternally	 inherited	 diabetes	 and	 deafness	 (MIDD)	 is	 a	 rare	
form	of	mitochondrial	diabetes	characterized	by	both	DM	and	hear-
ing loss. This disease can be resulted from genetic abnormalities 
in	mtDNA,	 especially	 associated	with	 tRNALeu(UUR)	A3243G	muta-
tion.16	Moreover,	MIDD	typically	affects	metabolically	active	organs	
such	as	the	endocrine	pancreas	and	cochlea,	and	in	some	cases,	also	
the	retina,	muscles,	kidneys,	and	brain.17	However,	the	pathogenesis	
for	the	MIDD	needs	further	elucidation.

To	investigate	the	T2DM-	associated	mtDNA	mutations,	our	re-
cently	screened	the	mtDNA	mutations	 in	a	cohort	of	215	diabetic	
patients	 and	155	 controls.	Consequently,	 a	 four-	generation	 family	
with	MIDD	 is	 identified	 in	 this	 case-	control	 study,	 to	 explore	 the	
contributions	of	mitochondrial	dysfunction	to	DM,	we	perform	PCR-	
Sanger	sequencing	to	analyze	the	mutations	in	whole	mitochondrial	
genome.

Moreover,	 more	 than	 160	 loci,	 around	 119	 genes	 have	 been	
identified in patients with non- syndromic hearing loss.18	 In	partic-
ular,	Gap	 junctions	 (GJs)	 are	 intercellular	 channels	 that	allow	small	
molecules of the cytoplasm of a cell to be directed to the adjacent 
cell,	 including	ions	such	as	K+,	Na+,	and	Ca2+. Connexins GJB con-
tains	21	isoforms	in	humans,	including	GJB2	(Cx26),	GJB3	(Cx31),	and	
GJB6	(Cx30).19	It	has	been	suggested	that	several	mutations	such	as	
c.235delC in GJB2,	A194T	in	GJB3,	150-	kb	large	deletion	in	GJB6 are 
the important causes for non- syndromic hearing loss in many pop-
ulations worldwide.20– 22	In	addition,	TRMU is a nuclear gene crucial 
for	mtDNA	translation	by	encoding	tRNA	5-	methylaminomethyl-	2-	t
hiouridylate	methyltransferase,	which	thiolates	mt-	tRNA.23Previous 
study suggested that mutation in TRMU may modulate the clinical 
expression	 of	 deafness-	associated	mitochondrial	 12S	 rRNA	muta-
tions.24 To see whether GJB2,	GJB3,	GJB6,	and	TRMU contributed to 
genetic	susceptibility	to	deafness,	we	analyze	the	mutations	in	these	
nuclear	genes	by	direct	sequencing.

2  |  MATERIAL S AND METHODS

2.1  |  Pedigree information and clinical assessments

From	January	2019	to	January	2021,	we	enrolled	215	subjects	with	
diabetes	and	155	controls	 from	Hangzhou	First	People's	Hospital,	
as	 shown	 in	 Figure	 1,	 a	 large	 Chinese	 pedigree	 with	 T2DM	 was	
ascertained during this mutational screening program. We first in-
vited	 the	members	of	 this	 family	 to	participate	 for	 this	 study,	 the	
blood	 samples,	 family	 history,	 and	 detailed	 personal	 information	
were collected. This study was approved by the Ethics Committee 
of	Hangzhou	First	People's	Hospital	(Approval	Number:	2020-	004-	
01),	and	each	participant	provided	their	written	informed	consent.	
Moreover,	 155	 healthy	 subjects	 including	 70	 males	 and	 85	 fe-
males,	aged	 from	38	 to	50	years	were	 recruited	 from	the	Healthy	
Examination Center of our hospital as controls. These controls were 
healthy subjects without any diseases; whereas the subjects had a 
family history of mitochondrial diseases will be excluded.

F I G U R E  1 One	Han	Chinese	family	with	T2DM,	arrow	indicated	the	proband,	the	affected	diabetes	patients	were	marked	as	filled	
symbols
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The diagnosis criteria of DM were based on the standard pro-
posed	by	the	American	Diabetes	Association25:	(1)	The	fast	plasma	
glucose	 (FPG)	 level	≥7.0	mmol/L;	 (2)	The	2-	h	plasma	glucose	 level	
≥11.1	mmol/L	after	the	oral	glucose	tolerance	test	(OGTT);	(3)	The	
concentration	of	hemoglobin	A1c	(HbA1c)	>6.5%.

Body	mass	index	(BMI)	was	calculated	by	as	the	body	weight	(kg)	
divided	by	the	square	of	the	height	(m2).	Obesity	was	defined	using	
the	 BMI	 for	 Chinese	 adults:	 normal:	 18.5–	24	 (kg/m2),	 overweight:	
24–	28	(kg/m2),	and	obese	≥28	(kg/m2).	Moreover,	we	monitored	the	
blood	pressure	(BP)	by	using	an	electronic	sphygmomanometer,	ac-
cording to the protocol as previously described.26 The systolic BP 
≥140	mmHg	or	the	diastolic	BP	≥90	mmHg	was	regarded	as	hyper-
tension.27	For	biochemical	assessment,	serum	FPG	was	determined	
by	the	regular	laboratory	methods	(Beckman	Coulter	AU5800).	In	ad-
dition,	the	OGTT	was	carried	out	by	measurement	of	plasma	glucose	
concentrations	at	0	and	2-	h	after	75-	g	glucose	administration,	while	
plasma	insulin	(0	h)	and	C-	peptide	(0	h)	were	measured	by	chemilumi-
nescent	immunometric	assay	(IMMULITE®,	Siemens).28	Moreover,	the	
audiological examination was assessed to evaluate the hearing func-
tion,	which	was	calculated	on	the	basis	of	results	of	pure-	tone	audi-
ometry	(PTA).	The	degrees	of	hearing	loss	were	divided	into	5	groups:	
(1)	PTA<26	Decibel	(dB):	normal	hearing;	(2)	26	dB<PTA<40 dB: mild; 
(3)	 41	 dB<PTA<70	 dB:	 moderate;	 (4)	 71	 dB<PTA<90	 dB:	 severe;	
and	(5):	PTA>90	dB:	profound.29	In	addition,	visual	acuity	(VA)	was	
evaluated	to	see	the	degree	of	vision	loss,	which	was	as	follows:	(1)	
VA>0.3:	normal;	 (2)	0.1<VA<0.3:	mild;	 (3)	0.05<VA<0.1: moderate; 
(4)	0.02<VA<0.05:	severe;	and	(5)	VA<0.02: profound.30

2.2  |  Screening for mtDNA mutations or variants

To	detect	 the	mtDNA	variants,	genomic	DNA	was	extracted	 from	
blood	 of	 each	 participant	 by	 using	 Paxgene	 Blood	 DNA	 Isolation	
kits	(QIAGEN).	Briefly,	24	primers	were	used	to	amplify	whole	mito-
chondrial	genomes	from	affected	subjects	(II-	4,	II-	6,	III-	5,	III-	10,	III-	
18,	and	III-	22),	according	to	the	protocol	as	described	previously.31 
Furthermore,	the	ABI	3700	DNA	instrument	was	employed	to	ana-
lyze	 the	 sequences	 by	 comparing	with	 the	 revised	Cambridge	 se-
quences	 (rCRS,	GenBank	accession	number:	NC_012920.1).32 The 
DNA	STAR	 software	package	 version	5.01	 (Madison)	was	used	 to	
detect	mtDNA	mutations	or	variants.

2.3  |  Evolutionary conservation assessment

To	analysis	the	potential	pathogenicity	of	a	candidate	mtDNA	mu-
tation,	phylogenetic	conservation	assessment	was	carried	out.	We	
chose	12	vertebrate	species	and	then	compared	with	human	mtDNA	
variant at a certain position to see the degree of conservation index 
(CI).33	 The	 CI	 ≥75%	 was	 regarded	 to	 be	 functional	 potential.34 
Furthermore,	mitochondrial	haplogroup	was	classified	according	to	
the study by Kong et al.35

2.4  |  Bioinformatics analysis

With the purpose of understanding the molecular pathogen-
esis	 of	 m.A5514G	 and	 m.C12237T	 mutations,	 the	 online	 RNA	
Fold	 Webserver	 was	 used	 to	 determine	 the	 structural	 alterna-
tion	 of	 tRNATrp	 and	 tRNASer(AGY) with and without these muta-
tions	 (http://rna.tbi.univie.ac.at/cgi-	bin/RNAfo	ld.cgi).36 The 
wild-	type	 sequence	 for	 tRNATrp	 gene	 was	 5'-	AGAAATTTAGG
TTAAATACAGACCAAGAGCCTTCAAAGCCCTCAGTAAGTTG
CAATACTTAATTTCTG-	3’;	 while	 the	 sequence	 of	 tRNATrp with 
m.A5514G	mutation	was	5'-	AGGAATTTAGGTTAAATACAGACCAA
GAGCCTTCAAAGC	CCTCAGTAAGTTGCAATACTTA	ATTTCTG-	3'.	
Moreover,	 the	 wild-	type	 version	 of	 tRNASer(AGY)	 was	 5'-	GAGAAA
GCTCACAAGAACTGCTAACTCATGCCC	 CCATGTCTAACAACATG	
GCTTTCTCA-	3’,	and	the	sequence	of	tRNASer(AGY) with m.C12237T 
mutation	 was	 5'-	GAGAAAGCTCACAAGAACTGCTAAC	
TCATGTCCCCATGTCTAACAACAT	 GGCTT	 TCTCA-	3'.	 In	 addition	
to	the	secondary	structure	alternation,	RNA	Fold	also	provided	the	
minimum	free	energy	(MFE)	of	each	tRNA.37

2.5  |  The pathogenicity scoring system

To	 identify	 the	potential	 pathogenic	mt-	tRNA	mutations,	we	used	
the	following	criteria:	(1)	presented	in	<1% of the healthy controls; 
(2)	CI	≥75%,	as	proposed	by	Ruiz-	Pesini	and	Wallace34;	(3)	potential	
to	cause	structural	and	functional	alterations;	and	(4)	a	score	of	≥7	
points under an established pathogenicity scoring system.38	 If	 the	
total	 scores	 of	 a	mt-	tRNA	mutation	were	 less	 than	 6,	 it	 belonged	
to	“neutral	polymorphism,”	if	the	scores	were	7–	10,	it	was	“possible	
pathogenic,”	whereas	the	scores	were	more	than	11,	it	was	classified	
as	“definitely	pathogenic.”

2.6  |  Analysis of GJB2, GJB3, GJB6, and TRMU 
genes mutations

To	see	 the	contributions	of	nuclear	genes	 to	deafness	expression,	
we conducted a mutational screening for GJB2,	GJB3,	GJB6,	 and	
TRMU	genes	in	6	affected	patients	from	this	pedigree	(II-	4,	II-	6,	III-	
5,	 III-	10,	 III-	18,	 and	 III-	22).	 The	 primers	 for	 amplifying	GJB2 gene 
were	 forward-	5'-	TATGACACTCCCCAGCACAG-	3’	 and	 reverse-	5'-	
GGGCAATGCTTAAACTGGC-	3’;	 the	 primers	 for	 amplification	 of	
GJB3	 gene	 were	 forward-	5'-	GTCACCTATTCATTCATACGATGG-	3’	
and	 reverse-	5'-	TCACTCAGCCCCTGTAGGAC-	3’;	 the	 primers	 	se-
quences	 for	 amplifying	 GJB6	 were	 forward-	5'-	CCTTAAAATAA		
AGTTGGCTTCAG-	3’,	reverse-	5'-	GGAACTTTCAGGTTGGTATTG-	3’;		
the primers for TRMU	 exon	 1	were	 forward-	5'-	ACAGCGCAGAAG	
AAGAGCAGT-	3’	and	reverse-	5'-	ACAACGCCACGACGGACG-	3'.	PCR	
products	 were	 purified	 and	 subsequently	 sequenced	 by	 ABI3700	
DNA	instrument,	the	sequence	data	were	compared	with	the	wild-	
type versions of GJB2,	GJB3,	GJB6,	and	TRMU	sequences	(GenBank	

http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi).
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accessible	 numbers:	 M86849,	 AF052692,	 NG_008323,	 and	
AF_448221,	respectively)	to	detect	the	mutations	or	variants.39–	42

3  |  RESULTS

3.1  |  Clinical findings

We	 ascertained	 a	 Chinese	 family	 with	MIDD	 from	Hangzhou	 First	
People's	Hospital	(Figure	1).	Detailed	information	was	obtained	from	
each	subject	of	this	pedigree,	as	well	as	the	family	history	of	diabetes	
or	deafness.	After	the	genetic	counseling,	we	noticed	that	the	proband	
(III-	10)	was	a	45	years	old	woman,	who	suffered	from	T2DM	one	year	
ago	before	the	administration	of	our	hospital.	Laboratory	examination	
showed	that	she	was	a	diabetes	carrier.	Of	18	matrilineal	relatives,	6	
(1	male	and	5	female)	individuals	suffered	from	diabetes.	The	onset	of	
T2DM	ranged	from	40	to	70	years	(mean	age:	52).	Furthermore,	3	in-
dividuals	(II-	4,	II-	6,	and	III-	5)	developed	both	diabetes	and	hearing	loss,	
in	particular,	the	subject	(II-	4)	was	a	hypertension,	deafness,	and	vision	
impairment	carrier.	Notably,	subjects	(II-	4	and	II-	6)	exhibited	hearing	
loss	most	probably	due	to	their	great	age,	because	during	aging,	mito-
chondrial	ROS	increased	and	 impaired	the	mitochondrial	function.43 
However,	these	subjects	did	not	have	other	clinical	disorders,	includ-
ing	coronary	heart	disease,	cancer,	or	infectious	diseases	(Table	1).

3.2  |  Screening for mtDNA mutations

Owing	to	the	maternally	inheritance,	we	screened	the	mtDNA	mu-
tations in 6 affected matrilineal relatives of this family. PCR- Sanger 
sequence	revealed	28	mtDNA	variants	which	belonged	to	East	Asia	
haplogroup G2a.35	 Among	 these,	 8	 variants	were	 identified	 in	D-	
loop,	2	variants	were	found	in	12S	rRNA	(m.A750G	and	m.A1438G),	
1	variant	occurred	at	16S	rRNA	(m.A2708G),	2	potential	pathogenic	
mutations	were	found	in	tRNA	genes	(m.A5514G	and	m.C12237T)	
(Table	 2).	Whereas	 others	were	 resided	 at	 oxidative	 phosphoryla-
tion	 (OXPHOS)-	encoding	genes.	 In	addition,	6	missense	mutations	
were	identified:	m.G8584A	(Ala	to	Thr)	and	m.A8860G	(Thr	to	Ala)	
in A6	gene,	m.A10398G	(Thr	to	Ala)	in	ND3	gene,	m.G13928C	(Ser	
to	Thr)	in	ND5	gene,	m.C14766T	(Thr	to	Ile)	and	m.A15326G	(Thr	to	
Ala)	in	CytB	gene.	To	further	evaluate	their	pathogenicity,	evolution-
ary	 conservation	of	 each	variant	was	 assessed	 including	mouse,44 
bovine,45 and Xenopus laevis.46	We	 found	 that	 except	 for	 tRNATrp 
A5514G,	 tRNASer(AGY)	 C12237T	 mutations	 (Figures	 2–	4),	 other	
mtDNA	variants	may	not	be	pathogenic	since	they	either	occurred	
in	control	group	or	had	very	low	degrees	of	CIs.

As	shown	in	Figure	3	and	Table	3,	the	A-	to-	G	substitution	at	po-
sition	5514	was	localized	at	acceptor	arm	of	tRNATrp	gene,	disrupting	
a	very	conserved	Watson-	Crick	base-	pairing	 (3A-	70T).	Conversely,	
m.C12337T mutation was believed to create a new Watson- Crick 
base-	pairing	(11A-	31T).	Thus,	it	was	anticipated	that	the	m.A5514G	
and m.C12237T mutations may cause the structural alternation of 
the	corresponding	tRNAs	and	affect	their	functions.TA
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TA B L E  2 mtDNA	sequence	alternation	in	this	pedigree	with	diabetes

Gene Position Replacement rCRS
Conservation 
(H/B/M/X)a CI (%)

Previously 
reportedb

D- loop 73 A	to	G A Yes

204 T to C T Yes

215 A	to	G A Yes

263 A	to	G A Yes

310 T to CTC T Yes

16182 A	to	C A Yes

16189 T to C T Yes

16519 T to C T Yes

12S	rRNA 750 A	to	G A 97.78 Yes

1438 A	to	G A A/A/A/G 86.67 Yes

16S	rRNA 2706 A	to	G A A/G/A/A 84.44 Yes

ND1 3970 C to T C 80.0 Yes

ND2 4769 A	to	G A 24.44 Yes

5441 A	to	G A 31.1 Yes

tRNATrp 5514 A	to	G A A/A/A/A 100 Yes

CO1 6962 G	to	A G 100 Yes

7028 C to T C 100 Yes

A6 8584 G	to	A	(Ala	to	Thr) G A/V/V/I 17.8 Yes

8860 A	to	G	(Thr	to	Ala) A T/A/A/T 71.1 Yes

ND3 10398 A	to	G	(Thr	to	Ala) A T/T/T/A 51.1 Yes

ND4 11719 G	to	A G 97.8 Yes

tRNASer(AGY) 12237 C to T C C/C/C/C 100 Yes

ND5 12822 C to T C 22.2 Yes

13928 G	to	C	(Ser	to	Thr) G S/T/S/T 11.1 Yes

CytB 14766 C	to	T	(Thr	to	Ile) C T/S/T/S 48.9 Yes

15301 G	to	A G 95.5 Yes

15326 A	to	G	(Thr	to	Ala) A T/M/I/I 17.8 Yes

15784 T to C T 100 Yes

Abbreviation:	CI,	conservation	index.
aConservation	of	amino	acid	for	polypeptides	or	nucleotide	for	rRNAs,	in	human	(H),	mouse	(M),	bovine	(B),	and	Xenopus laevis	(X).
bSee http://www.mitom ap.org andhttp://www.genpat.uu.se/mtDB/

F I G U R E  2 Identification	of	tRNATrp 
A5514G	and	tRNASer(AGY) C12237T 
mutations	by	Sanger	sequencing

Mutant

Wild type

5514                                                          12237

http://www.mitomap.org
http://www.genpat.uu.se/mtDB/
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3.3  |  m.A5514G and m.C12237T mutations 
affected tRNAs secondary structure

To	see	the	effects	of	m.A5514G	and	m.C12237T	mutations	on	tRNAs	
structure,	 we	 used	 RNA	 Fold	 program	 to	 analyze	 the	 secondary	

structure	of	 tRNATrp	and	 tRNASer(AGY) with and without these mu-
tations.36	As	shown	in	Figures	5	and	6,	we	noticed	that	m.A5514G	
and	m.C12237T	mutations	influenced	the	structures	of	tRNATrp and 
tRNASer(AGY),	respectively,	suggesting	that	they	may	have	functional	
potential.

F I G U R E  3 Cloverleaf	structures	
of	tRNATrp	and	tRNASer(AGY).	Arrows	
indicate	the	positions	of	m.A5514G	and	
m.C12237T	mutations	in	mt-	tRNA	genes

Wild type                  MutantWild type                    Mutant

F I G U R E  4 Sequence	alignment	of	tRNATrp	gene	from	different	species,	arrow	indicates	the	position	3,	corresponding	to	the	m.A5514G	
mutation

5514

TA B L E  3 Molecular	characterizations	of	tRNATrp	A5514G	and	tRNASer(AGY) C12237T mutations identified in this family

tRNA 
species

Nucleotide 
changes

Number of 
nucleotides 
in tRNA Location in tRNA

Watson- Crick 
base- pairinga CI (%)

MFE 
(wild type) 
kcal/mol

MFE 
(Mutant) 
kcal/mol Disease association

tRNATrp A5514G 3 Acceptor	arm 3A−70T↓ 92.3 −10.82 −10.88 Deafness; Multiple 
mitochondrial respiratory 
chain	enzyme	defects

tRNASer(AGY) C12237T 31 Variable	region 11A−31T↑ 84.6 −15.55 −14.96 Creutzfeldt-	Jakob	disease

Abbreviations:	CI,	conservation	index;	MFE,	minimum	free	energy.
aClassic	Watson-	Crick	base	pairing:	created	(↑)	or	abolished	(↓).
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3.4  |  m.A5514G and m.C12237T mutations were 
“possibly pathogenic” associated with MIDD

As	 shown	 in	 Table	 4,	 based	 on	 the	 classic	 pathogenicity	 scoring	
system,38	the	total	scores	of	m.A5514G	and	m.C12237T	mutations	
were	both	8	points,	which	belonged	to	“possibly	pathogenic”	muta-
tions	for	MIDD.

3.5  |  Mutational analysis of nuclear genes

To	see	whether	nuclear	genes	(GJB2,	GJB3,	GJB6,	and	TRMU)	muta-
tions	played	active	roles	in	clinical	expression	of	hearing	impairment,	
we initiated a mutational analysis of the exons of GJB2,	GJB3,	GJB6,	
and TRMU	in	matrilineal	relatives	of	this	pedigree.	However,	we	did	
not find any functional variants in these genes.

4  |  DISCUSSION

Mutations	 in	 mtDNA	 were	 the	 important	 causes	 for	 MIDD,	 cur-
rently,	the	clinical	features	of	MIDD	were	often	variable	due	to	the	
heteroplasmy	and	subsequent	segregation	of	the	mutated	mtDNA.47 
Diagnosis	and	prediction	of	MIDD	prognosis	were	difficult	for	pro-
viders based on phenotypic features alone because of the large 
variation	 of	 heteroplasmic	 mtDNA	 inheritance.48	 At	 the	 cellular	
level,	 the	β-	cell	 required	 large	amounts	of	ATP	 to	produce	 insulin.	
The	impaired	mitochondrial	functions	caused	by	mtDNA	mutations	
decreased	ATP	production	and	 increased	ROS	 level	 leading	 to	ab-
normal β-	cell	 functions,	 loss	 of	 β-	cell	mass,	 and	 eventually	 insulin	
deficiency.49

To	see	the	relationship	between	mt-	tRNA	mutations	and	MIDD,	
the	 current	 study	 described	 a	 large	 maternally	 inherited	 MIDD	
pedigree	 which	 harbored	 both	 tRNATrp	 A5514G	 and	 tRNASer(AGY) 
C12237T	mutations.	 In	 fact,	 among	18	matrilineal	 relatives,	 six	of	
them	developed	T2DM	at	different	age	at	onset.	 In	particular,	 the	
onset	of	T2DM	varied	from	40	to	70	years	(mean	age:	52).	Despite	
that these subjects also developed hearing loss and vision impair-
ment,	 the	 pattern	 of	 transmission	was	 consistent	with	maternally	
inheritance.	 Interestingly,	 family	members	 from	the	second	gener-
ation	(II-	4	and	II-	6)	to	third	generation	(III-	5,	III-	10,	III-	18,	and	III-	22)	
manifested	earlier	onset	of	DM,	 indicating	that	mitochondrial	dys-
function may be the molecular basis for this disease.

Mutational	 screening	 for	 the	 complete	 mtDNA	 genes	 of	 the	
affected	 individuals	 led	 us	 to	 identify	 28	 polymorphisms	 which	
belonged to human mitochondrial haplogroup G2a.35	 Of	 these,	
m.A5514G	mutation	may	have	 functional	 impact	on	 tRNA	metab-
olism	on	the	following	lines	of	evidence:	first,	this	mutation	resided	
at	the	acceptor	arm	of	tRNATrp	 (position	3),	which	had	a	high	 level	
of	CI.34	Secondly,	m.A5514G	mutation	resulted	the	A3G	transition	
of	 tRNATrp,	 causing	 the	misreading	 and	 recognition	 by	 RNase	 P.50 
Interestingly,	m.T7512C	mutation	which	occurred	at	the	same	posi-
tion	of	tRNASer(UCN)	was	implicated	to	be	associated	with	MELAS.51,52 
Importantly,	m.T7512C	mutation	also	caused	a	strong	reduction	of	

F I G U R E  5 Bioinformatics	analysis	of	tRNATrp structure with and 
without	m.A5514G	mutation

tRNATrp wild type                            tRNATrp carrying m.A5514G mutation

F I G U R E  6 Bioinformatics	analysis	of	
tRNASer(AGY) structure with and without 
m.C12237T mutation tRNASer(AGY) carrying m.C12237T mutationtRNASer(AGY) wild type
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tRNASer(UCN) steady- state level and affected the post- transcriptional 
modification	 of	 this	 tRNA.53	 Therefore,	 m.A5514G	 mutation	 was	
similar	to	m.T7512C	mutation,	may	also	 influence	the	tRNATrp me-
tabolism and lead to mitochondrial dysfunction.

Moreover,	m.C12237T	mutation	occurred	at	position	31	 in	the	
variable	 region	 of	 tRNASer(AGY) and was expected to form a novel 
Watson-	Crick	 base-	pairing	 (11A-	31T).	 Interestingly,	 m.A12308G	
mutation	which	was	located	at	the	position	31	in	tRNALeu(CUN),	had	
been	found	to	be	associated	with	cardiomyopathy,54 metabolic syn-
drome,55 and increasing the risk of stroke.56	Therefore,	we	believed	
that	 the	 m.C12237T	 mutation,	 which	 was	 similar	 to	 m.A12308G	
mutation,	most	probably	led	to	the	failure	in	tRNAs	metabolism	via	
affecting	its	secondary	structure,	and	subsequently	impair	the	mito-
chondrial functions.57

Based	 on	 these	 observations,	 we	 proposed	 that	 the	 possible	
molecular	mechanisms	underlying	m.A5514G	and	m.C12237T	mu-
tations	 in	 the	 phenotypic	 expression	of	MIDD	may	be	 as	 follows:	
first,	 the	mutations	 disrupted	 the	 secondary	 structures	 of	 tRNAs	
and	subsequently	resulted	the	failure	in	tRNAs	metabolism,	such	as	
reducing	 tRNA	steady-	state	 level,	 aminoacylation	ability,	 affecting	
3’	end	processing,	or	its	chemical	modifications.58 These biochem-
ical processes will lead to the impairment of mitochondrial protein 
translation	and	influence	the	respiratory	chain	functions.	As	a	result,	
these mutations led to mitochondrial dysfunctions which caused 
the pancreatic β-	cell	apoptosis	or	necrosis,59,60 and involved in the 
pathogenesis	of	MIDD	in	this	pedigree.	At	the	same	time,	the	absent	
of functional variants in GJB2,	GJB3,	GJB6,	 and	TRMU genes sug-
gested that these genes may not play putative roles in the pheno-
typic	manifestation	of	MIDD,	therefore,	the	combination	of	tRNATrp 
A5514G	and	 tRNASer(AGY) C12237T mutations may be responsible 
for	MIDD	in	this	pedigree.	The	main	limitation	of	this	study	was	the	
relatively	small	sample	sizes,	further	studies	including	more	patients	
with DM were needed to verify the conclusions.
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