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Background. The molecular mechanism of nonobstructive azoospermia (NOA) remains unclear. The aim of this study was to
identify gene expression changes in NOA patients and to explore potential biomarkers and therapeutic targets. Methods. The
gene expression profiles of GSE45885 and GSE145467 were collected from the Gene Expression Omnibus (GEO) database, and
the differences between NOA and normal spermatogenesis were analyzed. Enrichment analysis was performed to explore
biological functions for common differentially expressed genes (DEGs) in GSE45885 and GSE145467. Coexpression analysis of
DEGs in GSE45885 was performed, and two modules with the highest correlation with NOA were screened. Key genes were
then screened from the intersection genes of the two modules and common DEGs and PPI network. The expression of key
genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR) experiments. Finally, through miRTarBase,
miRDB, and RAID, the miRNAs were predicted to regulate key genes, respectively. Results. A total of 345 common DEGs were
identified and they were mainly related to spermatogenesis, insulin signaling pathway. Coexpression analysis of DEGs in
GSE45885 yielded eight modules; MEblack and MEturquoise had the highest correlation with NOA. Six genes in MEturquoise
and RNF141 in MEblack were identified as key genes. qRT-PCR experiments validated the differential expression of key genes
between NOA and control. Furthermore, RNF141 was regulated by the largest number of miRNAs. Conclusion. Our findings
suggest that the significant change expression of key genes may be potential markers and therapeutic targets of NOA and may
have some impact on the development of NOA.

1. Introduction

Infertility refers to the inability to carry out a clinical preg-
nancy after 12 months or more of unprotected sexual inter-
course. According to worldwide statistics, infertility affects
10-15% of couples, and almost half of cases are caused by
men [1]. Azoospermia is the most serious type of male infer-
tility, which is mainly divided into obstructive azoospermia
(OA) and nonobstructive azoospermia (NOA) [2]. Among
them, nonobstructive azoospermia (NOA) accounts for
20% of infertility [3]. NOA is usually caused by the failure
of spermatogenesis of unknown etiology and is a difficult
problem in the field of male infertility [4]. The pathogenesis

of NOA is unclear. Therefore, it is necessary to study the
molecular mechanism of NOA and seek more potential ther-
apeutic methods.

Despite systematic treatment options, the chances of
successful clinical or surgical treatment for nonobstructive
azoospermia are small [5]. Intracytoplasmic sperm injection
(ICSI) is an effective method to treat severe male infertility
as an assisted reproductive technology, but the success rate
of NOA patients after ICSI treatment is about 36% [6]. Stud-
ies have found that spermatogenesis defects are significantly
associated with decreased androgen levels [7]. Known causes
of NOA include endocrine and chronic diseases (such as
hypogonadism or diabetes) affecting the hypothalamic-
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pituitary-gonadal axis [8]. However, in patients with NOA,
obvious genetic abnormalities are one of the causes of sper-
matogenic failure [9].

Spermatogenesis is an extremely complex process of cell
differentiation involving 2,300 genes that regulate germ cell
development and maturation [10]. The success of spermato-
genesis and mature sperm release is related to the expression
of large numbers of genes in spermatogenic cells [11]. The
testis is an important organ determining human fertility
and its endocrine status [12]. Many differences in testicular
gene expression can be used to evaluate the underlying mech-
anism of spermatogenesis failure in NOA patients [13]. In
addition, the evaluation of these gene transcripts can reflect
the status of spermatogenesis in the corresponding testis
and may be a potential therapeutic target.

In addition, microRNAs (miRNAs) posttranscriptionally
regulated gene expression. Studies have shown that miRNAs
play a crucial role in spermatogenesis [14]. It is suggested that
miRNAs may mediate the development of spermatogenic
cells by targeting the expression of mRNAs and participate
in spermatogenesis and male infertility [15].

Weighted gene coexpression network analysis
(WGCNA) is a widely used method to build coexpression
pairwise correlation matrices [16]. Protein-protein interac-
tion (PPI) network has also been frequently used to identify
candidate genes for diseases [17]. There have been studies
utilizing WGCNA and PPI networks together to screen
potential target signals [18]. In this study, the transcriptome
data of NOA patients in public databases were used to
explore the molecular dysregulation mechanism and poten-
tial target genes.

2. Materials and Methods

2.1. Data Collection. The gene expression profiles of NOA
and normal controls were collected from the Gene Expres-
sion Omnibus (GEO) database [19]. GSE45885 included
gene expression array data of testicular biopsy samples from
27 human testicular biopsies in men with various nonob-
structive azoospermias and 4 with normal spermatogenesis
based on GPL6244. GSE145467 included gene expression
array data of 20 testis samples (10 showing obstructive azoo-
spermia and 10 samples showing nonobstructive azoosper-
mia) based on GPL4133. Raw data were normalized with
robust multiarray average (RMA) method [20].

2.2. Difference Analysis. Differential expression analysis was
performed using the limma R package [21, 22] to identify dif-
ferentially expressed genes (DEGs) between NOA and nor-
mal spermatogenesis. Genes with ∣log2ðfold changeÞ ∣ >1
and P value < 0.05 in GSE45885 and ∣log2ðfold changeÞ ∣ >2
and P value < 0.05 in GSE145467 were assigned as signifi-
cantly different.

2.3. Biological Function. The Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
[23] was analyzed by using clusterProfiler R package [24–
26] for DEGs. Screening threshold P value < 0.05 was consid-
ered significantly enriched.

2.4. Weighted Gene Coexpression Network Analysis
(WGCNA). The gene coexpression networks based on topo-
logical overlap were identified by WGCNA analytical
method. The coexpression modules for DEGs of GSE45885
were constructed through WGCNA R package [16]. Eigen-
gene expression patterns within each module are condensed
into a “Module eigengene (ME).” The correlation between
modules and clinical traits was calculated using Pearson cor-
relation based on clinical information.

2.5. Protein-Protein Interaction (PPI) Network Analysis. The
selected genes were performed through PPI network using
the Search Tool for the Retrieval of Interacting Genes
(STRING) database. The combined score > 0:6 was consid-
ered significant. The PPI network was visualized by Gephi
software. The key genes were chosen based on their degree
of connectivity with other genes. Visualization of the network
of key genes is through Cytoscape software [27, 28].

2.6. Sample Collection. Peripheral blood samples from 5
NOA patients and 5 normal controls were collected from
our hospital. All subjects read and signed the informed con-
sent form. The study was approved by the ethics committee
of our hospital.

2.7. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). The total RNA was isolated using TRIzol (Invi-
trogen, California, USA) from blood samples. Reverse tran-
scription expression was performed using PrimeScript™ RT
Master Mix (TaKaRa, Dalian, China). The qRT-PCR was
carried out using the SYBR Green Master Mix (Invitrogen,
California, USA) according to the manufacturer. The primer
sequences of genes are shown in Table 1. Relative expression

Table 1: The primers of key genes for qRT-PCR.

Genes Primers

GAPDH
F: 5′-CATGTTCGTCATGGGTGTGAA-3′

R: 5′-GGCATGGACTGTGGTCATGAG-3′

RNF141
F: 5′-CCCATCCTCGGTCACATCTT-3′

R: 5′-CCCCCTTCTCCTCTACGACAAC-3′

AKAP3
F: 5′-CAGGACTGGAAAATGGACACCT-3′

R: 5′-TTTGTGTGGGTCTCCTGAGTTG-3′

AKAP4
F: 5′-TGATACTACAATGATGTCTGATGAT-3′

R: 5′-GGAACTAGCAGCATCCTTGTAATCTTTATC-3′

TNP1
F: 5′-GCTGGATGCCAATCGC-3′

R: 5′-GTCCCTTCTGTTCGGTTG-3′

TNP2
F: 5′-GTCCCTTCTTTCGGGTTG-3′

R: 5′-TCAGTTGTACTCCGTCGTCGGGGAG-3′

ODF1
F: 5′-CCGCACTGAGTTGTCTTTTGG-3′

R: 5′-GGGTGCATGTATAAGTCACACA-3′

PRM2
F: 5′-ATGGTTCGCTACCGAATGAGG-3′

R: 5′-CTCCGCCTTCTGCATGACC-3′
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of genes was calculated using the 2−ΔΔCT method [29]. Genes
were normalized to GAPDH [30].

2.8. Statistical Analysis.Data analysis used SPSS 20.0 software.
Data were presented as the mean ± standard deviations (SD)
[31, 32]. Student’s t-test was used to compare the differences
between two groups. P value < 0.05 was considered statistically
significant. The test level is α = 0:05 (two-sided).

3. Results

3.1. Abnormal Gene Expression in NOA Patients. To identify
gene expression changes in NOA patients, we performed
differential analysis of gene expression between NOA
patients and normal spermatogenesis. A total of 951 signif-
icantly differentially expressed genes (DEGs) were found in
GSE45885 (Figure 1(a), Table S1). Then, 1753 significantly
differentially expressed genes were found in GSE145467
(Figure 1(b), Table S2). Of these, we found 345 common
DEGs (Figure 1(c)). These genes may be significantly
associated with NOA.

3.2. Biological Functions of NOA-Related Genes. Through
enrichment analysis of common DEGs, we found a lot of
important terms in GO results. Biological processes (BP)
mainly involved spermatogenesis, spermatid development,
and sperm motility (Figure 2(a)). Cell composition (CC)
mainly included acrosomal vesicle, sperm fibrous sheath,
and sperm principal piece (Figure 2(b)). Molecular function
(MF) mainly included microtubule motor activity, ATPase
activity, and lysozyme activity (Figure 2(c)). In addition, we
obtained 9 significantly enriched KEGG signaling pathways
(Figure 2(d)), including the “insulin signaling pathway,”
“metabolic pathways,” and “Hedgehog signaling pathway”.

3.3. Network Analysis of NOA-Related Genes. We performed
WGCNA network analysis on DEGs of GSE45885. These
genes were formed into eight coexpression modules by
removing the grey module which without coexpression
behavior (Figure 3(a)). Correlation analysis between module
and trait showed that MEblack had the highest positive cor-
relation with NOA and MEturquoise had the highest nega-
tive correlation with NOA (Figure 3(b)). To identify key
genes that had important effects on NOA, we performed an
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Figure 1: Differentially expressed genes of nonobstructive azoospermia. (a) The differentially expressed genes between NOA and control in
GSE45885. The ∣log2ðfold changeÞ ∣ >1 and P value < 0.05 were screening threshold. (b) The differentially expressed genes between NOA and
control in GSE145467. The ∣log2ðfold changeÞ ∣ >2 and P value < 0.05 were screening threshold. (c) The Venny map of two groups of
differentially expressed genes. A total of 345 common genes were then identified.
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intersection analysis between MEblack, MEturquoise, and
common DEGs (Figure 3(c)). RNF141 was found in
MEblack, and 323 intersecting genes were found in MEtur-
quoise. Further, we constructed a PPI network for 323 genes
(Figure 3(d)). The top six genes with the greatest connectivity
were identified as key genes (AKAP3, AKAP4, TNP1, TNP2,
ODF1, and PRM2) (Figure 3(e)), as well as RNF141. In
GSE45885, RNF141 was highly expressed in NOA, while
AKAP3, AKAP4, TNP1, TNP2, ODF1, and PRM2 were low
expressed (Figure 3(f)).

3.4. miRNA Regulatory Network for Key Genes. Through
qRT-PCR experiments, we verified the differential expression
of key genes between NOA patients and normal controls
(Figure 4(a)). miRTarBase, miRDB, and RAID were used to
predict the miRNA regulators of key genes, respectively. We
obtained seven common miRNAs (hsa-miR-32-5p, hsa-miR-
590-3p, hsa-miR-203a-3p, hsa-miR-4775, hsa-miR-4735-5p,
hsa-miR-33a-3p, and hsa-miR-5688) (Figure 4(b)). Interest-
ingly, these miRNAs all target RNF141 (Figure 4(c)).

4. Discussion

Thousands of genes have been involved in the establishment
of male fertility potential, and many others have not yet been
revealed [33]. Abnormal gene expression is important for

understanding the etiology of male infertility. In this study,
we identified gene expression changes in NOA patients and
screened potential markers and molecular targets of NOA
based on NOA-related gene expression profiles in the GEO
database. To our knowledge, this is the first time that
WGCNA and PPI network were together used to jointly
screen the potential genes of NOA, and then, miRNA regula-
tions for the key genes were further screened. Compared with
other articles using these data [34, 35], we used multiple
means of bioinformatics analysis to obtain more accurate
potential target genes of NOA.

Severe impairment or absence of spermatogenesis is a
characteristic of NOA in the biological functions involved
by NOA-related DEGs [36]. Spermatogenesis is a complex
process involving many transcription factors specific to cell
type [37]. Normal spermatogenesis is dependent on Sertoli
cells [38]. Genes related to the differentiation function of Ser-
toli cells are involved in glucose metabolism and insulin sig-
naling [39]. One potential way to improve spermatogenesis is
to optimize intratesticular testosterone (ITT) levels, and
insulin-like factor 3 is a serum marker that may predict ITT
[40]. Seminal plasma is a noncellular liquid component of
semen, including substances related to metabolism [41]. Pro-
teomic changes in seminal plasma of asthenozoospermia
patients are mainly related to metabolism and energy pro-
duction [42]. Arachidonic acid metabolism and inhibition
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Figure 2: GO function and KEGG pathway of NOA-related genes. (a) The biological process of NOA-related gene enrichment. The longer
the column, the greater the number of genes involved in this term. The redder the color, the higher the significance. (b) The cell composition
of NOA gene enrichment. The longer the column, the greater the number of genes involved in this term. The redder the color, the higher the
significance. (c) The molecular function of NOA-related gene enrichment. The longer the column, the greater the number of genes involved in
this term. The redder the color, the higher the significance. (d) The KEGG pathway of NOA-related gene enrichment. The larger the circle, the
greater counts of gene involved in this term. The redder the color, the higher the significance.
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Figure 3: The WGCNA network of DEGs. (a) The DEGs of GSE45885 were clustered into eight coexpression modules. Different colors
represent different modules. (b) Correlation between coexpression modules and clinical trait. Red is positive correlation and blue is
negative correlation. (c) Intersection of important module genes with common genes. Different colors represent different groups.
Intersection is then the intersection genes among groups. (d) PPI network of intersection genes between MEturquoise and common genes.
The redder the color, the more connectivity of gene in the network. (e) The top 6 genes with the greatest connectivity in the PPI network.
(f) The expression of key genes in NOA and controls of GSE45885. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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of phospholipase may be associated with premature acrosome
reaction [43]. The Hedgehog signaling pathway influences cell
development, tissue homeostasis, cell proliferation and differ-
entiation, and cell fate [44]. An increasing number of studies
have shown that the Hedgehog signaling pathway in Sertoli
cells is associated with spermatogenesis [45].

The positive correlation between MEblack and NOA was
the highest, and the key gene RNF141 was expressed higher
in NOA patients than in controls. Studies have shown that
RNF141 is restrictively expressed in the testicular tissue of

fertile men and involved in maintaining normal male fertility
[46]. RNF141 is an E3 ubiquitin ligase that is recruited during
oocyte maturation [47]. RNF141 is reported to be specifically
present in acrosome and tail of mouse sperm acrosome [48].
In addition, RNF141 is regulated by multiple miRNAs and
may play an important role in network regulation in NOA.
miRNAs participate in the regulation of NOA through sper-
matogenesis and cell cycle [49]. Tyrosine phosphorylation of
A-kinase-associated protein 3 (AKAP3) increases sperm
binding to the zona pellucida [50]. AKAP3 and AKAP4 are

Control NOA
0.0

0.5

1.0

1.5

2.0
RN

F1
41

Control NOA
0.0

0.5

1.0

1.5

A
KA

P3
Control NOA

0.0

0.5

1.0

1.5

A
KA

P4

0.0

0.5

1.0

1.5

TN
P1

Control NOA Control NOAControl NOA
0.0

0.5

1.0

1.5

TN
P2

0.0

0.5

1.0

1.5

PR
M

2

Control NOA
0.0

0.5

1.0

1.5

O
D

F1

⁎⁎

⁎
⁎⁎

⁎⁎

⁎⁎

⁎

⁎⁎

(a)

9 247

18

3

8 11

7

mirTarbase miRDB

RAID

(b)

hsa-miR-32-5p RNF141

hsa-miR-590-3p

hsa-miR-203a-3p

hsa-miR-4775
hsa-miR-4735-5p

hsa-miR-33a-3p

hsa-miR-5688

(c)

Figure 4: Validation experiment and regulatory network key genes. (a) The qRT-PCR experiments validated the differential expression of key
genes between NOA and control for blood samples. ∗P < 0:05 and ∗∗P < 0:01. (b) Online prediction of miRNA regulators for key genes. Seven
common miRNAs were found in the three prediction sites. (c) The regulatory network of seven common miRNAs to RNF141.
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the main components of fibrous sheath (FS) in the sperm tail
[51, 52]. AKAP3 and AKAP4 play important benefit roles in
sperm function, including regulation of sperm motility,
sperm capacitation, and acrosome response [53]. AKAP4 is
an ERK 1/2 substrate and a regulator of human sperm
cAMP/PKA and PKC/ERK 1/2 pathways, which are associ-
ated with capacitation and acrosome reaction [54]. Transi-
tion proteins (TNP) are small proteins, the levels of TNP1
and TNP2 were significantly decreased in the testis and epi-
didymis, and mild germ cell apoptosis was happened in both
the testes and epididymis [55]. The reproductive potential of
the TNP1- and TNP2-null mutant sperm in mice was
reduced. [56]. Abnormal expression of TNP and PRM genes
will lead to abnormal nuclear condensation, leading to male
sterility [57]. Lack of protamine-2 (PRM2) can lead to severe
membrane defects in spermatozoa, resulting in loss of motil-
ity and abnormal sperm head morphology and infertility
[58]. PRM2 deficiency can trigger oxidative stress, leading
to DNA damage, which leads to infertility [59]. It has been
confirmed that the lack of outer dense fiber protein 1
(ODF1) is a marker and potential driver of idiopathic male
infertility [60, 61]. Western blot showed that the expression
level of ODF 1 in asthenozoospermia was indeed downregu-
lated [62].

This study also has some limitations. First, our analytical
data were derived from the GEO database, which lacked
knowledge of the clinical data of the samples. Second,
although we have validated key genes in clinical samples,
more experimental data and clinical validation are needed
for these genes to be applied. Another issue to consider is that
spermatogenesis is a dynamic process, and this analysis pro-
vides information on gene expression and spermatogenesis
status only at one point in time.

5. Conclusion

In conclusion, our preliminary findings suggested that
RNF141, AKAP3, AKAP4, TNP1, TNP2, ODF1, and PRM2
were potential markers and therapeutic targets for NOA.
They were associated with spermatogenesis and metabolic
reactions. Given the potential impact of key genes on NOA,
our findings suggest that further studies are necessary to con-
firm their role in NOA.
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